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Abstract

We consider the problem of learning Bayes Net
structures for related tasks. We present an algo-
rithm for learning Bayes Net structures that takes
advantage of the similarity between tasks by bi-
asing learning toward similar structures for each
task. Heuristic search is used to find a high scor-
ing setof structures (one for each task), where the
scorefor a set of structures is computed in a prin-
cipled way. Experiments on problems generated
from the ALARM and INSURANCE networks
show that learning the structures for related tasks
using the proposed method yields better results
than learning the structures independently.
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species. Since the regulatory structures are very similar,
learning that there is an interaction between two genes in
one species of yeast should provide evidence for the exis-
tence of the same interaction in the other species.

In this paper we present an algorithm for learning the
Bayesian Network structure for multiple problems simulta-
neously. We start with an overview of Bayes Net structure
learning for a single problem, then describe a new multi-
task structure learning algorithm in Section 3. The empir-
ical evaluation in Section 4 shows that more accurate de-
pendency graphs can be learned via inductive transfer com-
pared to learning the Bayes Net structure for each problem
in isolation.

2 Learning Bayes Nets from Data

A Bayesian NetworkB = {G, 6} that encodes the joint
probability distribution of a set af random variableX =
X1, Xo, ..., X, } is specified by a directed acyclic graph

Bayes Nets [1] provide a compact, intuitive description ({DAG) G and a set of conditional probability functions
of the dependency structure of a domain by using a di'parametrized by [1]. The Bayes Nestructure G, en-
rected acyclic graph to encode probabilistic dependenciegyges the probabilistic dependencies in the data: the pres-
between variables. This intuitive encoding of the depenynce of an edge between two variables means that there
dency structure makes Bayes Nets appealing in expert sygyists a direct dependency between them. An appealing
tems where expert knowledge can be encoded throughaiure of Bayes Nets is that the dependency gi@pis

hand-built dependency graphs. Acquiring expertise fromyagy 0 interpret and can be used to aid understanding the
humans, however, is difficult and expensive, so S'gn'f'ca”broblem domain.

research has focused on learning Bayes Nets from data. A

The learned dependency graph provides useful informatioffiven a dataseb = {z*, ...,z } where each’ is a com-
about a problem and is often used as a data analysis tod)ete assignment of variable$;, ..., X,,, it is possible to
For example Friedman et al. used Bayes Nets learned frod¢arn both the structur€ and the parametets[6, 7]. Fol-

gene expression level data to discover regulatory interadowing the Bayesian paradigm, the posterior probability of
tions between genes for a species of yeast [2]. the structure given the data is estimated via Bayes rule:

Until now, Bayes Net structure learning research has fo- P(G|D) x P(G)P(D|G) (1)
cused on learning the dependency graph for one problem

in isolation. In many situations, however, data is ava#abl The prior P(G) indicates the belief before seeing any data
for multiple related problems. In these cases, inductiveghat the structuré; is correct. If there is no reason to pre-
transfer [3, 4, 5] suggests that it may be possible to learifier one structure over another, one should assign the same
more accurate dependency graphsrbpsferringinforma-  probability to all structures. This uninformative (unifoy

tion between problems. For example, suppose that we warior is rarely accurate, but often is used for convenience.
to learn the gene regulatory structure for a number of yeadf there exists a known ordering on the nodessisuch that



can be assessed by specifying the probability that each of

then(n — 1)/2 possible arcs is present in the correct struc- = /P(Gl, oy Ok|G1,y -, Gi) H (Dp|Gp,0,)db:...do
ture [8]. Alternately, when there is access to a structure p

believed to be close to the correct one (e.g. from an ex- ) .
pert), P(G) can be specified by penalizing each differencelf we make the parameters of different networks in-

; dependent apriori (i.e. P(b1,...,0:|G1,....,Gr) =
between and the given structure by a constant factor [9].
g y Ol b (0,(G1)...P(6/Gi) ), the marginal likelihood is just the

The marginal likelihoodP(D|G), is computed by integrat-  product of the marginal likelihoods of each data set given
ing over all possible parameter values: its network structure. In this case the posterior can be writ
ten as:

all the parents of a node precede it in the ordering, a prior P(b,...,0k|G1, ..., Gi)db...dOy,
k
P
=1

P(D|G) = / P(D|G,0)P(0]G)do @)

k
When the local conditional probability distributions are P(Gy, .., Gk| D1, ., D) o< P(Gy, .., Gi) HP(DP|GP)
from the exponential family, the parametéysare mutually p=t )
independent, we have conjugate priors for these parame-

ters, and the data is complefe({D|G) can be computed in Making the parameters independent apriori is needed in or-
closed form [7]. der to make structure learning efficient (see Section 3.3).

Treating P(G|D) as a score, one can search for a highUnfortunately, a side effect is that it prevents multi-task
scoring network using heuristic search [7]. Greedy searchstructure learning from taking advantage of the similari-
for example, starts from an initial structure, evaluates th ties between parameters of different tasks during stractur
score of all theneighborsof that structure and moves to learning. After the structures have been learned, however,
the neighbor with the highest score. The search terminateguch similarities could be leveraged to learn more accurate
when the current structure is better than all it's neighborsParameters. For simplicity, we also assume that all tasks
Because it is possible to get stuck in a local minima, thishave the same attributés, , ..., X;,. The extension to tasks
procedure usually is repeated a number of times startingat have only partial overlap in attributes is straightfor
from different initial structures. A common definition of Wward.

the neighborsof a structure G is the set of all the DAGs

that can be obtained by removing or reversing an existing-1 The Prior

arcin G, or by adding an arc that is not present in G. The prior knowledge of how related the different tasks

are and how similar their structures should be is encoded
in the prior P(G4,...,Gk). If there is no reason to be-
éieve that the structures for each task should be related,

Net for a single task. What if instead of a single task Wethen G1, ..., Gy, should be made independent apriori (i.e.

have a number of related tasks (e.g., gene expression daﬁ Glt’ ""IG"') ~ P(Glt)) ' d ' P.(C;’“))' Ig thtils ;:ase ”;]et K
for a number of related species) and we want to learn guucture-learning can be done independently for €ach tas

Bayes Net structure for each of them? using the corresponding data set.

3 Learning from Related Tasks

In the previous section we reviewed how to learn a Baye

At the other extreme, if the structures for all the different
tasks should be identical, the priéf(Gy, ..., Gi) should

put zero probability on any configuration that contains non-
refer to a set of structure&?,, ..., G; ). From Bayes rule, identical structures. In this case one can efficiently learn

: -, ; - : the same structure for all tasks by creating a new data set
the posterior probability of a configuration given the data™ | .
is: P P y 9 g with attributesXy, ..., X,,, TSK, wherel'SK encodes the

task the case is coming fromThen learn the structure for
P(Gy,....Gy|D1, ... Dy) 3) this new data set under the restriction tig K is always

the parent of all the other nodes. The common structure

o P(Gi,.... Gp)P(Dr, ..., Dy|Gh, ..., Gi) for all the tasks is exactly the learned structure, with the

nodeT'SK and all the arcs connected to it removed. This
approach, however, does not easily generalize to the case
where tasks have only partial overlap in their attributes.
The algorithm proposed below avoids this problem, while

Given k data-setsD;, ..., Di, we want to simultaneously
learn the structures of the Bayes N&s = {G1,0:}, ...,
B = {Gg,0:}. We will use the ternconfigurationto

The marginal likelihood?(Ds, ..., Dy|G4, ..., Gk ) is com-
puted by integrating over all parameter values for allthe
networks:

P(Dy, ..., Dy|G, ... Gy) = 1This is different from pooling the data, which would mean

that not only the structures, but also the parameters for all tasks
= /P(Dl,-~-,Dk|G1,-~-,Gk791,---,9k) X (4) Wil be identical.



computing the same solution when structures are forced t8.2 Greedy Structure Learning
be identical.

. Treating P(G1,...,Gk|D1,..., D) as a score, we can
E_Set\_/veen_ these two extremes, the prior should encourag&earch for a high scoring configuration using an heuristic
finding similar network structures for the taskg. The priorgqqch algorithm. If we choose to use greedy search for ex-
can be seen as p?”?"'z'”g structures t.hqtldewate from ea ple, we start from an initial configuration, compute the
other, so that deV|_at|on will occur only if it is supported by scores of the neighboring configurations, then move to the
enough evidence in the data. configuration that has the highest score. The search ends
One way to generate such a prior for two structures is tovhen no neighboring configuration has a higher score than
penalize each ar€X;, X;) that is present in one structure the current one.

but notin the other by a constahte [0, 1]: One question remains: what do we mean by the neighbor-

hood of a configuration? An intuitive definition of a neigh-
bor is the configuration obtained by modifying a single arc

P(Gy,Gy) = Zé(p(Gl)p(Gz))ﬁ H (1—46) (6) in a single DAG in the configuration, such that the result-

(x1.%))¢ ing graph is still a DAG. With this definition, the size of the
G1AG: neighborhood of a configuration &(k x n?) for k tasks
andn variables. Unfortunately, this definition creates a lot
If § = 0 then P(G1,G2) = P(G1)P(G3), so the oflocal minimas in the search space. Consider for example

structures are learned independently. Jlf= 1 then the case where there is a strong belief that the structures
P(G1,G3) = /P(G)P(G) = P(G) for G = G2 = G should be similar (i.e. the penalty parameter of the pdior,
and P(G1,G2) = 0 for G; # Go, leading to learning is near one resulting in a prior probability near zero when
identical structures for all tasks. Fdbetween 0 and 1, the the structures in the configuration differ). In this case it
higher the penalty, the higher the probability of more sim-would be difficult to take any steps in the greedy search
ilar structures. The advantage of this prior is t#4t7,)  since modifying a single edge for a single DAG would
and P(G>) can be any structure priors that are appropriatenake it different from the other DAGs, resulting in a very
for the task at hand.Z; is a normalization factor that is low posterior probability (score).

absorbed in the proportionality cqnst_ant of equation 5, andTo correct this problem, we define the neighborhood of a
G1AG, represents the symmetric difference between theconfiguration to be the set of all configurations obtained

edge sets of the two DAGs. A generalization to more tharby selecting two nodes, and for each structure in the con-

two tasks Is: figuration, add, remove, reverse, or leave unchanged the
arc between the two selected nodes, under the restriction
that the resulting structure remains a DAG. It is easy to

1
PG,y Gi) = Zs H P(G) TFED7 % see that there is a path between any two configurations, so

1sssk ) the search space is connected. Given this definition, the
=1 size of a neighborhood i©(n23%), which is exponential
in the number of tasks, but only quadratic in the number
x H H (1-9) ™ of nodes? In the case where all the learned structures are

1<s<t<k | (x;.x;)€

W) required to be identical (infinite penalty for diverginguatr

tures) multi-task learning, with this definition of neighbo
hood, will find the same structures as the specialized algo-
ritpm described in Section 3.1. We will use this definition
% the rest of the paper.

The exponent /(1+(k—1)J) is used to transition smoothly
between the case where structures should be independ
(ile. P(Gy,....,Gg) = (P(G1)...P(Gp))* for 6 = 0)
and the case where structures should be identical (i.e, , ! )

P(G,.,G) = (P(Q)...P(G))*/* for § = 1). The expo- 3.3 Searching for the Best Configuration

nentl/(k —1) is used because each edge for each individat each iteration, the greedy procedure described in the
ual structure is involved it — 1 terms (one for each other previous section must find the best scoring configuration
structure). from a set\/ of configurations. In the naive approach the

This prior can be easily generalized by using differentScore of every configuration i is computed and the con-
penalties for different edges (e.g. if certain edges shouldiguration with the highest score is selected. Since the size

not chance between tasks while others may change), and/

different penalties between different taskZ. The%e) are of “The restriction that changes, if any, have to occur between
. - - he same nodes in all the structures could be dropped, but this

course other priors that encourage finding similar networks,,,iq jead to a neighborhood that is exponential in botmnds.

for each task in different ways. Comparisons to other sucftonsidering the assumption that the structures should be similar,
priors is a direction for future work. such a restriction is not inappropriate.



of M can get large for large or k, this naive approach can so evaluating the score of the neighboring configurations
be expensive. Under the following assumptions, howevernequires only local computations.

it is possible to evaluate only a fraction of the scores in or- ]

der to find the highest one: 1) the parameters for each task  EXperimental Results

are mutually independent apriori so the score of a configuyye evaluate the performance of multi-task structure learn-
ration has the form in equation 5; 2) the prior over conﬁg—ing using the ALARM [10] and INSURANCE [11] Bayes
urations has the form in equation 7. Nets. For each problem, we create five related tasks by

Let a partial configuration of orddr C; = (G1,..,G}), starting with the original network and deleting arcs with
be a configuration where only the structures for the first probability Pu.;. The structures of the five tasks can be
tasks are specified and the restkof- [ structures are not made more or less similar by varying.; (For Pse; = 0
specified. We say that a configuratiSmmatches a partial all structures are identical). We create four sets of relate
configuratiorC; if the structures for the firdttasks inC are ~ tasks. For two of them, ALARM and INSURANCE, we

the same as the structuresdn Let the score of a partial ~start with the parameters of the original networks for a# fiv

configuration be: tasks. When an arc is deleted, the parameters of the net-
e work are recomputed by integrating over the deleted parent,

Pt so that the dependency between the child and the remain-

S (C) = 7 1— 6, < (8 ing parents is unchanged. This yields five related tasks with
n(C) ok H H ( 2 ® correlated parameters. For the other two sets, ALARM-

1<s<t<l | (x,.x,)¢e

G.AG, IND and INSURANCE-IND, we start with random param-
1 eters for each task instead of the original ones, and apply
Tf(k—1) . .
x H P(Gp) T8 P(Dy|Gy) H Best the same procedure as above when an arc is deleted. This
1<p<lI I+1<p<k . . . .
. way we create five tasks with similar structures but inde-
where Best, = max{P(G,)T™*-15 P(D,|G,)}. Itis pendentparameters.

easy to see that the score of a partial configuration is ahve also experiment with a qualitatively different way of
upper bound on the score of any configuration that matCheﬁenerating related tasks, ALARM-COMP. We split the
it.% When searching for the best scoring structurd/inwe ALARM network in 4 corr;ponents: nodes 1-7 in the first
do not explore any configuration matching a partial config-Component nodes 9-14. 21 and 34 in the second. nodes
uration with lower score than the current best configurati0n8,27_31, 36’ and 37 in th’e third and the rest in the ,fourth

'I_'his significantly reduces the number 9f par'FiaI Comcigura'component. For each of the five tasks, we randomly change
tions (and consequently complete configurations) that nee{:}]e structure and parameters of one or two of the compo-

to be explored. In our experiments, using this pruning, Wenents, while keeping the rest of the Bayes net (including
only need to evaluate 2-4% of the partial configurations

resulting in computational Savings of 96-98% ‘parameters) unchanged. This way parts of the structures
9 P 9 : are shared between tasks while other parts are completely

Another source of computational savings is the precomunrelated (see Figure 8).

putation of the individual marginal likelihoods. With the All reported results are averages over ten trials. For each

definition of a neighborhood we are using, a nelghborlngtrial, in addition to varying the train and test sets, we also

configuration will have, in each of the k components, one : ;
o . ' construct different target Bayes Nets. This way we show
of the2n? or fewer individual DAGs that differ by exactly g y y

. ) the expected performance over the entire class of problems
one edge from the current DAG in the respective compo P P P

nent. Each of thesn? (or fewer) DAGS are present in that can be constructed using the methods above.
about3*~! neighboring configurations. Since a configura- The goal is to recover as closely as possible the structure
tion score has the form in equation 5, the marginal likeli-of all five Bayes Nets. We measure performance both in
hoods for the individual DAGsP(D;|G;), can be reused, terms of average edit distarfdeetween the true structures
thus reducing by a factor of abadft—! the expense of com- and learned structures, and in terms of average empirical
puting the marginal likelihoods of the neighboring config- KL-divergence (computed on a large test set) between the
urations.In our experiments, precomputing all the maitginadistributions encoded by the true networks and the learned
likelihoods, which is required whether we do multi-task or ones. Structures are learned with the greedy multi-task
single-task learning, took 3 - 7 times longer than finding thdearning (MTL) algorithm described in Section 3.2. We
best neighboring configuratidnlt is also worth mention-  use the prior over configurations described in equation 7,
ing that both the prior and the likelihood are decomposableand uninformative prior on the individual structures.

3|t is possible to get a tighter upper bound, but we will use thisFigures 1 - 4 show the average percent reduction in loss,
one for simplicity. in terms of edit distance and KL-divergence, achieved by
“The implementation we used for these results did notuse AD-—_
trees. Using AD-trees would significantly reduce the time to pre-  °Edit distance measures how many edits (arc additions, dele-
compute the marginal likelihoods. tions or reversals) are needed to get from one structure to the other.
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Figure 1: Reduction in edit distance (left) and KL-Diverger{right) for ALARM
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Figure 2: Reduction in edit distance (left) and KL-Diverger{right) for ALARM-IND
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Figure 3: Reduction in edit distance (left) and KL-Diverger{right) for INSURANCE

35 15

%Reduction in Loss for Edit Distance
%Reduction in Loss for KL-Divergence

o
5 I 1 I 5 % I I I

0 1e-30 1le-25 1e-20 1le-15 1le-10 1le-05 1 0 1le-30 1le-25 1e-20 le-15 1le-10 1e-05 1
1 - penalty 1 - penalty

Figure 4: Reduction in edit distance (left) and KL-Divergerfright) for INSURANCE-IND
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Figure 5: Edit distance (left) and KL-Div (right) for STL,dening identical structures and MTL

multi-task learning (MTL) over single-task learning (STL) not usually known apriori. Here we take a simple approach
for a training set of 1000 points on the ALARM, ALARM- to finding it: we learn Bayes Nets for a number of different
IND, INSURANCE and INSURANCE-IND problems. On values of the penalty parameter and pick the networks cor-
the x-axis we vary the penalty parameter of the prior onresponding to the penalty parameter that gives the highest
a log-scalé. The higher the penalty, the more similar the average log likelihood on a small independent validation
learned structures will be, with all the structures beirepid  set. We then relearn only the parameters of these Bayes
tical for a penalty of one (left end of graphs). Each line inNets using both the training and the validation set. More
the figure corresponds to a particular valugf;. involved approaches for setting the penalty parameter are

. ossible and might yield even better performance. Figure 5
The trends in the graphs are exactly as expected. For a@hows the edit distance and KL-Divergence performance

values of Py, as the penalty increases, the performanc%r single task learning (STL), learning identical netwsrk

increases because the learning algorithm takes into atcoun. : ! . )
information from the other tasks when deciding whether toy 2 the algorithm preserjted In Section 31 and multi-task
learning (MTL) for the five problemsK;,; is set to 0.05

algorithm loses the ability to find true differences betweer?for ALARM-IND, ALARM, INSURANCE-IND and IN-
9 y SURANCE). The training set has 1000 cases, with a val-

tasks and the performance drops. As the tasks becon}ﬁation set of 50 cases for selecting the penalty parame-

more similar (Iowervalue_s OFie1), the best performance is ter for MTL. Single-task learning and identical structure
obtained at higher penalties. Also as the tasks become mofé_ "~ o o
- ; . €arning use both the training and the validation sets to

similar, more information can be extracted from the relate
earn both the structure and the parameters of the Bayes

tasks, so usually multi-task learning provides more beneNets. The figure shows that multi-task learning yields a

fit. AS. expected, m_ulti-ta_lsk_ structure qurning provides a6%—21% reduction in KL-divergence and a 11% - 52% re-
larger improvement in edit distance than in KI‘_dI\/erg(—:‘nce'duction in edit distance when compared to learning identi-

This happens because multi-task structure learning helps . .
to correctly identify the arcs that encode weaker depen9a| structures for all tasks. All differences except fortedi
distance on ALARM-IND and INSURANCE problems are

dencies (or independences) which have a smaller effect %5 significant according to paired T-tests. When compared

KL-divergence. The edges that encode strong dependen-~: i : ; .
cies that have the biggest effect on KL-divergence can b(tao single-task learning multi-task learning reduces the KL

: . divergence 6% - 26% and the number of incorrect arcs in
easily learned without help from the other tasks. Multktas ;

4 . - , the learned structures by 20% - 57%. All differences are

learning provides similar benefits whether the tasks have

. .95 significant. Since the five tasks for the ALARM, IN-
highly correlat_ed parameters (ALARM and INSURANCE SURANCE, and ALARM-COMP problems share a large
problems) or independent parameters (ALARM-IND anOInumber of their parameters, simply pooling the data might
INSURANCE-IND problems). This shows that making P ' Py p 9 9

. L : work well. However, this is not the case. Except for the
the parameters independent apriori (see Section 3) does n . : .
i . .. ALARM problem, where it achieves about the same edit

hurt the performance of multi-task learning. However, if

we were able to take advantage of the similarity be'tweertlj istance as learning identical structures (18.6), podiireg

the parameters of the different tasks, we could presumabldata has much worse performance both in terms of edit dis-

) . P¥ance and in terms of KL-divergence.
improve performance even further. It is an open question

how to relax the apriori parameter independence requireFigure 6 shows the performance of single and multi-task
ment while still maintaining computational efficiency. learning as the train set size varies from 500 to 8000 cases
When applying multi-task structure learning to a real prob—(MTL uses 5% of the training points as a validation set

. to select the penalty parameter). On average MTL needs

lem, a good value for the penalty parameter of the prior is, quarter as much data as STL to achieve the same edit

5The log-scale is needed because we are working in the progdistance.  As discussed before, the improvement in KL-

ability space sd — § needs to change by orders of magnitude for divergence is smaller and represents about a 20% savings in
the effects to be noticeable.
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Figure 7: Edit distance (left) and KL-Divergence (right) weimber of tasks related tasks for ALARM.

sample size. As expected, the benefit from MTL decreasegorithm [18]. Other extensions such as obtaining a sample
with increasing sample size. from the posterior distribution via MCMC methods might

be more problematic. Because of the larger search space,

Figure 7 shows the edit distance and KL-divergence for on . . .
task of the ALARM problem as the number of related tasksﬁaVlCNIC methods might not converge in reasonable time.

varies from zero (single task learning) to ten. With more re_EvaIuatlng different MCMC schemes is a direction for fu-

lated tasks, there is more information that multi-tasknear ture work. Another open question is whether we can relax

: . ) the requirement that the parameters of the Bayes Nets for
ing can exploit and the performance increases. Once thert%e different related tasks are independent apriori. Retax
are enough tasks (three for this problem), there is little- be P priort.

ofit to having more. and he performance olateaus this requirement might further improve the performance of
9 ' P P ' multi-task learning since the task would be able to share

For a qualitative perspective, Figure 8 shows the true strucnot only the structures but also the parameters, thus having
tures and the structures learned by MTL and STL for themore opportunities for inductive transfer.

five tasks (one per column) on one trial of the ALARM-

COMP problem. The figure clearly shows that multi-task )

learning finds more accurate structures by taking advantag® ~ Conclusions

of the similarity between the five tasks, while still preserv

ing some of the true differences between them. We present a method for learning the Bayes Net structures
of related tasks. The approach assumes that the structures
of related tasks are similar: the presence or absence of arcs
in some of the structures provides evidence for the pres-
ence or absence of those same arcs in the other structures.
When this assumption is true, learning the structures to-
gether yields an advantage over learning a structure for
each task individually. Similarity between learned struc-
tures is controlled via a prior. Experiments with perturbed
ALARM and INSURANCE networks show that learning
related structures simultaneously yields a reduction in KL

In this paper, we use heuristic search in the space obDivergence of 6% - 26% and reduces the number of in-
network structures. Some straightforward extensions areorrect arcs in the learned structures by 20% - 57% when
greedy search in the space of equivalence classes [16], obempared to structures learned separately. Currently we
taining confidence measures on the structural features @fre applying multi-task structure learning to model the ef-
the configurations via bootstrap analysis [17], and stmectu fect of environmental factors on the abundance of different
learning from incomplete datasets via the structural EM al-bird species in different regions of North America. Differ-

5 Discussion and Related Work

We believe this is the first multi-task Bayesian Network
structure learning algorithm. The work most closely re-
lated to ours is Baxter’s [4] which provides a Bayesian in-
terpretation of multi-task learning. Other work in multi-
task learning includes [3, 5, 12, 13]. For an overview of
learning Bayes Nets from data see [6, 7, 14, 15].



Figure 8: The true structures and structures learned by MILLSTL for ALARM-COMP

ent regions have different ecosystems and different specig10] I.A. Beinlich, H.J. Suermondt, R.M. Chavez, and G.F.
are sensitive to different factors, so models for different
gions and species have similar, but not identical, strestur
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