
Data Mining in Metric Space: An Empirical Analysis of
Supervised Learning Performance Criteria

Rich Caruana
Computer Science
Cornell University

caruana@cs.cornell.edu

Alexandru Niculescu-Mizil
Computer Science
Cornell University

alexn@cs.cornell.edu

ABSTRACT
Many criteria can be used to evaluate the performance of
supervised learning. Different criteria are appropriate in
different settings, and it is not always clear which criteria
to use. A further complication is that learning methods
that perform well on one criterion may not perform well
on other criteria. For example, SVMs and boosting are de-
signed to optimize accuracy, whereas neural nets typically
optimize squared error or cross entropy. We conducted an
empirical study using a variety of learning methods (SVMs,
neural nets, k-nearest neighbor, bagged and boosted trees,
and boosted stumps) to compare nine boolean classifica-
tion performance metrics: Accuracy, Lift, F-Score, Area
under the ROC Curve, Average Precision, Precision/Recall
Break-Even Point, Squared Error, Cross Entropy, and Prob-
ability Calibration. Multidimensional scaling (MDS) shows
that these metrics span a low dimensional manifold. The
three metrics that are appropriate when predictions are in-
terpreted as probabilities: squared error, cross entropy, and
calibration, lay in one part of metric space far away from
metrics that depend on the relative order of the predicted
values: ROC area, average precision, break-even point, and
lift. In between them fall two metrics that depend on com-
paring predictions to a threshold: accuracy and F-score.
As expected, maximum margin methods such as SVMs and
boosted trees have excellent performance on metrics like ac-
curacy, but perform poorly on probability metrics such as
squared error. What was not expected was that the mar-
gin methods have excellent performance on ordering metrics
such as ROC area and average precision. We introduce a
new metric, SAR, that combines squared error, accuracy,
and ROC area into one metric. MDS and correlation anal-
ysis shows that SAR is centrally located and correlates well
with other metrics, suggesting that it is a good general pur-
pose metric to use when more specific criteria are not known.

Categories & Subject Descriptors: I.5.2 [Pattern Recog-
nition]: Design Methodology - classifier design & evaluation.

General Terms: Algorithms, Measurement, Performance,
Experimentation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’04, August 22–25, 2004, Seattle, Washington, USA.
Copyright 2004 ACM 1-58113-888-1/04/0008 ...$5.00.

Keywords: Supervised Learning, Performance Evaluation,
Metrics, ROC, Precision, Recall, Lift, Cross Entropy.

1. INTRODUCTION
In supervised learning, finding a model that could predict

the true underlying probability for each test case would be
optimal. We refer to such an ideal model as the One True
Model. Any reasonable performance metric should be opti-
mized (in expectation, at least) by the one true model, and
no other model should yield performance better than it.

Unfortunately, we usually do not know how to train mod-
els to predict the true underlying probabilities. The one
true model is not easy to learn. Either the correct paramet-
ric model type for the domain is not known, or the training
sample is too small for the model parameters to be esti-
mated accurately, or there is noise in the data. Typically,
all of these problems occur together to varying degrees.

Even if magically the one true model were given to us, we
would have difficulty selecting it from other less true models.
We do not have performance metrics that will reliably assign
best performance to the probabilistically true model given
finite validation data.

In practice, we train models to minimize loss measured via
a specific performance metric. Since we don’t have metrics
that could reliably select the one true model, we must ac-
cept the fact that the model(s) we select will necessarily be
suboptimal. There may be only one true model, but there
are many suboptimal models.

There are different ways that suboptimal models can dif-
fer from the one true model – tradeoffs can be made between
different kinds of deviation from the one true model. Differ-
ent performance metrics reflect these different tradeoffs. For
example, ordering metrics such as area under the ROC curve
and average precision do not care if the predicted values are
near the true probabilities, but depend only on the rela-
tive size of the values. Dividing all predictions by ten does
not change the ROC curve, and metrics based on the ROC
curve are insensitive to this kind of deviation from truth.
Metrics such as squared error and cross entropy, however,
are greatly affected by scaling the predicted values, but are
less affected by small changes in predicted values that might
alter the relative ordering but not significantly change the
deviation from the target values. Squared error and cross
entropy reflect very different tradeoffs than metrics based
on the ROC curve. Similarly, metrics such as accuracy de-
pend on how the predicted values fall relative to a threshold.
If predicted values are rescaled, accuracy will be unaffected
if the threshold also is rescaled. But if small changes to

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
2

W1

Max ACC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
2

W1

Max AUC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
2

W1

Min RMS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
2

W1

Min MXE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
2

W1

Min CAL

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
2

W1

Max SAR

Figure 1: Level curves for six error metrics: ACC, AUC, RMS, MXE, CAL, SAR for a simple problem.

predicted values are made for cases near the threshold, this
can have large impact on accuracy. Accuracy reflects yet
another tradeoff in how deviation from truth is measured.

The one true model, if available, would have (in expecta-
tion) the best accuracy, the best ROC curve, and the best
cross entropy, and the different tradeoffs made by these met-
rics would not be important. But once we accept that we
will not be able to find the one true model, and must there-
fore accept suboptimal models, the different tradeoffs made
by different performance metrics become interesting and im-
portant. Unfortunately, little is known about how different
performance metrics compare to each other.

In this paper we present results from an empirical anal-
ysis of nine widely used performance metrics. We perform
this empirical comparison using models trained with seven
learning algorithms: SVMs, neural nets, k-nearest neigh-
bor, bagged and boosted trees, and boosted stumps. We
use multidimensional scaling (MDS) and correlation analy-
sis to interpret the results. We also examine which learning
methods perform best on the different metrics. Finally, we
introduce a new metric, SAR, that combines squared error,
accuracy, and ROC area into a single, robust metric.

2. THE PERFORMANCE METRICS
We experiment with nine performance metrics for boolean

classification: Accuracy (ACC), Lift (LFT), F-Score (FSC),
Area under the ROC Curve (AUC), Average Precision (APR),
the Precision/Recall Break-Even Point (BEP), Root Mean
Squared Error (RMS), Mean Cross Entropy (MXE), and
Probability Calibration (CAL). Definitions for each of the
metrics can be found in Appendix A.

Figure 1 shows level curves for six of the ten performance
metrics for a model with only two parameters (W1 and W2)
trained on a simple synthetic binary problem. Peak perfor-
mance in the first two plots occurs along a ridge in weight
space. In the other four plots peak performance is indicated
by solid dots. Peak performance for some metrics nearly
coincide: RMS and MXE peak at nearly the same model
weights. But other metrics peak in different places: CAL
has a local optimum near the optima for RMS and MXE,
but its global optimum is in a different place. Also, the
ridges for optimal ACC and optimal AUC do not align, and
the ridges do not cross the optima for the other four metrics.
Optimizing to each of these metrics yields different models,
each representing different tradeoffs in the kinds of errors
the models make. Which of these tradeoffs is best depends
on the problem, the learning algorithm, and how the model
predictions ultimately will be used.

We originally divided the nine metrics into three groups:
threshold metrics, ordering/rank metrics, and probability
metrics. The three threshold metrics are accuracy (ACC),

F-score (FSC) and lift (LFT). F-score is the harmonic mean
of precision and recall at some threshold. Lift measures the
true positive rate in the fraction of cases that fall above
threshold. (See Appendix A for a definition of lift, and [3]
for a description of Lift Curves. Lift is the same as precision
at some threshold, but scaled so that it can be larger than
1.) Usually ACC and FSC use a fixed threshold. In this
paper we use 0.5. With lift, often the threshold is adjusted
so that a fixed percent, p, of cases are predicted as positive,
the rest falling below threshold. Usually p depends on the
problem. For example, in marketing one might want to send
fliers to 10% of customers. Here we somewhat arbitrarily set
p = 25% for all problems. Note that for all threshold metrics
it is not important how close a prediction is too a threshold,
only if the predicted value is above or below threshold.

The ordering/rank metrics look at predictions differently
from the threshold metrics. If cases are ordered by predicted
value, the ordering/rank metrics measure how well the or-
dering ranks positive cases above negative cases. The rank
metrics can be viewed as a summary of the performance of
a model across all possible thresholds. The rank metrics we
use are area under the ROC curve (AUC), average precision
(APR), and precision/recall break even point (BEP). See
[10] for a discussion of ROC curves from a machine learn-
ing perspective. Rank metrics depend only on the ordering
of the predictions, not the actual predicted values. If the
ordering is preserved it makes no difference if the predicted
values range between 0 and 1 or between 0.29 and 0.31.

Although we group Lift with the threshold metrics, and
BEP with the ordering metrics, BEP and Lift are similar to
each other in some respects. Lift is directly proportional to
BEP if Lift is calculated at p equal to the proportion of pos-
itives in the data set. This threshold also is the break-even
point where precision equals recall. BEP and Lift are sim-
ilar to the ordering metrics because the threshold depends
implicitly on the ordering, but also are similar to the thresh-
old metrics because neither is sensitive to the orderings on
either side of the threshold once that threshold has been
defined. Results presented later suggest that both Lift and
BEP are more similar to the ordering metrics than to the
threshold metrics.

The three probability metrics depend on the predicted val-
ues, not on how the values fall relative to a threshold or rela-
tive to each other. The probability metrics are uniquely min-
imized (in expectation) when the predicted value for each
case coincides with the true probability of that case being
positive. The probability metrics we consider are squared
error (RMS), cross entropy (MXE) and calibration (CAL).
CAL measures the calibration of a model: if a model predicts
0.85 for a large number of cases, about 85% of those cases
should prove to be positive if the model is well calibrated.
See Appendix A for details of how CAL is calculated.

We also experiment with a new performance metric, SAR,
that combines squared error, accuracy, and ROC area into
one measure: SAR = (ACC + AUC + (1−RMS))/3. SAR
behaves somewhat differently from ACC, AUC, and RMS
alone, and is a robust metric to use when the correct metric
is unknown. SAR is discussed further in Section 8.

3. NORMALIZING THE SCORES
Performance metrics such as accuracy or squared error

have range [0, 1], while others (lift, cross entropy) range from
0 to q where q depends on the data set. For some metrics
lower values indicate better performance. For others higher
values are better. Metrics such as ROC area have baseline
rates that are independent of the data, while others such as
accuracy have baseline rates that depend on the data. If
baseline accuracy is 0.98, an accuracy of 0.981 probably is
not good performance, yet on another problem, if the Bayes
optimal rate is 0.60, achieving an accuracy of 0.59 might be
excellent performance.

In order to compare performance metrics in a meaningful
way, all the metrics need to be placed on a similar scale. One
way to do this is to scale the performances for each problem
and metric from 0 to 1, where 0 is poor performance, and 1
is good performance. For example, we might place baseline
performance at 0, and the Bayes optimal performance at 1.
Unfortunately, we cannot estimate the Bayes optimal rate
on real problems. Instead, we can use the performance of
the best observed model as a proxy for the Bayes optimal
performance. We calculate baseline rate as follows: predict
p for every case, where p is the percent of positives in the test
set. We normalize performances to the range [0, 1], where
0 is baseline and 1 represents best performance. If a model
performs worse than baseline, its normalized score will be
negative. See Table 1 for an example of normalized scores.
The disadvantage of normalized scores is that recovering the
raw performances requires knowing the performances that
define the top and bottom of the scale, and as new best
models are found the top of the scale changes.

CAL, the metric we use to measure probability calibra-
tion, is unusual in that the baseline model that predicts p
for all cases, where p is the percent of positives in the test
set, has excellent calibration. (Because of this, measures like
CAL typically are not used alone, but are used in conjunc-
tion with other measures such as AUC to insure that only
models with good discrimination and good calibration are
selected. See Figure 1 for a picture of how unusual CAL’s
error surface is compared with other metrics.) This creates a
problem when normalizing CAL scores because the baseline
model and Bayes optimal model have similar CAL scores.
This does not mean CAL is a poor metric – it is effective at
distinguishing poorly calibrated models from well calibrated
models. We address this problem later in the paper.

4. EXPERIMENTAL DESIGN
The goal of this work is to analyze how the ten metrics

compare to each other. To do this we train many different
kinds of models on seven test problems, and calculate for
each test problem the performance of every model on the
ten metrics.

We train models using seven learning algorithms: Neu-
ral Nets (ANN), SVMs, Bagged Decision Trees (BAG-DT),
Boosted Decision Trees (BST-DT), Boosted Decision Stumps

Table 1: Accuracy on ADULT problem
model acc norm score
bst-stmp 0.8556 1.0000
bag-dt 0.8534 0.9795
dt 0.8503 0.9494
svm 0.8480 0.9267
bst-dt 0.8464 0.9113
ann 0.8449 0.8974
knn 0.8320 0.7731
baseline 0.7518 0.0000

(BST-STMP), single Decision Trees (DT) and Memory Based
Learning (KNN). For each algorithm we train many variants
and many parameter settings. For example, we train ten
styles of decision trees, neural nets of different sizes, SVMs
using many different kernels, etc. A total of 2000 models are
trained and tested on each problem. See Appendix B for a
description of the parameter settings we use for each learn-
ing method. While this strategy won’t create every possible
model, and won’t create a uniform sample of the space of
possible models, we feel that this is an adequate sample of
the models that often will be trained in practice.

For each problem, the 2000 models are trained on the same
train set of 4000 points. The performance of each model
is measured on the same large test set for each of the ten
performance metrics. In order put the performances on the
same scale across different metrics and different problems,
we transform the raw performance to normalized scores as
explained in Section 3. In total, across the seven problems,
we have 2000 ∗ 7 = 14, 000 models and for each model we
have it’s score on each of the 10 performances metrics.

5. DATA SETS
We compare the algorithms on seven binary classification

problems. ADULT, COVER TYPE and LETTER are from
UCI Repository [1]. ADULT is the only problem that has
nominal attributes. For ANNs, SVMs and KNNs we trans-
form nominal attributes to boolean. Each DT, BAG-DT,
BST-DT and BST-STMP model is trained twice, once with
the transformed attributes and once with the original at-
tributes. COVER TYPE has been converted to a binary
problem by treating the largest class as the positive and the
rest as negative. We converted LETTER to boolean in two
ways. LETTER.p1 treats the letter ”O” as positive and the
remaining 25 letters as negative, yielding a very unbalanced
binary problem. LETTER.p2 uses letters A-M as positives
and the rest as negatives, yielding a well balanced problem.
HYPER SPECT is the IndianPine92 data set [4] where the
difficult class Soybean-mintill is the positive class. SLAC is
a problem from collaborators at the Stanford Linear Accel-
erator and MEDIS is a medical data set. The characteristics
of these data sets are summarized in Table 2.

Table 2: Description of problems
problem #attr train size test size % pos.
adult 14/104 4000 35222 25%
cover type 54 4000 25000 36%
letter.p1 16 4000 14000 3%
letter.p2 16 4000 14000 53%
medis 63 4000 8199 11%
slac 59 4000 25000 50%
hyper spect 200 4000 4366 24%

6. MDS IN METRIC SPACE
Training 2000 models on each problem using seven learn-

ing algorithms gives us 14,000 models, each of which is eval-
uated on ten performance metrics. This gives us 14,000
sample points to compare for each performance metric. We
build a 10x14,000 table where lines represent the perfor-
mance metrics, columns represent the models, and each en-
try in the table is the score of the model on that metric.
For MDS, we treat each row in the table as the coordinate
of a point in a 14,000 dimension space. The distance be-
tween two metrics is calculated as the Euclidean distance
between the two corresponding points in this space. Be-
cause the coordinates are strongly correlated, there is no
curse-of-dimensionality problem with Euclidean distance in
this 14,000 dimensional space.

We are more interested in how the metrics compare to
each other when models have good performance than when
models have poor performance. Because of this, we delete
columns representing poorer performing models in order to
focus on the “interesting” part of the space where models
that have good performance lie. For the analyses reported
in this paper we delete models that perform below baseline
on any metric (except CAL).

Ten metrics permits 10 ∗ 9/2 = 45 pairwise comparisons.
We calculate Euclidean distance between each pair of met-
rics in the sample space, and then perform multidimensional
scaling on these pairwise distances between metrics.

MDS is sensitive to how the performance metrics are scaled.
The normalized scores described in Section 3 yield well-
scaled performances suitable for MDS analysis for most met-
rics. Unfortunately, as discussed in Section 3, normalized
scores do not work well with CAL. Because of this, we per-
form MDS two ways. In the first, we use normalized scores,
but exclude the CAL metric. In the second, we include CAL,
but scale performances to mean 0.0 and standard deviation
1.0 instead of using normalized scores. Scaling by standard
deviation resolves the problem with CAL for MDS, but is
somewhat less intuitive because scores scaled by standard
deviation depend on the full distribution of models instead
of just the performances that fall at the top and bottom of
each scale.

Figure 2 shows the MDS stress as a function of the number
of dimensions in the MDS (when CAL is included). The
ten metrics appear to span an MDS space of about 3 to 5
dimensions. In this section we examine the 2-D MDS plots
in some detail.

Figure 3 shows two MDS plots for the metrics that result
when dimensionality is reduced to two dimensions. The plot
on the left is MDS using normalized scores when CAL is
excluded. The plot on the right is MDS using standard
deviation scaled scores when CAL is included.

Both MDS plots show a similar pattern. The metrics ap-
pear to form 4-5 somewhat distinct groups. In the upper
right hand corner is a group that includes AUC, APR, BEP,
LFT, and SAR. The other groups are RMS and MXE, ACC
(by itself, or possibly with FSC), FSC (by itself, or possibly
with ACC), and CAL (by itself). It is not surprising that
squared error and cross entropy form a cluster. Also, pre-
sumably because squared error tends to be better behaved
than cross entropy, RMS is closer to the other measures than
MXE. We are somewhat surprised that RMS is so centrally
located in the MDS plots. Perhaps this partially explains
why squared error has proved so useful in many applications.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8

M
D

S
 S

tr
es

s

Number of MDS Dimensions

Figure 2: MDS stress vs. number of dimensions

It is somewhat surprising that accuracy does not appear
to correlate strongly with any of the other metrics, except
possibly with FSC. ACC does not fall very close to other
metrics that use thresholds such as Lift and F-Score, even
though F-Score uses the same 0.5 threshold as accuracy in
our experiments. (The threshold for Lift is adjusted dynam-
ically so that 25% of the cases are predicted as positive.)
Accuracy is surprisingly close to RMS, and closer to RMS
than to MXE, again suggesting that part of the reason why
RMS has been so useful is because of its close relationship
to a metric such as ACC that has been so widely used.

The most surprising pattern in the MDS plot that in-
cludes CAL is that CAL is distant from most other met-
rics. There appears to be an axis running from CAL at
one end to the ordering metrics such as AUC and APR
at the other end that forms the largest dimension in the
space. This is surprising because one way to achieve ex-
cellent ordering is to accurately predict true probabilities,
which is measured by the calibration metric. However, one
can achieve excellent AUC and APR using predicted values
that have extremely poor calibration, yet accurately predict
the relative ordering of the cases. The MDS plot suggests
that many models which achieve excellent ordering do so
without achieving good probabilistic calibration. Closer ex-
amination shows that some models such as boosted decision
trees yield remarkably good ordering, yet have extremely
poor calibration. We believe maximum margin methods
such as boosting tradeoff reduced calibration for better mar-
gin. See Section 9 for further discussion of this issue. One
also can achieve good calibration, yet have poor AUC and
APR. For example, decision trees with few leaves may be
well calibrated, but the coarse set of values they predict do
not provide a basis for good ordering.

Figure 4 shows 2-D MDS plots for six of the seven test
problems. The seventh plot is similar and is omitted to
save space. (The omitted plot is one of the two LETTER
problems.) Although there are variations between the plots,
the 2-D MDS plots for the seven problems are remarkably
consistent given that these are different test problems. The
consistency between the seven MDS plots suggests that we
have an adequate sample size of models to reliably detect re-
lationships between the metrics. Metrics such as ACC, FSC,
and LFT seem to move around with respect to each other in
these plots. This may be because they have different sensi-

acc

fsc
lft

aucapr

bep

rms

mxe

sar

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

acc

fsc

lft

auc

apr

bep

rms

mxe

cal

sar

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Figure 3: 2D MDS plot using normalized scores (left) and standard deviation scaling (right).

tivities to the ratio of positives to negatives in the data sets.
For example, BEP is proprtional to LFT (and thus behaves
similarly) when the percentage of positives in the dataset
equals the fraction predicted above threshold (25% in this
paper). Other than this, we have not been able to correlate
differences we see in the individual plots with characteris-
tics of the problems that might explain those differences,
and currently believe that the MDS plots that combine all
seven problems in Figure 3 represents an accurate summary
of the relationships between metrics. Note that this does
not mean that the performance of the different learning al-
gorithms exhibits the same pattern on these test problems
(in fact they are very different), only that the relationships
between the ten metrics appear to be similar across the test
problems when all the learning algorithms are considered at
one time.

7. CORRELATION ANALYSIS
As with the MDS analysis in the previous section, we

used each of the ten performance metrics to measure the
performance of the 2000 models trained with the different
learning methods on each of the seven test problems. In
this section we use correlation analysis on these models to
compare metrics instead of MDS.

Again, to make the correlation analysis easier to inter-
pret, we first scale performances to the range [0, 1] so that
the best performance we observed with that metric on each
problem with any of the learning methods is performance
1, and baseline performance with that metric and data set
is performance 0. This eliminates the inverse correlation
between measures such as accuracy and squared error, and
normalizes the scale of each metric.

Ten metrics permits 10 ∗ 9/2 = 45 pairwise correlations.
We do these comparisons using both linear correlation (ex-
cluding CAL) and rank correlation. The results from the
linear and rank correlation analyses are qualitatively sim-

ilar. We present the results for non-parametric rank cor-
relation because rank correlation makes fewer assumptions
about the relationships between the metrics, and because
rank correlation is insensitive to how CAL is scaled.

Table 3 shows the rank correlation between all pairs of
metrics. Each entry in the table is the average rank cor-
relation across the seven test problems. The table is sym-
metric and contains only 45 unique pairwise comparisons.
We present the full matrix because this makes it easier to
scan some comparisons. The final column is the mean of
the rank correlations for each metric. This gives a rough
idea how correlated each metric is on average to all other
metrics.

Metrics with pairwise rank correlations near one behave
more similarly than those with smaller rank correlations. Ig-
noring the SAR metric which is discussed in the next section,
seven metric pairs have rank correlations above 0.90:

0.96: Lift to ROC Area

0.95: ROC Area to Average Precision

0.93: Accuracy to Break-even Point

0.92: RMS to Cross-Entropy

0.92: Break-Even Point to ROC Area

0.92: Break-Even Point to Average Precision

0.91: Average Precision to Lift

We expected AUC and average precision to behave very
similarly and thus have high rank correlation. But we are
surprised to see that Lift has such high correlation to AUC.
Note that because Lift has high correlation to AUC, and
AUC has high correlation to average precision, it is not sur-
prising that Lift also has high correlation to average preci-
sion. As expected, break-even point is highly correlated with
the other two ordering metrics, AUC and average precision.
But the high correlation between accuracy and break-even

acc

fsc

lft

auc apr

bep

rms

mxe

cal

sar

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

COVER_TYPE

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

acc

fsc

lft

auc

apr

bep

rms

mxe

cal

sar

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

ADULT

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

acc
fsc

lft

auc

apr

bep

rms

mxe

cal

sar

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

LETTER.P1

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

acc

fsc

lft auc

apr

bep

rms

mxe

cal

sar

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

HYPER_SPECT

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

acc

fsc

lft

auc

apr

bep

rms

mxe

cal

sar

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

MEDIS

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

acc

lft

auc

apr

bep

rms

mxe

cal

sar

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

SLAC

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Figure 4: 2-D MDS plots for six of the seven test problems. The seventh problem yields a similar plot and
is omitted only to save space. The missing plot is for one of the LETTER problems.

Table 3: Average rank correlations between metrics
acc fsc lft auc apr bep rms mxe cal sar mean

acc 1.00 0.87 0.85 0.88 0.89 0.93 0.87 0.75 0.56 0.92 0.852
fsc 0.87 1.00 0.77 0.81 0.82 0.87 0.79 0.69 0.50 0.84 0.796
lft 0.85 0.77 1.00 0.96 0.91 0.89 0.82 0.73 0.47 0.92 0.832
auc 0.88 0.81 0.96 1.00 0.95 0.92 0.85 0.77 0.51 0.96 0.861
apr 0.89 0.82 0.91 0.95 1.00 0.92 0.86 0.75 0.50 0.93 0.853
bep 0.93 0.87 0.89 0.92 0.92 1.00 0.87 0.75 0.52 0.93 0.860
rms 0.87 0.79 0.82 0.85 0.86 0.87 1.00 0.92 0.79 0.95 0.872
mxe 0.75 0.69 0.73 0.77 0.75 0.75 0.92 1.00 0.81 0.86 0.803
cal 0.56 0.50 0.47 0.51 0.50 0.52 0.79 0.81 1.00 0.65 0.631
sar 0.92 0.84 0.92 0.96 0.93 0.93 0.95 0.86 0.65 1.00 0.896

point is somewhat surprising and we currently do not know
how to explain this.

The weakest correlations are all between the calibration
metric (CAL) and the other metrics. On average, CAL cor-
relates with the other metrics only about 0.63. We are sur-
prised how low the correlation is between probability cali-
bration and other metrics, and are currently looking at other
measures of calibration to see if this is true for all of them.

acc

fsc
lft

auc

apr

bep

rms

mxecal

sar

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Figure 5: MDS using rank correlation

Figure 5 shows an MDS plot for the metrics when distance
between metrics is calculated as 1− rank correlation, mak-
ing MDS insensitive to how the metrics are scaled. (Dis-
tances based on 1 − rank correlation do not respect the
triangle inequality so this is not a proper metric space.)
The overall pattern is similar to that observed in the MDS
plots in Figure 3. CAL is at one end of the space far from
the other metrics. Cross-entropy is closest to RMS, though
not as close as in the other plots. Cross-entropy and RMS
have high rank correlation, but because cross-entropy has
lower rank-correlation to other most metrics than RMS, it
is pushed far from RMS which is close to other metrics in
the MDS plot. APR and AUC are at the other end of the
space farthest from CAL. FSC is in the upper left side of
the space. ACC and RMS are near the center of the space.

8. SAR: A GENERAL PURPOSE METRIC
When applying supervised learning to data, a decision

must be made about what metric to train to and what met-
ric to use for model selection. Often the learning algorithm
dictates what metrics can be used for training, e.g. it is dif-
ficult to train a neural net for metrics other than RMS or
MXE. But there usually is much more freedom when select-
ing the metric to use for model selection, i.e. the metric used
to pick the best learning algorithm and the best parameters
for that algorithm.

If the correct metric for the problem is known, model se-
lection probably should be done using that metric even if
the learning algorithm cannot be trained to it. What should
be done when the correct metric is not known? The MDS
plots and correlation analysis suggest that RMS is remark-
ably well correlated with the other measures, and thus might
serve as a good general purpose metric to use when a more
specific optimization criterion is not known.

We wondered if we could devise a new metric more cen-
trally located than RMS and with better correlation to the
other metrics. Rather than devise a completely new met-
ric, we tried averaging several of the well behaved metrics
into a new metric that might be more robust than each one
individually. SAR combines Squared error, Accuracy, and
ROC area into one measure: SAR = (ACC + AUC + (1 −
RMS))/3. We chose these metrics for SAR for three rea-
sons:

1. we wanted to select one metric from each metric group:
the threshold metrics, the ordering metrics, and the
probability metrics

2. ACC, AUC, and RMS seemed to be the most popular
metric from each of these groups, respectively

3. these three metrics are well correlated to the other
metrics in their groups, and in the MDS plots lie clos-
est to the other metrics in their groups

As can be seen from the MDS plots and in the tables,
SAR behaves differently from ACC, AUC, and RMS alone.
In Table 3 SAR has higher mean rank correlation to other
metrics than any other metric. In the MDS plots, SAR tends
to be more consistently centrally located than other metrics.
And in Table 4 it is the metric that best reflects the ordering
by mean performance of the seven learning methods.

These results suggest that of the ten metrics we exam-
ined, SAR is the metric that on average is most correlated
with the other metrics, both separately, and in groups. SAR
is even more representative than RMS (though RMS also is

Table 4: Normalized scores for each learning algorithm by metric (average over seven problems)
model acc fsc lft auc apr bep rms mxe cal mean sar
ann 0.9236 0.9217 0.9645 0.9665 0.9449 0.9470 0.8915 0.8919 0.9752 0.9363 0.9107
svm 0.8848 0.9225 0.9546 0.9632 0.9434 0.9492 0.8898 0.8951 0.9315 0.9260 0.9119

bag-dt 0.8643 0.8733 0.9618 0.9708 0.9486 0.9304 0.8646 0.8999 0.8253 0.9043 0.9068
knn 0.7978 0.8774 0.9316 0.9427 0.8968 0.9108 0.7846 0.7677 0.8921 0.8668 0.8633
bst-dt 0.9337 0.9187 0.9773 0.9809 0.9688 0.9693 0.6305 0.6357 0.5235 0.8376 0.8786
dt 0.6610 0.8360 0.8838 0.8845 0.8090 0.8267 0.6207 0.6681 0.7831 0.7748 0.7812
bst-stmp 0.7797 0.8050 0.9173 0.9236 0.8715 0.8576 0.3147 0.2983 0.4266 0.6883 0.6659

very good). In an experiment where SAR was used for model
selection, SAR outperformed eight of the nine metrics in se-
lecting the models with the best overall, and tied with RMS.
We believe our results suggest that SAR is a robust combi-
nation of three popular metrics that may bey appropriate
when the correct metric to use is not known, though the
benefit of SAR over RMS is modest at best. Attempts to
make SAR better by optimizing the weights given to ACC,
AUC, and RMS in the SAR average did not significantly im-
prove SAR compared to equal weights for the three metrics.
We are very impressed at how well behaved RMS alone is
and are currently working to devise a better SAR-like metric
that yields more improvement over RMS alone.

9. PERFORMANCES BY METRIC
Table 4 shows the normalized performance of each learn-

ing algorithm on the nine metrics. (CAL is scaled so that the
mean observed CAL score is 0.0 and the maximum observed
CAL score is 1.0) For each test problem we find the best pa-
rameter settings for each learning algorithm and compute
it’s normalized score. Each entry in the table averages these
scores across the seven problems. The last two columns
are the mean normalized scores over the nine metrics, and
the SAR performance. Higher scores indicate better per-
formance. The models in the table are ordered by mean
overall performance. We have written a separate paper to
compare the performance of the learning methods to each
other on these metrics, but there are a few interesting rela-
tionships between learning algorithms and metrics that are
worth discussing in the context of this paper.

Overall, the best performing models are neural nets, SVMs,
and bagged trees. Surprisingly, neural nets outperform all
other model types if one averages over the nine metrics.
ANNs appear to be excellent general purpose learning meth-
ods. This is not to say that ANNs are the best learning
algorithm – they only win on RMS and CAL, but because
they rarely perform poorly on any problem or metric, they
have excellent overall performance.

The SVMs perform almost as well as ANNs. Note that
SVM predictions on [−∞, +∞] are not suitable for measures
like cross entropy, calibration, and squared error. SVMs do
well on these metrics because we use Platt’s method [8] to
transform SVM predictions to calibrated probabilities. Like
neural nets, SVMs appear to be a safe, general purpose, high
performance learning method once their predictions have
been calibrated by a method such as Platt scaling.

Although single decision trees perform poorly, bagged trees
perform nearly as well as neural nets and SVMs. Bagging
improves decision tree performance on all metrics, and yields
particularly large improvements on the probability metrics.
Like neural nets and SVMs, bagged trees appear to be a
safe, general purpose, high performance learning method.

Boosted trees outperform all other learning methods on
ACC, LFT, ROC, APR, and BEP. Boosting wins 2 of 3
threshold metrics and 3 of 3 rank metrics, but performs
poorly on the probability metrics: squared error, cross en-
tropy, and calibration. Maximum margin methods such as
boosted trees yield poorly calibrated probabilities. (SVMs
perform well on these because Platt scaling “undoes” the
maximum margin.) Overall, boosting wins 5 of the 6 met-
rics for which it is well suited, and would easily be the top
performing learning method if we consider only the 6 thresh-
old and ordering metrics.

The KNN methods were not competitive with the bet-
ter algorithms, but might done better with larger train sets.
Single decision trees also did not perform as well as most
other methods, probably because recursive partitioning runs
out of data quickly with 4k train sets, and because small
trees are not good at predicting probabilities [9]. We tested
many different kinds of decision trees, including smoothed
unpruned trees, and then picked the best, so the poor per-
formance of trees here is not due to any one tree type being
inferior, but because all of the many tree types we tested
did not perform as well as other methods.

Interestingly, boosting stump models does not perform
as well as boosting full decision trees. Boosted stumps do
outperform single trees on 5 of the 6 threshold and rank
metrics. Their last-place ranking below decision trees is due
to their extremely poor performance on the three probability
measures.

10. RELATED WORK
There is not a large literature comparing performance

metrics. The closest work to ours is by Flach [7]. In this
work Flach uses the ROC space to understand and compare
different metrics. He analyzes accuracy, precision, weighted
relative accuracy and several decision tree splitting criteria.

The STATLOG project [6] performed a large scale empir-
ical evaluation of a number of learning algorithms in 1995.
STATLOG compared the performance of the different algo-
rithms, and also did an analysis of how the predictions made
by the algorithms compared to each other. STATLOG, how-
ever, did not compare performance using different metrics.

11. DISCUSSION AND CONCLUSIONS
Our analysis allows us to draw a variety of conclusions

which we summarize here. If the goal is to maximize accu-
racy, but the model needs a continuous performance metric
(e.g. using backpropagation to train a neural net), it proba-
bly is better to train the model using squared error instead
of cross entropy because squared error sits closer to accuracy
in metric space. This result is surprising since cross entropy
is the theoretically preferred loss function for binary classifi-
cation. We suspect cross entropy is not as robust as squared

error on real data sets because real data sometimes contains
class noise that cross entropy is very sensitive to.

Squared error is a remarkably robust performance metric
that has higher average correlation to the other metrics than
any other metric except SAR. Squared error appears to be
an excellent general purpose metric.

Many models achieve excellent performance on the or-
dering metrics AUC, APR, and BEP without making pre-
dictions that yield good probabilities. For example, the k-
nearest neighbor models with the best ROC performance
use values of K that are so large that most of the predic-
tions are close to p, the fraction of positives in the data.
This yields predictions that are poor when viewed as proba-
bilities, yet small differences between these predicted values
are sufficient to provide for good ordering.

As expected, maximum margin methods such as boosting
and SVMs yield excellent performance on metrics such as ac-
curacy for which they are designed. Surprisingly, however,
the maximum margin methods also yield excellent perfor-
mance on the ordering metrics. We had not expected that
maximizing distances to decision boundaries would provide a
good basis for ordering cases that fall far from those bound-
aries.

Although boosted trees perform well on accuracy and ROC,
they perform poorly on probability metrics such as squared
error and cross entropy. This poor performance on prob-
ability metrics is a consequence of boosting being a max-
imum margin method. SVMs do not exhibit this problem
because we scale SVM predictions with Platt’s method; Lin-
early scaling SVM predictions to [0, 1] does not work well.

Neural nets trained with backpropagation have excellent
overall performance because, unlike boosting, they perform
well on all metrics including the probability metrics RMS,
MXE, and CAL. We believe part of the reason why the neu-
ral nets perform so well is that they were trained with back-
propagation on squared error, and as we have seen squared
error is an excellent metric.

The three ordering metrics, AUC, APR, and BEP, cluster
close in metric space and exhibit strong pairwise correla-
tions. These metrics clearly are similar to each other and
somewhat interchangeable. We originally grouped LFT with
the threshold metrics ACC and FSC, but the results suggest
that LFT behaves more like BEP, an ordering metric. We
now would group LFT with BEP in the ordering metrics
along with AUC and APR.

The metric space for the ten metrics has three or more
significant dimensions. The ten metrics do not all measure
the same thing. Different performance metrics yield differ-
ent tradeoffs that are appropriate in different settings. No
one metric does it all, and the metric optimized to or used
for model selection does matter. The SAR metric that com-
bines accuracy, ROC area, and squared error appears to be
a good, general purpose metric, but RMS is so good that
SAR may not provide much benefit over using RMS alone.
We hope that additional research in this area will enable us
to design better metrics, and will shed more light on which
metrics are most appropriate to use in different settings.

12. ACKNOWLEDGMENTS
Thanks to Geoff Crew and Alex Ksikes for help running

some of the experiments. Thanks to the creators of XGVIS
and XGOBI for the interactive MDS software used to gen-
erate the MDS plots. Thanks to collaborators at Stanford

Linear Accelerator for the SLAC data, and to Tony Gualtieri
at NASA Goddard for help with the Indian Pines data.

13. REFERENCES
[1] C. Blake and C. Merz. UCI repository of machine

learning databases, 1998.

[2] M. DeGroot and S. Fienberg. The comparison and
evaluation of forecasters. Statistician, 32(1):12–22,
1982.

[3] P. Giudici. Applied Data Mining. John Wiley and
Sons, New York, 2003.

[4] A. Gualtieri, S. R. Chettri, R. Cromp, and
L. Johnson. Support vector machine classifiers as
applied to aviris data. In Proc. Eighth JPL Airborne
Geoscience Workshop, 1999.

[5] T. Joachims. Making large-scale svm learning
practical. In Advances in Kernel Methods, 1999.

[6] R. King, C. Feng, and A. Shutherland. Statlog:
comparison of classification algorithms on large
real-world problems. Applied Artificial Intelligence,
9(3):259–287, May/June 1995.

[7] P.A.Flach. The geometry of roc space: understanding
machine learning metrics through roc isometrics. In
Proc. 20th International Conference on Machine
Learning (ICML’03), pages 194–201. AAAI Press,
January 2003.

[8] J. Platt. Probabilistic outputs for support vector
machines and comparison to regularized likelihood
methods. In A. Smola, P. Bartlett, B. Schoelkopf, and
D. Schuurmans, editors, Advances in Large Margin
Classifiers, pages 61–74, 1999.

[9] F. Provost and P. Domingos. Tree induction for
probability-based rankings. Machine Learning, 52(3),
2003.

[10] F. J. Provost and T. Fawcett. Analysis and
visualization of classifier performance: Comparison
under imprecise class and cost distributions. In
Knowledge Discovery and Data Mining, pages 43–48,
1997.

APPENDIX

A. PERFORMANCE METRICS

accuracy: probably the most widely used performance met-
ric in Machine Learning. It is defined as the propor-
tion of correct predictions the classifier makes relative
to the size of the dataset. If a classifier has continuous
outputs (e.g. neural nets), a threshold is set and every-
thing above this threshold is predicted to be a positive.

root-mean-squared-error (RMSE): widely used in regres-
sion, it measures how much predictions deviate from
the true targets. 1RMSE is defined as:

RMSE =

r

1

N

X

(Pred(C) − True(C))2 (1)

mean cross entropy (MXE): is used in the probabilistic
setting when interested in predicting the probability

1Root-mean-squared error is applicable to binary classifica-
tion settings where the classifier outputs predictions on [0, 1]
that are compared with the true target labels on {0, 1}.

that an example is positive (1). It can be proven that
in this setting minimizing the cross entropy gives the
maximum likelihood hypothesis. mean cross entropy is
defined as:

MXE = − 1

N

P

(True(C) ∗ ln(Pred(C)) +

(1 − True(C)) ∗ ln(1 − Pred(C))) (2)

(The assumptions are that Pred(C) ∈ [0, 1] and True(C) ∈
{0, 1})

receiver operating characteristic (ROC): has it’s roots in
WWII in the early days of radar where it was difficult
to distinguish between true positives and false posi-
tives. ROC is a plot of sensitivity vs. (1-specificity)
for all possible thresholds. Sensitivity is the defined as
P (Pred = positive|True = positive) and is approxi-
mated by the fraction of true positives that are pre-
dicted as positive (this is the same as recall). Specificity
is P (Pred = negative|True = negative). It is approx-
imated by the fraction of true negatives predicted as
negatives. AUC, the area under the ROC curve, is
used as a summary statistic. ROC has a number of
nice properties that make it more principled than sim-
ilar measures such as average precision. AUC is widely
used in fields such as medicine, and recently has become
more popular in the Machine Learning community.

lift: often used in marketing analysis, Lift measures how
much better a classifier is at predicting positives than a
baseline classifier that randomly predicts positives (at
the same rate observed for positives in the data). The
definition is:

LIFT =
%of true positives above the threshold

%of dataset above the threshold
(3)

Usually the threshold is set so that a fixed percentage
of the dataset is classified as positive. For example,
suppose a marketing agent wants to send advertising to
potential clients, but can only afford to send ads to 10%
of the population. A classifier is trained to predict how
likely a client is to respond to the advertisement, and
the ads are sent to the 10% of the population predicted
most likely to respond. A classifier with optimal lift
will get as many clients as possible that will respond to
the advertisement in this set.

precision and recall : These measures are widely used in
Information Retrieval. Precision is the fraction of ex-
amples predicted as positive that are actually positive.
Recall is the fraction of the true positives that are pre-
dicted as positives. These measures are trivially maxi-
mized by not predicting anything, or predicting every-
thing, respectively, as positive. Because of this these
measures often are used together. There are different
ways to combine these measures as described by the
next 4 metrics.

precision-recall F-score: for a given threshold, the F-score
is the harmonic mean of the precision and recall at that
threshold.

precision at a recall level: as the name suggests, set the
threshold such that you have a given recall and the
precision for this threshold is computed.

precision-recall break-even point: is defined as the precision
at the point (threshold value) where precision and recall
are equal.

average precision: usually is computed as the average of
the precisions at eleven evenly spaced recall levels.

CAL is based on reliability diagrams [2]. It is calculated
as follows: order all cases by their predicted value, and
put cases 1-100 in the same bin. Calculate the per-
centage of these cases that are true positives. This
approximates the true probability that these cases are
positive. Then calculate the mean prediction for these
cases. The absolute value of the difference between the
observed frequency and the mean prediction is the cali-
bration error for this bin. Now take cases 2-101, 3-102,
.... and compute the errors in the same way for each of
these bins. CAL is the mean of these binned calibration
errors.

B. PARAMETER SETTINGS
We use the following parameter settings and algorithm

variations for the seven learning methods:
KNN: we use 26 values of K ranging from K = 1 to
K = |trainset|. We use KNN with Euclidean distance and
Euclidean distance weighted by gain ratio. We also use dis-
tance weighted KNN, and locally weighted averaging. The
kernel widths for locally weighted averaging vary from 20 to
210 times the minimum distance between any two points in
the train set.
ANN: we train nets with gradient descent backprop and
vary the number of hidden units {1, 2, 4, 8, 32, 128} and
the momentum {0, 0.2, 0.5, 0.9}. We don’t use validation
sets to do weight decay or early stopping. Instead, for each
performance metric, we examine the nets at many different
epochs.
DT: we vary the splitting criterion, pruning options, and
smoothing (Laplacian or Bayesian smoothing). We use all
of the tree models in Buntine’s IND package: Bayes, ID3,
CART, CART0, C4, MML, and SMML. We also generate
trees of type C44 (C4 with no pruning), C44BS (C44 with
Bayesian smoothing), and MMLLS (MML with Laplacian
smoothing). See [9] for a description of C44.
BAG-DT: we bag at least 25 trees of each type. With
BST-DT we boost each tree type. Boosting can overfit,
so we consider boosted DTs after {2, 4, 8, 16, 32, 64, 128,
256, 512, 1024, 2048} steps of boosting. With BST-STMP
we use stumps (single level decision trees) with 5 different
splitting criteria, each boosted {2, 4, 8, 16, 32, 64, 128, 256,
512, 1024, 2048, 4096, 8192} steps.
SVMs: we use most kernels in SVMLight [5] {linear, poly-
nomial degree 2 & 3, radial with width {0.001, 0.005, 0.01,
0.05, 0.1, 0.5, 1, 2}} and vary the regularization parameter
C by factors of ten from 10−7 to 103. The output range
of SVMs is [−∞, +∞] instead of [0, 1]. To make the SVM
predictions compatible with other models, we use Platt’s
method to convert SVM outputs to probabilities by fitting
them to a sigmoid [8]. Without scaling, SVMs would have
poor RMS and it would not be possible to calculate MXE
and CAL.

