Corrected version of the paper that appeared in the Proceedings of ICML‘04.

Ensemble Selection from Libraries of Models

Rich Caruana

Alexandru Niculescu-Mizil
Geoff Crew

Alex Ksikes

CARUANA@CS.CORNELL.EDU
ALEXN@CS.CORNELL.EDU
GCY97QCS.CORNELL.EDU
AK107@CS.CORNELL.EDU

Department of Computer Science, Cornell University, Ithaca, NY 14853 USA

Abstract

We present a method for constructing ensem-
bles from libraries of thousands of models.
Model libraries are generated using different
learning algorithms and parameter settings.
Forward stepwise selection is used to add to
the ensemble the models that maximize its
performance. Ensemble selection allows en-
sembles to be optimized to performance met-
ric such as accuracy, cross entropy, mean
precision, or ROC Area. Experiments with
seven test problems and ten metrics demon-
strate the benefit of ensemble selection.

1. Introduction

An ensemble is a collection of models whose predic-
tions are combined by weighted averaging or voting.
Dietterich (2000) states that “A necessary and suffi-
cient condition for an ensemble of classifiers to be more
accurate than any of its individual members is if the
classifiers are accurate and diverse.”

Many methods have been proposed to generate accu-
rate, yet diverse, sets of models. Bagging (Breiman,
1996) trains models of one type (e.g., C4 decision trees)
on bootstrap samples of the training set. Opitz (1999)
bags features instead of training points. Boosting
(Schapire, 2001) generates a potentially more diverse
set of models than bagging by weighting the train-
ing set to force new models attend to those points
that are difficult to classify correctly. Sullivan et al.
(2000) boost features instead of training points. Error-
correcting-output-codes (ECOC) (Dietterich & Bakiri,
1995) creates models with decorrelated errors by train-
ing models for multi-class problems on different di-
chotomies. Munro and Parmanto (1996) created di-
verse neural nets via competition among nodes.

Appearing in Proceedings of the 21°* International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the authors.

Here we generate diverse sets of models by using many
different algorithms. We use Support Vector Machines
(SVMs), artificial neural nets (ANNs), memory-based
learning (KNN), decision trees (DT), bagged decision
trees (BAG-DT), boosted decision trees (BST-DT),
and boosted stumps (BST-STMP). For each algorithm
we train models using many different parameter set-
tings. For example, we train 121 SVMs by varying
the margin parameter C, the kernel, and the kernel
parameters (e.g. varying gamma with RBF kernels.)

We train about 2000 models for each problem. Some
models have excellent performance, equal to or better
than the best models reported in the literature. Other
models, however, have mediocre or even poor perfor-
mance. Rather than combine good and bad models in
an ensemble, we use forward stepwise selection from
the library of models to find a subset of models that
when averaged together yield excellent performance.
The basic ensemble selection procedure is very simple:

1. Start with the empty ensemble.

2. Add to the ensemble the model in the library that
maximizes the ensemble’s performance to the er-
ror metric on a hillclimb (validation) set.

3. Repeat Step 2 for a fixed number of iterations or
until all the models have been used.

4. Return the ensemble from the nested set of en-
sembles that has maximum performance on the
hillelimb (validation) set.

Models are added to an ensemble by averaging their
predictions with the models already in the ensemble.
This makes adding a model to the ensemble very fast,
allowing ensembles with excellent performance to be
found in minutes from libraries with 2000 models.
Moreover, the selection procedure allows us to opti-
mize the ensemble to any easily computed performance
metric. We evaluate the performance of ensemble se-
lection on ten performance metrics. We believe this
is the first time a learning method has been evaluated
across such a wide variety of performance metrics.

On each performance metric we compare ensemble se-
lection to the model in the library that performs best
on that metric. Because we generate so many different
models, libraries usually contain a few models with ex-
cellent performance on any performance metric. Just
selecting the best single model from a library yields re-
markably good performance. Ensemble selection, how-
ever, finds ensembles that outperform the best sin-
gle models. This suggests that using different learn-
ing methods and parameter settings generates libraries
containing a diverse set of good-performing models.

The parameters we vary for each algorithm to gener-
ate 2000 models are described in the Appendix. Note
that we do not determine what parameters yield best
performance when training models. All models are
added to a library no matter how good or bad they
are. Model predictions on the train and hillclimbing
sets are cached. This simplifies working with the li-
brary and makes model selection faster because the
models do not have to be executed during selection.

2. Improving Ensemble Selection

The simple forward model selection procedure pre-
sented in the Introduction is fast and effective, but
sometimes overfits to the hillclimbing set, reducing en-
semble performance. We made three additions to this
selection procedure to reduce overfitting. These are
discussed in the next three sub-sections. These meth-
ods may be useful in other applications where forward
stepwise selection is prone to overfitting, such as in
feature selection (Kohavi & John, 1997).

2.1. Selection with Replacement

With model selection without replacement, perfor-
mance improves as the best models are added to the
ensemble, peaks, and then quickly declines. Perfor-
mance drops because the best models in the library
have been used and selection must now add models
that hurt the ensemble. Figure 1 shows this behavior
for root-mean-squared-error. Unfortunately, most er-
ror metrics yield much bumpier graphs than this when
hillclimbing is done with small data sets, making it dif-
ficult to reliably pick a good stopping point. The loss
in performance can be significant if the peak is missed.

Figure 1 also shows that selecting models with replace-
ment greatly reduces this problem. Selection with re-
placement allows models to be added to the ensemble
multiple times. Once peak performance is reached,
if the unused models all hurt ensemble performance,
selection adds models that were added before rather
than hurt performance. This flattens the performance

curve past the peak, and allows selection to fine tune
ensembles by weighting models: models added to the
ensemble multiple times receive more weight.

0.36 ¢
I hilchmB: selection without réplacement —
|
0355 test: selection without replacement ---x--- 7
i test: selection with replacement &
1
0.35 1‘1 i
|
_ 0345]
e |
s B ooy JUSESSan
T ‘ DDDDDDDDDDDDDEIDDDDDDDEEQHQBEE{ﬁﬁEDDDDDEIDDDEID
0.335 ,\ o 4
| - Sl
ot
033 f N et |
0.325 i
0.32 L . L
0 50 100 150 200

Number of Models in Ensemble
Figure 1. Selection With and Without Replacement.

Selection with replacement flattens the curve so much
that a test set is not needed to determine when to
stop adding models to the ensemble. The hillclimb-
ing set can be used to stop hillclimbing. This means
ensemble selection does not need more test sets than
the base-level models would have used to select model
parameters. Ensemble selection uses the validation set
to do both parameter and model selection.

2.2. Sorted Ensemble Initialization

Forward selection sometimes overfits early in selection
when ensembles are small. One way to prevent this
is to initialize ensembles with more models. Instead
of starting with an empty ensemble, sort the models
in the library by their performance, and put the best
N models in the ensemble. N is chosen by looking
at performance on the hillclimbing set. This typically
adds 5-25 of the best models to an ensemble before
greedy stepwise selection begins. Since each of the N
best models performs well, they form a strong initial
ensemble and it is more difficult for greedy selection to
find models that overfit when added to the ensemble.

2.3. Bagged Ensemble Selection

As the number of models in a library increases, the
chances of finding combinations of models that overfit
the hillclimbing set increases. Bagging can minimize
this problem. We reduce the number of models selec-
tion can choose from by drawing a random sample of
models from the library and selecting from that sam-
ple. If a particular combination of M models overfits,
the probability of those M models being in a random
bag of models is less than (1 — p)™ for p the fraction

of models in the bag. We use p = 0.5, and bag ensem-
ble selection 20 times to insure that the best models
will have many opportunities to be selected. The fi-
nal ensemble is the average of the 20 ensembles. Bags
of ensembles seem complex, but each ensemble is just
a weighted average of models, so the average of a set
of ensembles also is a simple weighted average of the
base-level models. Bagging is discussed in Section 5.3.

3. Data Sets

We experiment with seven problems: ADULT,
COVER_TYPE, LETTER.pl, and LETTER.p2 from
the UCI Repository (Blake & Merz, 1998), MEDIS,
a pneumonia data set, SLAC, data from collabora-
tors at the Stanford Linear Accelerator, and HY-
PER_SPECT, the Indian Pines hyperspectral data
(Gualtieri et al., 1999). ADULT, MEDIS and SLAC
are binary problems. COVER_TYPE, LETTER, and
HYPER_SPECT are 7, 26, and 16 class problems, re-
spectively. We converted these to binary because many
of the metrics we study are defined on binary prob-
lems, and because learning methods such as SVMs
and boosting are easier to apply to binary problems.
COVER_TYPE was converted to binary by treating
the largest class as class 1. LETTER was converted
two ways. LETTER.pl treats the confusable letter
O’ as class 1 and the remaining 25 letters as class
0, yielding a very unbalanced binary problem. LET-
TER.p2 uses letters 1-13 as class 0 and letters 14-26
as class 1, yielding a difficult, but balanced, problem.
HYPER_SPECT was converted to binary by treating
the large confusable class Soybean-Mintil as class 1.

These data sets were selected because they are large
enough to allow moderate size train and validation
sets, and still have data left for large final test sets. For
our experiments, we used training sets of 5000 points.
Each training sample was split into a train set of 4000
points and a hillclimbing/validation set of 1000 points.
The final test sets for most of these problems contain
20,000 points — enough to make discerning small dif-
ferences in performance reliable.

4. Performance Metrics

We use ten performance metrics: accuracy (ACC),
root-mean-squared-error (RMS), mean cross-entropy
(MXE), lift (LFT), precision/recall break-even point
(BEP), precision/recall F-score (FSC), average pre-
cision (APR), ROC Area (ROC), and a measure of
probability calibration (CAL). The tenth metric is
SAR = (ACC + ROC + (1 — RMS))/3. SAR is a

robust metric to use when the correct metric is un-

known. An attractive feature of ensemble selection
is that it cen optimize to metrics such as SAR. We
compare performance using ten metrics because dif-
ferent metrics are appropriate in different settings and
because learning methods that perform well on one
metric do not always perform well on other metrics.

5. Empirical Results

In this section we compare ensemble selection to the
best models trained with any of the learning algo-
rithms, and also to several other ensemble methods.

5.1. Normalized Scores

Performance metrics such as ACC or RMS range from
0 to 1, while others (LFT, MXE) range from 0 to p
where p depends on the data. For some metrics lower
values indicate better performance. For others higher
values are better. The baseline rates of metrics such as
ROC are independent of the data, while others such as
ACC have baseline rates that depend on the data. If
baseline ACC = 0.98, ACC = 0.981 probably is poor
performance, but if the Bayes optimal ACC = 0.60,
achieving ACC = 0.59 might be excellent performance.

To allow averaging across problems and metrics, we
convert performances to a normalized [0, 1] scale. On
this scale, 0 represents baseline performance for the
metric and problem (e.g., 0.5 for ROC, or the base-
line ACC for each problem), and 1 represents the best
performance seen for any model on the final test set.!
CAL, the metric used to measure probability calibra-
tion, is unusual in that the baseline model that pre-
dicts p for all cases, where p is the percent of positives
in the test set, has excellent calibration.? This creates
a problem when normalizing CAL scores because the
baseline model and Bayes optimal model have similar
CAL scores. Unlike the other measures, CAL is scaled
so that the minimum observed CAL score is 0.0 and
the mean observed CAL score is 1.0.

The bottom of Table 1 shows normalized scores for
each learning algorithm when its parameters are se-
lected for each problem and metric using the valida-
tion sets ensemble selection hillclimbs on. Entries in
the table are averages over the seven problems. Scores

'We would set the top of the scale to the Bayes optimal
performance for each problem and metric if we knew it.

*Because of this, measures like CAL typically are not
used alone, but are used in conjunction with other mea-
sures such as ROC to insure that only models with good
discrimination and good calibration are selected. This does
not mean CAL is a poor metric — it is effective at dis-
tinguishing poorly calibrated models from well calibrated
models.

Table 1. Normalized Scores for the Best Single Models of Each Type (bottom of tbl), and for Ensemble Selection, Bayesian
Model Averaging, Stacking with Regression, Averaging All Models, and Picking the Best Model of Any Type (top of tbl).

MODEL ACC FSC LFT ROC APR BEP RMS MXE CAL SAR MEAN
ENS. SEL. | 0.956 0.944 0.992 | 0.997 0.985 0.979 | 0.980 0.981 0.906 | 0.996 || 0.969
BAYESAVG | 0.926 0.891 0.979 | 0.985 0.977 0.956 | 0.950 0.959 0.907 | 0.941 0.948
BEST 0.928 0919 0.975 | 0.988 0.959 0.958 | 0.919 0.944 0.924 | 0.924 0.946
AVG_ALL 0.836 0.801 0.982 | 0.988 0.972 0.961 | 0.827 0.809 0.832 | 0.916 0.890
STACK_LR | 0.275 0.777 0.835 | 0.799 0.786 0.847 | 0.332 -0.990 -0.011 | 0.705 0.406
SVM 0.813 0.909 0.948 | 0.962 0.933 0.938 | 0.877 0.878 0.889 | 0.905 | 0.905
ANN 0.877 0.875 0.949 | 0.955 0.917 0.914 | 0.853 0.863 0.916 | 0.896 0.902
BAG-DT 0.811 0.861 0.947 | 0.967 0.942 0.922 | 0.859 0.894 0.786 | 0.904 0.888
KNN 0.756 0.846 0.909 | 0.937 0.885 0.889 | 0.761 0.735 0.876 | 0.847 0.844
BST-DT 0.890 0.899 0.957 | 0.978 0.960 0.943 | 0.607 0.611 0.413 | 0.871 0.806
DT 0.526 0.789 0.850 | 0.868 0.767 0.795 | 0.556 0.624 0.720 | 0.745 0.722
BST-sTMP | 0.732 0.790 0.906 | 0.919 0.861 0.834 | 0.304 0.286 0.389 | 0.659 0.669

near 1 indicate that a model performs close to the best
performance observed on all seven problems. Nega-
tive entries mean the best models perform below base-
line. Bold entries in the bottom of Table 1 show which
learning algorithms yield the best performance on each
metric. The last column is the mean normalized score
across the ten metrics.

Ignoring the ensemble methods in the top of the ta-
ble, the best algorithms overall are SVMs, ANNs,
and bagged trees, with mean normalized scores 0.905,
0.902, and 0.888, respectively. Boosted trees do not
perform well on the probability metrics (RMS, MXE,
and CAL), but are excellent on the threshold metrics
(ACC, FSC, and LFT) and ordering metrics (ROC,
APR, and BEP). If mean performance was measured
over just these six metrics, boosted trees would out-
perform bagged trees, SVMs, and ANNs.

The top of Table 1 shows normalized scores for ensem-
ble selection, Bayesian model averaging, the best indi-
vidual models of any type (BEST), a simple average of
all models (AVG_ALL), and stacking with logistic re-
gression (STACK_LR). Stacking (Wolpert, 1992) with
logistic regression performs poorly because regression
overfits dramatically when there are 2000 highly cor-
related input models and only 1k points in the vali-
dation set. An unweighted average of all the models
(AVG_ALL) is better than weighting the models via
regression because unweighted averaging cannot over-
fit the validation set. Averaging, however, performs
worse than just picking the best single models because
some of the models have poor performance and thus
hurt the ensembles. As expected, picking the best
single model from the library (BEST) performs bet-
ter than any one learning algorithm in the bottom of

the table because it can pick the best model from any
learning method for each metric and test problem.

Bayesian model averaging (Domingos, 2000) has a
mean score of 0.948, significantly better than SVMs
(the best single model). In Bayesian model averag-
ing, each model in the library is weighted by the likeli-
hood of the data (validation set) given the model when
model predictions are treated as probabilities:

Wy = Hf;l Targ; x Pred; + (1 —Targ;) * (1 — Pred;)

where Wy is the weight of model M, T'arg; is the 0/1
target for case i, and Pred; is the predicted probabil-
ity that case ¢ is class 1. Note that Bayesian model
averaging outperforms BEST on only 5 of the 10 met-
rics.

With a mean normalized score of 0.969, ensemble se-
lection is the clear winner. It outperforms the other
ensemble methods (and the best individual models) on
all 10 of the 10 metrics (significant at p = 0.001). We
believe ensemble selection consistently outperforms
the other ensemble methods for two reasons:

e ensemble selection is able to optimize the ensem-
ble differently for each performance metric

e overfitting is a serious problem when there are
2000 models to combine. The methods presented
in Section 2 to combat overfitting contribute to
ensemble selection’s excellent performance.

The consistently strong performance of ensemble selec-
tion suggests that using many different learning meth-
ods and parameter settings is an effective way of gen-
erating a diverse collection of models. The consistent
performance also suggests that forward stepwise selec-
tion is an effective way of selecting high-performance

ensembles from these models for a variety of perfor-
mance metrics if overfitting is carefully controlled.

5.2. Percent Reduction in Loss (Error)

In this section we compare ensemble selection to the
best single models (BEST in Table 1) using percent
reduction in error. One advantage of percent reduc-
tion in error compared to normalized scores is that
normalized scores change as better models are found
and shift the top of the scale up. The percent reduc-
tion in error from model A to B depends only on the
performances of models A and B, not on some other
model that defines the top of the performance scale.

To calculate percent reduction in error, we first convert
each metric to loss where 0 represents perfect perfor-
mance and 1 represents worst performance. Perfect
prediction yields ACC = BEP = FSC = ROC =
APR =SAR =1and RMSE = MXE =CAL =0,
all of which have loss 0. An example will help. If
ACC improves from 0.75 to 0.77, the losses are 0.25
and 0.23, respectively, and the percent reduction in
error is 8%. One potential disadvantage of percent
reduction in loss is that it gives more emphasis to re-
ductions at low loss: reducing loss from 0.02 to 0.01
is a 50% reduction, wheras reducing loss from 0.20 to
0.19 (same absolute change), is only a 5% reduction.
In some domains this bias is appropriate. In others it
is not. Normalized scores do not have this bias.

Table 2 shows the percent reduction in loss for ensem-
ble selection on the 7 test problems and 10 metrics,
compared to the best models selected for each problem
and metric. As with normalized scores, final perfor-
mances are estimated on large final test sets not used
for training and is the average over two trials with each
problem. Positive entries in the table mean error was
reduced, i.e. ensemble selection performed better.

Ensemble selection wins 64 of 70 times (significant at
p = 0.001). On average, ensemble selection reduces
loss 8.76% over the best models for each problem and
metric. To make this concrete, if the best model has
accuracy 90.00%, loss is 0.1000, and an 8.7% reduc-
tion in loss corresponds to reducing loss to 0.0913 or
increasing accuracy to 90.87%. Similarly, if the best
model has RMS 0.2000, an 8.7% reduction in loss cor-
responds to reducing RMS to 0.1826. Test sets contain
20,000 cases. Increasing accuracy 0.87% means 174
more cases are predicted correctly by the ensembles.

The improvement is not dramatic, but consistently in-
creasing accuracy 0.87% or reducing RMS 0.0174 com-
pared to the best of 2000 models is impressive when
the best models have such good performance. But we

APR —+——
12 e ALL %o
XE
—
- RMS e
FSC —-=
i e ACC =
—
10
k]
3
8
3 B Heaoeao
=3
oM 8 >
5 L= o
3] = E = faz}
[<2] * =]
g r 5
=
s =
=
<<
= &
& Oz —— e
& . . -
- I a
] e N
= & i
a
a - - A
4 -
2
o 0.2 0.4 0.6 0.8 1

Fraction of Models in Bagged Samples

Figure 2. Benefit of Bagged Selection on the 10 Metrics.
The right side of the graph at p = 1 represents no bagging.

don’t want to overstate the improvement of ensemble
selection. For comparison, bagging or boosting trees
yields a 20% reduction in loss compared to raw trees,
2.5 times the benefit of ensemble selection. But then,
improving the performance of mediocre, high variance
models such as decision trees is easier than improving
the performance of the very best models.

5.3. Bagging to Minimize Overfitting

Figure 2 shows the percent reduction in loss of ensem-
ble selection with bagging as p, the fraction of models
in the bags, varies from 1 down to 0.025 for the 10 met-
rics averaged across the 7 problems. At p = 1, bags
contain all models which is equivalent to not bagging.
On average, bagged ensemble selection reduces loss an
additional 2.5% at p = 0.5. The results in Tables 1 and
2 are for p = 0.5, a value we selected before looking at
these results, and which Figure 2 shows is suboptimal.
This 2.5% is about a third of the total 8.7% benefit we
see with ensemble selection. Figure 2 (which uses the
final test sets) suggests p in the range 0.1 — 0.3 would
yield further improvement. We are currently exper-
imenting with using cross validation to pick a near
optimal value of p for each problem and metric.

6. Case Study: Classifying Sub-Atomic
Particles

Here we present a case study where optimizing an en-
semble to the correct metric has impact on an applica-

Table 2. Percent Reduction in Loss of Ensemble Selection Over the Best Models From Any Learning Algorithm.

PROBLEM ACC FSC LFT ROC APR BEP RMS MXE CAL SAR MEAN
ADULT 3.63 1.98 6.28 5.40 5.82 3.60 0.71 1.36 9.30 4.02 4.21
COVER_TYPE -0.42 -1.08 4.63 -1.27 3.52 -0.87| 3.79 6.66 1.41 4.05 2.042
LETTER.P1 17.47 26.72 0.10 41.88 28.75 15.02 | 24.82 15.34 2.61 | 34.74 || 20.745
LETTER.P2 3.24 4.27 100.00 0.96 1.93 10.13 4.46 9.65 -40.03 | 6.27 || 10.088
MEDIS 0.30 -6.99 0.83 2.53 4.00 6.53 0.04 0.12 9.48 1.57 1.901
HYPER_SPECT 5.40 5.29 5.98 20.96 27.28 13.55 7.71 18.75 20.89 | 11.91 | 13.772
SLAC 2.19 5.55 8.85 3.56 2.82 2.18 0.36 0.71 5.12 1.67 3.301
MEAN 4.544 5.191 18.096 | 10.574 10.589 7.163 | 5.984 7.513 1.254 | 9.176 8.008

tion of machine learning to a particle physics problem.
At the Stanford Linear Accelerator Center (SLAC),
high energy particle beams are collided to generate
subatomic particles. A major challenge in these ex-
periments is to correctly classify the particle tracks.
Performance is measured with the SLAC Q-score:

SLQ = (1 — 2w)?

where ¢ is the percent of events accepted for prediction,
and w is the probability of misclassification. SLQ is an
application-specific performance metric that estimates
the statistical power of the model. Increasing SLQ
by 5% is equivalent to having 5% more data, which
potentially saves hundreds of thousands of dollars or
more in accelerator time.

Bagged trees have the best SLQ performance, in-
creasing SLQ 0.0355 (a 12% improvement) over well-
optimized neural nets and decision trees. SLQ behaves
like a cross between accuracy and calibration, so it is
not surprising that bagged trees — the models with
the best calibration performance — are best on SLQ.
When an ensemble is optimized to SLQ with ensemble
selection, SLQ performance increases 6% over the best
bagged trees. This 6% increase in effective sample size
represents a large potential savings in accelerator time.

7. Discussion and Future Work
7.1. Validation and Hillclimbing Sets

Ensemble selection uses the wvalidation set to “train”
ensembles. Hillclimbing on the validation set does not
give ensemble selection an unfair advantage over other
models. The validation set would be needed to se-
lect the parameters for each algorithm (parameter se-
lection), and then to pick the best algorithm (model
selection). Ensemble selection uses the validation set
for parameter selection, model selection, and ensem-
ble creation. With many algorithms validation data
can be put back in the train set and the model re-

trained once parameters are selected. This can also be
done with ensemble selection. Any strategy for using
and reusing validation sets, including cross validation,
can be used with ensemble selection. We currently are
running experiments with 5-fold cross validation to in-
crease the size of the hillclimbing set to include all of
the training data, not just the held-out 1k samples.

7.2. Models Selected by the Ensembles

Table 3 shows the total weight given to each type of
model for each metric on ADULT and COVER_TYPE.
The average across the ten metrics (right column)
shows that KNN and BST_DT receive the most weight
in the ensemble for COVER_TYPE. The weights are
strikingly different for ADULT where BST_STMP,
ANN, and DT receive the most weight. There also
are substantial differences between the model types
preferred for different metrics. For example, on
COVER_TYPE, FSC gives high weight to boosted
trees and low weight to KNN, but these weights are
reversed for RMS and LFT. Also, ANNs get mod-
est weight for MXE and RMS (what the ANNs op-
timize), but low weight for ACC and LFT. This sug-
gests that ensemble selection is able to exploit the dif-
ferent strengths and biases of the different learning al-
gorithms when optimizing an ensemble to each metric
and to each problem.

7.3. Computational Cost

Building libraries is expensive. Because models are
independent, it is easy to parallelize model creation
and distribute training across machines. It takes about
48 hours to train the 2000 models using a cluster of ten
Linux machines. Model training is automated. There
is no parameter tuning or examining performance on
validation sets. Usually no one model is critical, so it
is not necessary to wait until all models are trained
to use the library. This provides an any-time flavor

Table 3. Aggregate Weight Given to Different Types of Models in the Ensembles.

ADULT ACC FSC LFT ROC APR BEP RMS MXE SAR AVG_WT
ANN 0.0709 0.1316 0.1012 | 0.3646 0.4304 0.2432 | 0.1667 0.0941 | 0.5732 0.2720
KNN 0.0205 0.0148 0.5865 | 0.0368 0.0286 0.0486 | 0.0000 0.0000 | 0.0492 0.0981
SVM 0.0006 0.0000 0.1096 | 0.2841 0.2743 0.0924 | 0.0574 0.0000 | 0.0224 | 0.1051

DT 0.0201 0.0346 0.0070 | 0.0879 0.0491 0.0188 | 0.7456 0.8674 | 0.2345 0.2581
BAG_DT 0.0021 0.0008 0.0000 | 0.0038 0.0051 0.0022 | 0.0057 0.0102 | 0.0136 | 0.0054
BST_DT 0.1100 0.1523 0.0250 | 0.0572 0.0319 0.0470 | 0.0245 0.0283 | 0.0748 | 0.0689

BST_STMP | 0.7759 0.6658 0.1707 | 0.1657 0.1806 0.5478 | 0.0000 0.0000 | 0.0321 0.3173
COV_TYPE ACC FSC LFT ROC APR BEP RMS MXE SAR AVG_WT

ANN 0.0114 0.0102 0.0007 | 0.0382 0.0228 0.0086 | 0.0871 0.0966 | 0.0521 0.0410

KNN 0.1790 0.1665 0.5759 | 0.2518 0.2948 0.2016 | 0.4364 0.4266 | 0.3643 | 0.3621

SVM 0.0206 0.0161 0.0878 | 0.1039 0.1058 0.0507 | 0.0103 0.0134 | 0.0379 | 0.0558

DT 0.0606 0.0539 0.0124 | 0.2381 0.2423 0.0295 | 0.4083 0.3685 | 0.2000 | 0.2017
BAG_DT 0.0049 0.0056 0.0019 | 0.0092 0.0150 0.0064 | 0.0156 0.0222 | 0.0438 | 0.0156
BST_DT 0.5533 0.6134 0.1298 | 0.2784 0.2397 0.6438 | 0.0423 0.0727 | 0.2923 | 0.3582

BST_STMP | 0.1702 0.1343 0.1914 | 0.0804 0.0797 0.0593 | 0.0000 0.0000 | 0.0095 0.0906

to ensemble selection: ensembles can be trained using
whatever models are available when the ensemble is
needed. It is easy to add more models later. Libraries
can be built before the performance metric is known
because the libraries themselves do not depend on the
metric that will be used to optimize the ensemble. This
makes model libraries very reusable.

Forward stepwise ensemble selection is efficient.
Adding a model to an ensemble only requires averaging
a model’s predictions with the ensemble’s predictions,
which is O(D) for D the size of the hillclimbing set.
If there are M models to choose from, this is done
M times for each selection step. If selection is run K
steps, the cost of ensemble selection is only O(D*M*K)
assuming the metric can be computed in O(D). If the
metric is more expensive than O(D) (e.g., ROC re-
quires sorting and thus is O(D*logD)), recomputing
the metric dominates. Using a JAVA implementation,
selecting an ensemble from a library of M = 2000
models, a hillclimbing set with D = 1000 points, and
K = 200 takes about a minute on a medium-power
workstation. If selection is bagged 20 times, it takes
about 20 minutes to build the final ensemble.

7.4. Optimizing To Any Performance Metric

ANNs usually are trained to minimize cross entropy
or squared error. Trees and SVMs usually maximize
accuracy. Boosting also is designed to maximize accu-
racy. Some metrics such as precision/recall and ROC
are hard to optimize to. Because model averaging is
fast, ensemble selection can try adding every model
in the library to the ensemble at each step. If the

performance of each of these ensembles can be evalu-
ated quickly on the metric, the ensemble can be opti-
mized to that metric by this greedy, brute force search.
A good ensemble usually will be found if some base-
level models or combinations of them yield good per-
formance on that metric. Although we do not know
how to optimize the base-level models to many of these
metrics, the ensemble can be optimized to them.

7.5. Beyond Binary Classification

Ensemble selection is straightforward for binary classi-
fication and regression. If the base-level models make
predictions for multiple classes, no modification to the
ensemble selection procedure is necessary for multi-
class problems. If some base-level models make pre-
dictions one dichotomy at a time (e.g. SVMs), en-
semble selection is easiest if the base-level models are
combined so that they return a predicted probability
for each class. We have not yet experimented with
multi-class ensemble selection.

8. Conclusions

Ensemble selection uses forward stepwise selection
from libraries of thousands of models to build ensem-
bles that are optimized to the given performance met-
ric. Using a variety of learning algorithms and pa-
rameter settings appears to be effective for generating
libraries of diverse, high quality models. Ensemble se-
lection’s most important feature is that it can optimize
ensemble performance to any easily computed perfor-
mance metric. Experiments with seven test problems

and ten performance metrics show that ensemble selec-
tion consistently finds ensembles that outperform all
other models, including models trained with bagging,
boosting, and Bayesian model averaging.

9. Appendix: Building Model Libraries

KNN: we use 26 values of K ranging from K =1 to
K = |trainset|. We use KNN with Euclidean distance
and Euclidean distance weighted by gain ratio. We
also use distance weighted KNN, and locally weighted
averaging. The kernel widths for locally weighted aver-
aging vary from 2° to 210 times the minimum distance
between any two points in the train set.

ANN: we train nets with gradient descent backprop
and vary the number of hidden units {1, 2, 4, 8, 32,
128} and the momentum {0, 0.2, 0.5, 0.9}. We don’t
use validation sets to do weight decay or early stop-
ping. Instead, we stop the nets at many different
epochs so that some nets underfit or overfit.

DT: we vary the splitting criterion, pruning options,
and smoothing (Laplacian or Bayesian smoothing).
We use all of the DT models in Buntine’s IND package:
Bayes, ID3, CART, CARTO0, C4, MML, and SMML.
We also generate trees of type C44 (C4 with no prun-
ing), C44BS (C44 with Bayesian smoothing), and MM-
LLS (MML with Laplacian smoothing). See (Provost
& Domingos, 2003) for descriptions of C44.

BAG-DT: we bag 25 trees of each type. Each tree
trained on a bootstrap sample is added to the library,
as well as the final bagged ensemble that averages all
these trees. With BST-DT we boost each tree type.
Boosting can overfit, so we add boosted DTs to the
library after {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,
2048} steps of boosting. With BST-STMP we use
stumps (single level decision trees) with 5 different
splitting criteria, each boosted {2, 4, 8, 16, 32, 64,
128, 256, 512, 1024, 2048, 4096, 8192} steps.

SVMs: we use most kernels in SVMLight (Joachims,
1999) {linear, polynomial degree 2 & 3, radial with
width {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2}} and
vary the regularization parameter C' by factors of ten
from 10~7 to 10%. The output range of SVMs is
[—00, +00] instead of [0,1]. To make the SVM pre-
dictions compatible with other models, we use Platt’s
method to convert SVM outputs to probabilities by
fitting them to a sigmoid (Platt, 1999).

Acknowledgments

Charles Chiu and Kohsuke Kawaguchi helped with the
initial design of ensemble selection. We thank Tony

Gualtieri for help with the HYPER_SPECT data, and
our collaborators at SLAC for help with the SLAC
data and SLQ performance metric.

References

Blake, C., & Merz, C. (1998). UCI repository of ma-
chine learning databases.

Breiman, L. (1996). Bagging predictors.
Learning, 24, 123-140.

Machine

Dietterich, T. G. (2000). Ensemble methods in ma-
chine learning. First International Workshop on
Multiple Classifier Systems, 1-15.

Dietterich, T. G., & Bakiri, G. (1995). Solving multi-
class learning problems via error-correcting output
codes. Journal of Artificial Intelligence Research, 2.

Domingos, P. (2000). Bayesian averaging of classifiers
and the overfitting problem. Proc. 17th Interna-
tional Conf. on Machine Learning (pp. 223-230).
Morgan Kaufmann, San Francisco, CA.

Gualtieri, A., Chettri, S. R., Cromp, R., & Johnson,
L. (1999). Support vector machine classifiers as ap-
plied to aviris data. Proc. Eighth JPL Airborne Geo-
science Workshop.

Joachims, T. (1999). Making large-scale svin learning
practical. Advances in Kernel Methods.

Kohavi, R., & John, G. H. (1997). Wrappers for fea-
ture subset selection. Artificial Intelligence, 97.

Meek, C., Thiesson, B., & Heckerman, D. (2002).
Staged mizture modeling and boosting (Technical Re-
port MSR-TR-2002-45).

Munro, P., & Parmanto, B. (1996). Competition
among networks improves committee performance.
Advances in Neuwral Information Processing Sys-
tems.

Opitz, D. (1999). Feature selection for ensembles.
AAAI/TAAI (pp. 379-384).

Platt, J. (1999). Probabilistic outputs for support vec-
tor machines and comparison to regularized likeli-

hood methods. Advances in Large Margin Classi-
fiers (pp. 61-74).

Provost, F., & Domingos, P. (2003). Tree induction
for probability-based rankings. Machine Learning,
52.

Schapire, R. (2001). The boosting approach to ma-
chine learning: An overview. In MSRI Workshop
on Nonlinear Estimation and Classification.

Sullivan, J., Langford, J., Caruana, R., & Blum, A.
(2000). Featureboost: A meta-learning algorithm
that improves model robustness. Proceedings of the
Seventeenth International Conference on Machine
Learning.

Wolpert, D. H. (1992). Stacked generalizatio. Neural
Networks, 5, 241-259.

Getting the Most Out of Ensemble Selection*

Rich Caruana, Art Munson, Alexandru Niculescu-Mizil
Department of Computer Science
Cornell University
Technical Report 2006-2045
{caruana, mmunson, alexn} @cs.cornell.edu

Abstract

We investigate four previously unexplored aspects of en-
semble selection, a procedure for building ensembles of
classifiers. First we test whether adjusting model predic-
tions to put them on a canonical scale makes the ensembles
more effective. Second, we explore the performance of en-
semble selection when different amounts of data are avail-
able for ensemble hillclimbing. Third, we quantify the ben-
efit of ensemble selection’s ability to optimize to arbitrary
metrics. Fourth, we study the performance impact of prun-
ing the number of models available for ensemble selection.
Based on our results we present improved ensemble selec-
tion methods that double the benefit of the original method.

1 Introduction

An ensemble is a collection of classifiers whose predic-
tions are combined with the goal of achieving better perfor-
mance than the constituent classifiers. A large body of re-
search now exists showing that ensemble learning often in-
creases performance (e.g. bagging [3], boosting [21], stack-
ing [25]).

Recently, ensemble selection [7] was proposed as a
technique for building ensembles from large collections of
diverse classifiers. Ensemble selection employs greedy for-
ward selection to select models to add to the ensemble, a
method categorized in the literature as overproduce and
choose [20]. Compared to previous work, ensemble selec-
tion uses many more classifiers, allows optimizing to ar-
bitrary performance metrics, and includes refinements to
prevent overfitting to the ensemble’s training data—a larger
problem when selecting from more classifiers.

In this paper we analyze four previously unexplored as-
pects of ensemble selection. First, we evaluate ensemble

*This technical report is an expanded version of a paper accepted at the
2006 International Conference on Data Mining.

selection’s performance when all the models are calibrated
to place their predictions on a canonical scale. Making
calibrated models available to ensemble selection provides
significant improvement on probability measures such as
squared error and cross-entropy. It appears, however, that
calibration does not make ensemble selection itself more
effective; most of the benefit results from improvements in
the base-level models and not from better ensemble build-
ing.

Second, we explore how ensemble selection behaves
with varying amounts of training data available for the crit-
ical forward selection step. Despite previous refinements
to avoid overfitting the data used for ensemble hillclimb-
ing [7], our experiments show that ensemble selection is
still prone to overfitting when the hillclimb set is small.
This is especially true if their model bagging procedure is
not used. Surprisingly, although ensemble selection over-
fits with small data, reliably picking a single good model
is even harder—making ensemble selection more valuable.
With enough hillclimbing data (around 5k points), overfit-
ting becomes negligible. Motivated by these results, we
present a method for embedding cross-validation inside en-
semble selection to maximize the amount of hillclimbing
data.! Cross-validation boosts the performance of ensemble
selection, doubling its previously reported benefit. While
adding cross-validation to ensemble selection is computa-
tionally expensive, it is valuable for domains that require
the best possible performance, and for domains in which
labeled data is scarce.

Ensemble selection’s ability to optimize to any perfor-
mance metric is an attractive capability of the method that
is particularly useful in domains which use non-traditional
performance measures such as natural language process-
ing [14]. Because of this, the third aspect we investigate
is what benefit, if any, comes from being able to opti-
mize to any metric. Our experiments reinforce the intuition
that it is best to optimize to the target performance metric;

IThis is different from wrapping cross-validation around ensemble se-
lection, which would not increase the data available for hillclimbing.

however, they also show that minimizing squared error or
cross-entropy frequently yields ensembles with competitive
performance—seemingly regardless of the metric.

Fourth, we test ensemble selection’s performance when
only the best X % models are available for selection. These
experiments confirm our intuition that the potential for over-
fitting increases with more models. Using only the top 10-
20% of the models yields performance better than or equiv-
alent to ensemble selection without this model pruning.

2 Background

In this section we briefly review the ensemble selection
procedure first proposed by Caruana et al. [7]. Ensemble se-
lection is an overproduce and select ensemble method car-
ried to an extreme where thousands of models are trained
using many different learning methods, and overfitting is
moderated by applying several techniques.

In ensemble selection, models are trained using as many
learning methods and control parameters as can be applied
to the problem. Little or no attempt is made to optimize
the performance of the individual models; all models, no
matter what their performance, are added to the model li-
brary for the problem. The expectation is that some of the
models will yield good performance on the problem, either
in isolation or in combination with other models, for any
reasonable performance metric.

Once the model library is collected, an ensemble is built
by selecting from the library the subset of models that
yield the best performance on the target optimization met-
ric. Models are selected for inclusion in the ensemble using
greedy forward stepwise model selection. The performance
of adding a potential model to the ensemble is estimated us-
ing a hillclimbing set containing data not used to train the
models. At each step ensemble selection adds to the ensem-
ble the model in the library that maximizes the performance
of the ensemble to this held-aside hillclimbing data.

When there are thousands of models to select from, the
chances of overfitting increase dramatically. Caruana et al.
describe two methods to combat overfitting. The first con-
trols how ensembles are initialized. The second performs
model bagging—analogous to feature bagging [1, S]—to re-
duce the variance of the selection process.

Ensemble Initialization: Instead of starting with an
empty ensemble, Caruana et al. suggest initializing ensem-
bles with the N models that have the best uni-model perfor-
mance on the hillclimb set and performance metric.

Bagged Ensemble Selection: It is well known that fea-
ture subset selection (e.g. forward stepwise feature selec-
tion) is unstable when there are many relevant features [2].
Ensemble selection is like feature selection, where models
are features and model subsets are found by forward step-
wise selection. Because of this, ensemble selection also has

high variance. Ensemble selection uses bagging over mod-
els to reduce this variance. Multiple ensembles are built
from random subsets of the models, and then averaged to-
gether. This is analogous to the feature bagging methods
proposed by Bay [1] and Bryll et al. [5] and used in random
forests [4].

Another technique used in the original paper is allowing
models to be added to the ensemble more than once. This
provides two benefits. First, models added multiple times
get more weight in the ensemble average. Second, when
models are added without replacement, ensemble perfor-
mance deteriorates quickly after the best models have been
exhausted because poorer models must then be added. This
makes deciding when to stop adding models to the ensemble
critical because overshooting the optimal stopping point can
yield much worse performance. Selection with replacement
allows selection to continue adding copies of good mod-
els instead of being forced to add inferior models. This, in
turn, makes deciding when to stop adding models far less
critical. All of the experiments in this paper use these three
techniques.

3 Methodology

We use all of the learning methods and data sets used by
Caruana et al. [7], and all of the performance metrics except
CAL (a probability calibration metric) and SAR (a metric
that combines accuracy, squared error, and ROC area). In
addition, we also train models with logistic regression (LO-
GREGQG), naive bayes (NB), and random forests (RF) [4], and
experiment with four additional data sets: MG, CALHOUS,
COD, and BACT. All of the data sets are binary classifi-
cation problems. The learning methods and data sets are
described in Appendix A and B, respectively. The per-
formance metrics we study are described in the following
subsection.

3.1 Performance Metrics

The eight performance metrics we use can be divided
into three groups: threshold metrics, ordering/rank metrics
and probability metrics.

The threshold metrics are accuracy (ACC), F-score
(FSC) and lift (LFT). For thresholded metrics, it is not im-
portant how close a prediction is to a threshold, only if it is
above or below threshold. See Giudici [10] for a description
of Lift Curves. Usually ACC and FSC have a fixed thresh-
old (we use 0.5). For lift, often a fixed percent, p, of cases
are predicted as positive and the rest as negative (we use
p = 25%).

The ordering/rank metrics depend only on the ordering
of the cases, not the actual predicted values. As long as
ordering is preserved, it makes no difference if predicted

Table 1. Performance with and without model calibration. The best score in each column is bolded.

ACC FSC LFT | ROC APR BEP | RMS MXE | MEAN
ES-BOTH 0920 0.888 0.967 | 0982 0.972 0.964 | 0.932 0.944 || 0.946
ES-PREV 0.922 0.893 0.967 | 0.981 0.966 0.965 | 0.919 0.932 || 0.943
ES-NOCAL 0919 0.897 0.967 | 0.982 0970 0.965 | 0.912 0.925 0.942
ES-CAL 0912 0.847 0.969 | 0.981 0.969 0.966 | 0.935 0.940 || 0.940
BAYESAVG-BOTH 0.893 0.814 0964 | 0.978 0.963 0.956 | 0.918 0.934 || 0.928
BAYESAVG-CAL 0.889 0.820 0.962 | 0.977 0.960 0.955 | 0912 0.925 0.925
MODSEL-BOTH 0.871 0.861 0.939 | 0.973 0.948 0.938 | 0.901 0.916 || 0918
BAYESAVG-PREV 0.881 0.789 0.956 | 0.970 0.956 0.947 | 0.893 0.911 0.913
MODSEL-PREV 0.872 0.860 0.939 | 0.973 0.948 0.938 | 0.879 0.892 || 0.913
MODSEL-CAL 0.870 0.819 0.943 | 0.973 0.948 0.940 | 0.892 0.910 || 0912
MODSEL-NOCAL 0.871 0.858 0.939 | 0.973 0.948 0.938 | 0.861 0.871 0.907
BAYESAVG-NOCAL | 0.875 0.784 0.955 | 0.968 0.953 0.941 | 0.874 0.892 || 0.905

values fall between 0 and 1 or 0.89 and 0.90. These metrics
measure how well the positive cases are ordered before neg-
ative cases and can be viewed as a summary of model per-
formance across all possible thresholds. The rank metrics
we use are area under the ROC curve (ROC), average pre-
cision (APR), and precision/recall break even point (BEP).
See Provost and Fawcett [19] for a discussion of ROC from
a machine learning perspective.

The probability metrics are minimized (in expectation)
when the predicted value for each case coincides with the
true conditional probability of that case being positive class.
The probability metrics are squared error (RMS) and cross-
entropy (MXE).

3.2 Comparing Across Performance Metrics

To permit averaging across metrics and problems, per-
formances must be placed on comparable scales. Following
Caruana et al. [7] we scale performance for each problem
and metric from 0 to 1, where O is baseline performance
and 1 is the best performance achieved by any model or en-
semble. We use the following baseline model: predict p for
every case, where p is the percent of positives in the data.

One disadvantage of normalized scores is that recovering
araw performance requires knowing what performances de-
fine the top and bottom of the scale, and as new best models
are found the top of the scale may change. Note that the
normalized scores presented here differ from those reported
in Caruana et al. [7] because we are finding better models
that shift the top of the scales. The numbers defining the
normalized scales can be found in Appendix C.

4 Ensembles of Calibrated Models

Models trained by different learning algorithms do not
necessarily “speak the same language”. A prediction of

0.14 from a neural net does not necessarily mean the same
thing as a prediction of 0.14 from a boosted tree or SVM.
Predictions from neural nets often are well-calibrated pos-
terior probabilities, but predictions from SVMs are just nor-
malized distances to the decision surface. Averaging pre-
dictions from models that are not on commensurate scales
may hurt ensemble performance.

In this section we evaluate the performance of ensem-
ble selection after “translating” all model predictions to the
common “language” of well-calibrated posterior probabili-
ties. Learning algorithms such as boosted trees and stumps,
SVMs, or naive bayes have poorly calibrated predictions
[15]. A number of methods have been proposed for map-
ping predictions to posterior probabilities. In this paper we
adopt the method Platt developed for SVMs [18], but which
also works well for other learning algorithms [15]. Platt’s
method transforms predictions by passing them through a
sigmoid whose parameters are learned on an independent
calibration set. In this paper, the ensemble selection hill-
climb set is used for calibration as well.

Table 1 shows the performance of ensemble selection
(ES), model selection (MODSEL),? and Bayesian model
averaging (BAYESAVG) [8], with and without calibrated
models. Results are shown for four different model li-
braries: 1) only uncalibrated models (NOCAL), 2) only cal-
ibrated models (CAL), 3) both calibrated and uncalibrated
models (BOTH), and 4) only SVMs are calibrated, to mimic
prior experiments [7] (PREV). Each entry is the average of
five folds on each of the eleven problems. The last column
shows the mean performance over all eight metrics. Rows
are sorted by mean performance.

Comparing results for ensemble selection with and with-
out calibration (ES-CAL and ES-NOCAL), we see that cali-
brating models improves RMS and MXE (significant at .05)
but hurts FSC. There is little difference for LFT, ROC, APR

2Model selection chooses the best single model using the hillclimb set.

and BEP. For model selection we see the same trends: cali-
brated models yield better RMS and MXE and worse FSC.
The magnitudes of the differences suggest that most if not
all of the improvement in RMS and MXE for ensemble se-
lection with calibrated models is due to having better mod-
els in the library rather than from ensemble selection taking
advantage of the common scale of the calibrated models.
We are not sure why calibration makes FSC performance
worse for both MODSEL and ES, but again suspect that the
differences between ES-CAL and ES-NOCAL are due to
differences in the performance of the base-level models.

Having both calibrated and uncalibrated models in the
library (ES-BOTH and MODSEL-BOTH) gives the best of
both worlds: it alleviates the problem with FSC while re-
taining the RMS and MXE improvements. For the rest of
the experiments in this paper we use libraries containing
both calibrated and uncalibrated models.

Unlike with ensemble selection, using calibrated models
for Bayesian model averaging improves performance on all
metrics, not just RMS and MXE (significant at .05). With
calibrated models, Bayesian averaging outperforms model
selection but is still not as good as ensemble selection.

5 Analysis of Training Size

The original ensemble selection paper demonstrated the
method’s effectiveness using relatively small hillclimbing
sets containing 1000 data points. Since the data used for
hillclimbing is data taken away from training the individ-
ual models, keeping the hillclimb set small is important.
Smaller hillclimb sets, however, are easier to overfit to, par-
ticularly when there are many models from which to select.

To explore ensemble selection’s sensitivity to the size of
the hillclimb set, we ran ensemble selection with hillclimb
sets containing 100, 250, 500, 1000, 2500, 5000, and 10000
data points. In each run we randomly selected the points for
the hillclimb set and used the remainder for the test set. The
hyperspectral and medis data sets contained too few points
to leave sufficient test sets when using a 10K hillclimbing
set and were omitted. Due to time constraints and the cost
of generating the learning curves, we only used one random
sample at each size and did not repeat the experiment.

Figure 1 shows learning curves for our eight perfor-
mance measures and their mean. Each graph is an average
over 9 problems. The x-axis uses a logscale to better show
what happens with small hillclimbing sets. Normalized per-
formance scores are plotted on the y-axis. For comparison,
the graphs include the performance achieved by picking the
single best model (MODSEL).

Unsurprisingly, the performance achieved with both en-
semble selection and model selection using only 100 points
for hillclimbing is quite bad. As data increases, both meth-
ods do better as they overfit less. Interestingly, ensemble

selection is hurt less by a small hillclimbing set than model
selection, suggesting that it is less prone to overfitting than
model selection. Because of this, the benefit of ensemble
selection over the best models appears to be strongest when
training data is scarce, a regime [7] did not examine. (They
used 5k training data with 1k points held aside for ensemble
stepwise selection.) As the size of the hillclimbing sets goes
from 1k to 10k, ensemble selection maintains its edge over
model selection.

With small hillclimb sets, using bagging with ensemble
selection is crucial to getting good performance; without
it, mean performance using a 100 point hillclimb set drops
from 0.888 to 0.817. In contrast, bagging provides very
little if any benefit when a very large hillclimb set is used
(more than 5000 points with our data sets).

6 Cross-Validated Ensemble Selection

It is clear from the results in Section 5 that the larger the
hillclimb set, the better ensemble selection’s performance
will be. To maximize the amount of available data, we apply
cross-validation to ensemble selection. Simply wrapping
cross-validation around ensemble selection, however, will
not help because the algorithm will still have just a fraction
of the training data available for hillclimbing. Instead, we
embed cross-validation within ensemble selection so that all
of the training data can be used for the critical ensemble
hillclimbing step. Conceptually, the procedure makes cross-
validated models, then runs ensemble selection the usual
way on a library of cross-validated base-level models.

A cross-validated model is created by training a model
for each fold with the same model parameters. If there are
5 folds, there will be 5 individual models (each trained on
4000 points) that are ‘siblings’; these siblings should only
differ based on variance due to their different training sam-
ples. To make a prediction for a test point, a cross-validated
model simply averages the predictions made by each of the
sibling models. The prediction for a training point (that sub-
sequently will be used for ensemble hillclimbing), however,
only comes from the individual model that did not see the
point during training. In essence, the cross-validated model
delegates the prediction responsibility for a point that will
be used for hillclimbing to the one sibling model that is not
biased for that point.

Selecting a cross-validated model, whether during model
selection or ensemble selection, means choosing all of the
sibling models as a unit. If 5-fold cross-validation is used,
selection chooses groups containing 5 sibling models at a
time. In this case, when selection adds a cross-validated
model to a growing ensemble, it really adds 5 different mod-
els of the same model type to the ensemble, each of which
receives the same weight in the ensemble average.

We ran ensemble selection with 5-fold cross-validation;

hillclimb data size

hillclimb data size

ACC FSC LFT
= . < . S 0.98
g : £ . E 096
e o e U 2 094 |
) 8 9 8 oo
g 55 % g . g oop X B
5 085 bagging —+— T 5 | bagging —+— _| T 088 bagging —+— —|
06 ! 0.65 |- i , i
€ 0.55 no bag%mgI '''''' e € 0.6 no bag%mgI '''''' | E o8l no baggc;imgI """ R |
S 299 & modsel ¥)] modsel ¥ o X modsel *
c 05k | O TR € 055 | O TR S 084 Ll O T
100 1000 10000 100 1000 10000 100 1000 10000
hillclimb data size hillclimb data size hillclimb data size
ROC APR BEP
3 1 ——rrrr 3 1 ——rrrr g 098 T
S 098 L —g X g 098 = £ 09 - R
E 09 XTK E 096 - g oo fx
€ oox 1 2 YuL X 7€ o, o K .
S 092 - s et x] o 094 -
§ 0.9 7 § 0.8.8 Lo B E 088 L |
T 0.88 - bagging —+— —| T 086 bagging —+— _| S 086 bagging —+— —|
E osey no bagging > _| E o84l no bagging > _| E o84l no bagging > _|
2 e Cooamodsel k] 8 08y Coamodsel 6] 8 ok ... modsel k.|
100 1000 10000 100 1000 10000 100 1000 10000
hillclimb data size hillclimb data size hillclimb data size
RMS MXE MEAN
3 1 T 3 9 1 e
c 0.95 i c S nozl. 0 s N
g 0.9 g g 0.95 4
5 085 8 & 09
5] 08T = @ > X
Qo . a 8 85 L - N
B 075 % 1 03 3 085 I~ X
N 0.7 — . — N X N 0.8+ —
© 65 — - bagging —+— _| © P bagging —+— © bagging —+—
E 0062 L no bagging - | E 055 no bagging - E 075 no bagging -
2 0557% | \\\\\\\m0d$elw K 2 0.47 I \\\\\\m0d§e|\ KT 2 0.7 g I \\\\\\\m0d$e|\ Kl
100 1000 10000 100 1000 10000 100 1000 10000

hillclimb data size

Figure 1. Learning curves for ensemble selection with and without bagging, and for picking the best

single model (modsel).

Table 2. Performance with and without cross-validation for ensemble selection and model selection.

ACC FSC LFT | ROC APR BEP | RMS MXE (| MEAN
ES-BOTH-CV 0.935 0926 0.982 | 0.996 0.992 0.977 | 0.984 0989 || 0.973
MODSEL-BOTH-CV | 0.907 0.923 0971 | 0.985 0.968 0.963 | 0.945 0.961 0.953
ES-BOTH 0.920 0.888 0.967 | 0.982 0.972 0.964 | 0.932 0.944 || 0.946
MODSEL-BOTH 0.871 0.861 0.939 | 0.973 0.948 0.938 | 0.901 0.916 || 0918

this is analogous to normal ensemble selection with a 5000
point hillclimb set. Table 2 shows the results averaged over
all the problems. Not only does cross-validation greatly im-
prove ensemble selection performance, it also provides the
same benefit to model selection. Five-fold cross-validated
model selection actually outperforms non-cross-validated
ensemble selection by a small but noticeable amount. How-
ever, ensemble selection with embedded cross-validation
continues to outperform model selection.

Table 3 provides a different way to look at the results.
The numbers in the table (except for the last row) are the
percent reduction in loss of cross-validated ensemble se-
lection, relative to non-cross-validated model selection, the
baseline used in Caruana et al. [7]. For example, if model

selection achieves a raw accuracy score of 90%, and cross-
validated ensemble selection achieves 95% accuracy, then
the percent reduction in loss is 50%—the loss has been re-
duced by half. The MEAN row is the average improvement
for each metric, across datasets. For comparison, the PREV
row is the performance of the original non-cross-validated
ensemble selection method (i.e. no cross-validation and
only SVMs are calibrated).

Embedding cross-validation within ensemble selection
doubles its benefit over simple model selection (from 6.90%
to 12.77%). This is somewhat of an unfair comparison; if a
cross-validated model library is available, it is just as easy
to do cross-validated model selection as it is to do cross-
validated ensemble selection. The last row in Table 3 shows

Table 3. Percent loss reduction by dataset.

ACC__FSC__LFT | ROC__APR _BEP | RMS MXE [MEAN
ADULT 277 589 872 | 745 670 758 | 226 408 | 5.68
BACT 208 383 1642 | 413 549 176 | 142 415 || 491
CALHOUS | 795 949 4800 | 869 881 6.5 | 7.17 1274 | 13.63
COD 573 746 1433 | 914 1052 7.1 | 239 379 | 7.56
COVTYPE | 6.68 726 1235 | 1134 1499 7.64 | 7.80 1292 | 10.12
HS 13.66 1636 1232 | 37.53 37.78 1677 | 12.65 27.43 | 21.81
LETTERp2 | 1521 14.50 100.00 | 32.84 33.05 1585 | 17.13 2947 | 3226
LETTERpl | 21.55 2566 029 | 69.10 4529 19.25 | 19.59 34.58 | 29.41
MEDIS 277 005 208 | 633 728 462 | 140 270 | 339
MG 445 198 425 | 11.84 1265 604 | 257 610 | 623
SLAC 249 327 1365 | 692 9.62 273 | 1.66 333 || 546
MEAN 776 870 2113 | 18.67 1747 868 | 691 1284 | 12.77
[PREV [496 456 1622 | 843 624 515 [327 639 | 690 |
[MEAN™ [289 307 1082 | 997 937 284 | 254 422 || 571 |

the percent loss reduction of cross-validated ensemble se-
lection compared to cross-validated model selection. Com-
paring PREV and MEAN®’, we see that after embedding
cross-validation, ensemble selection provides slightly less
benefit over model selection than un-cross-validated ensem-
ble selection did over un-cross validated model selection.

While training five times as many models is computa-
tionally expensive, it may be useful for domains where the
best possible performance is needed. Potentially more in-
teresting, in domains where labeled data is scarce, cross-
validated ensemble selection is attractive because a) it does
not require sacrificing part of the training data for hillclimb-
ing, b) it maximizes the size of the hillclimbing set (which
Figure 1 shows is critical when hillclimb data is small), and
¢) training the cross-validated models is much more feasible
with smaller training data.

7 Direct Metric Optimization

One interesting feature of ensemble selection is its abil-
ity to build an ensemble optimized to an arbitrary metric. To
test how much benefit this capability actually provides, we
compare ensemble selection that optimizes the target met-
ric with ensemble selection that optimizes a predetermined
metric regardless of the target metric. For each of the 8
metrics, we train an ensemble that optimizes it and evaluate
the performance on all metrics. Optimizing RMS or MXE
yields the best results.

Table 4 lists the performance of ensemble selection for a)
always optimizing to RMS, b) always optimizing to MXE,
and c) optimizing the true target metric (OPTMETRIC).
When cross-validation is not used, there is modest benefit
to optimizing to the target metric. With cross-validation,
however, the benefit from optimizing to the target metric is

Table 4. Performance of ensemble selection
when forced to optimize to one set metric.

| RMS MXE OPTMETRIC
0.969 0.968 0.973
0.935 0.936 0.946

ES-BOTH-CV
ES-BOTH

significantly smaller.

The scatter plots in Figure 2 plot the performance of op-
timizing to RMS against the performance of optimizing to
OPTMETRIC, with one graph per target metric. Again, we
can see that ensemble selection performs somewhat better
with OPTMETRIC. Always optimizing RMS is frequently
very competitive, especially when performance gets close
to a normalized score of 1. This is why the benefit of direct
metric optimization is so small for cross-validated ensem-
ble selection. These results suggest that optimizing RMS
(or MXE) may be a good alternative if the target metric is
too expensive to use for hillclimbing.

8 Model Library Pruning

Including a large number of base level models, with a
wide variety of parameter settings, in the model library
helps ensure that at least some of the models will have
good performance regardless of the metric optimized. At
the same time, increasing the number of available models
also increases the risk of overfitting the hillclimb set. More-
over, some of the models have such poor performance that
they are unlikely to be useful for any metric one would want
to optimize. Eliminating these models should not hurt per-
formance, and might help.

In this section we investigate ensemble selection’s per-

LFT

1 1
2
o 00
©)
1 0.89
1
el
0.86 1 0.89 1 0.82 1 0.84 1

Figure 2. Scatter plots of ensemble selection performance when RMS is optimized (z-axis) vs when
the target metric is optimized (y-axis). Points above the line indicate better performance by optimizing
to the target metric (e.g. accuracy) than when optimizing RMS. Each point represents a different data
set; circles are averages for a problem over 5 folds, and X’s are performances using cross-validation.
Each metric (and the mean across metrics) is plotted separately for clarity.

formance when employing varying levels of library prun-
ing. The pruning works as follows: the models are sorted
by their performance on the target metric (with respect to
the hillclimb set), and only the top X % of the models are
used for ensemble selection. Note that this pruning is dif-
ferent from work on ensemble pruning [12, 22, 23, 26, 13].
This is a pre-processing method, while ensemble pruning
post-processes an existing ensemble.

Figure 3 shows the effect of pruning for each perfor-
mance metric, averaged across the 11 data sets and 5
folds using non-cross-validated ensemble selection with
and without bagging. For comparison, flat lines illustrate
the performance achieved by model selection (modsel) and
non-pruned ensemble selection (es-both). The legend is
shown in the ACC graph.

The figure clearly shows that pruning usually does not
hurt ensemble selection performance, and often improves
it. For ACC, LFT, and BEP pruned ensemble selection
(the line with boxes) seems to yield the same performance
as non-pruned ensemble selection . For the other metrics,
pruning yields superior performance. Indeed, when using
more than 50% of the models performance decreases. In-
terestingly, library pruning reduces the need for bagging,
presumably by reducing the potential for overfitting.

3The bagging line at 100% does not always match the es-both line,
even though these should be equivalent configurations. This is particularly
evident for FSC, the highest variance metric. The sorting performed before
pruning alters ensemble selection’s model sampling, resulting in additional

The graphs in Figure 3 show the average behavior across
our 11 data sets. Ensemble selection’s behavior under prun-
ing may in fact vary when each data set is considered in-
dividually. Averaging across problems could hide different
peak points. Figure 4 shows RMS performance for each of
the problems.

Although performance starts to decline at different prun-
ing levels for the different problems, it is clear that larger
model libraries increase the risk of overfitting the hillclimb
set. Using 100% of the models is never worthwhile. At
best, using the full library can match the performance of us-
ing only a small subset. In the worst case, ensemble selec-
tion overfits. This is particularly evident for the COD data
set where model selection outperforms ensemble selection
unless pruning is employed.

While further work is needed to develop good heuristics
for automatically choosing an appropriate pruning level for
a data set, simply using the top 10-20% models seems to be
a good rule of thumb. An open problem is finding a better
pruning method. For example, taking into account model
diversity (see for example [11, 17]) might find better pruned
sets.

variance.

) ® o 097 ‘ ‘ :
3 8 8 PR
g g 5 0.965 SEEETEEY
£ £ £ 09 ex 1
2 2 2 s TN SRS IVIVEVIOE
g g g 0.955 3
B os9l bagal 3 ° 095
N or | agging —=— N N
T 0885 ¢ no bagging - K] g 0945
E %8 es-both £ E o094
€ Tparl modselboth g o € 093
0 20 40 60 80 100 0 20 60 80 100 0 20 40 60 80 100
% models % models % models
ROC APR BEP
g 099 g 098 g 097 ‘ ‘ ‘ :
§ 0988 pRfe: S 0975 S 0965 R s S E NS SRNNC
E 0986 xS E oo7 E oo
L 0.984 X, L : L X XXXXXXXXXX
o 0.982 S n o 0.965 f & 0.955 PR ARy
Q HRKeRge s Q Q
- 098" ot © 096 © 095
X o978 S o955 8 ogss
g o9t £ 095 g 094
5 0974 | 5 - 5 -
S 0972 S 0945 S 0935
20 40 60 80 100 0 20 60 80 100 0 20 40 60 80 100
% models % models % models
RMS MXE MEAN
g 096 g g 0955
& 0.95 [ERRT S = 0.95
£ Xt £ E 0945 y 3
2 094y e 2 2 o094 e
S 093 i - & 0935 E
2 Ko 2 ks 0.93
& 092} . N X :
E 0.91 E g 0.925
s 5 5 092
S 09 < S 0915 b : : : :
0 20 40 60 80 100 0 20 60 80 100 0 20 40 60 80 100
% models % models % models

Figure 3. Pruned ensemble selection performance.

9 Discussion

In this section we further analyze the benefit of embed-
ding cross validation within ensemble selection and also
briefly describe other work we are doing to make ensem-
ble selection models smaller and faster.

9.1 Benefits of Cross-Validation

The results in Section 6 show that embedding cross-
validation within ensemble selection significantly increases
the performance of ensemble selection. There are two fac-
tors that could explain this increase in performance. First,
the bigger hillclimbing set could make selecting models to
add to the ensemble more reliable and thus make overfit-
ting harder. Second, averaging the predictions of the sibling
models could provide a bagging-like effect that improves
the performance of the base-level models. To tease apart
the benefit due to each of these factors we perform two ad-
ditional experiments.

In one experiment, we use the same hillclimbing set as
cross-validated ensemble selection, but instead of averag-

ing the predictions of the sibling models, we use only the
predictions of one of the siblings. Using this procedure we
construct five ensemble models, one for each fold, and re-
port their mean performance. This provides a measure of
the benefit due to the increase in the size of the hillclimb set
(from cross-validation) while eliminating the bagging-like
effect due to sibling model averaging.

In the other experiment, we use the smaller hillclimb sets
used by un-cross-validated ensemble selection, but we do
average the predictions of the sibling models. We again
construct five ensemble models, one for each fold, and re-
port their mean performance. This allows us to identify the
performance increase due to the bagging-like effect of aver-
aging the predictions of the sibling models.

Table 5 shows the results of these experiments. Entries in
the table show the improvement provided by using a larger
hillclimb set (ES-HILL) and by averaging the sibling mod-
els (ES-AVG) as a percentage of the total benefit of cross-
validated ensemble selection. For example, looking at the
ACC column, increasing the size of the hillclimb set from
1k to 5k yields a benefit equal to 32.9% of the total benefit
provided by cross-validated ensemble selection, and aver-

ADULT: RMS BACT: RMS CALHOUS: RMS
o 098 ° ° .
£ 0975 g - = .
E 097} £ ooty E o
& 09| 2 X s s ;]
8 0955 ¢ 3 s N ;
8 7 j & 095 bagging —8—]
ER E E 00933 no bagging —— 1
5 0945 5 5 0% modsel beth
S 004 < < 0.93
0 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
% models % models % models
COD: RMS COVTYPE: RMS HS: RMS
o 094 o 0945 o 098 —gw U mL o
e e L 2 097 ’ R
c 0.93 c 0.94 c
< < & It 0.96
E oo E 0985y £ oo
T 091 5 093y T 094
_g— 09 | _g— 0.925 _g 0.93
£ oso! ;8 092f 5 0o
s 0 S 0915 | T o
£ o8| N £ oot £ ose
< 087 < 0905 < 088
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
% models % models % models
LETTER.p1: RMS LETTER.p2: RMS MEDIS: RMS
g 096 ; ; ; ; g 097 ; ; ; g 094
g 0% m% h S 0965 (i omBass, SenoTTEy g 09
g 0.94 1 R AR A A AN AR g i g 0.88
£ 093¢ T 096 S 086
o 092 o S aa
hel hel L hel . X
8 ooy g 09% g os
T 09 = K |
0.95 | 0.8 .,
€ o089 £ | £ om e
< ossh ‘ ‘ ‘ ‘ S 0945 : ‘ : : S o76b ‘ ‘ ‘ ‘
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
% models % models % models
MG: RMS SLAC: RMS
o 092 o 097
[$] 5 [8)
é 0.91 | X § 0.96
£ E S £ 095 Y
g e S oo e
& o089t 2 S s >
el ° R
[0} [0}
2 oss| 3
=~ S 092
E 087 E 0914
o o
S 086 ® S 09
0 20 40 60 80 100 0 20 40 60 80 100
% models % models

Figure 4. RMS performance for pruned ensemble selection.

aging the sibling models yields a benefit equal to 80.5%.

The third row in the table is the sum of the first two rows.
If the sum is lower than 100% the effects from ES-HILL
and ES-AVG are super-additive, i.e. combining the two ef-
fects provides more benefit than the sum of the individual
improvements. If the sum is higher than 100% then the two
effects are sub-additive. For ACC, the sum is 113.4%, indi-
cating that the effects of these two factors are sub-additive:
the total performance is slightly less than would be expected
if the factors were independent. Except for the high vari-
ance metrics, FSC and ACC, the sums are close to 100%,
indicating that the two effects are nearly independent.

The learning curves in Figure 1 suggest that increas-

ing the size of the hillclimb set from 1k to 5k would ex-
plain almost all of the benefit of cross-validation. These
results, however, show that on average across the eight met-
rics the benefit from ES-HILL and ES-AVG are roughly
equal. About half of the benefit from embedding cross-
validation within ensemble selection appears to result from
the increase in the size of the hillclimb set, and the other
half appears to result from averaging the sibling models.
Increasing the size of the hillclimb set via cross-validation
(as opposed to having more data available for hillclimbing)
provides less benefit in practice because there is a mismatch
between the base-level models used to make predictions on
the hillclimbing set and the sibling-averaged models that

Table 5. Breakdown of improvement from cross-validation.

ACC FSC LFT | ROC APR BEP | RMS MXE || MEAN

ESHILL | 329% 372% 48.0% | 38.8% 40.8% 19.4% | 55.1% 56.1% || 41.1%

ES-AVG | 80.5% 13.6% 54.0% |59.0% 55.7% 77.4% | 46.8% 51.8% | 54.9%
[SUM [1134% 508% 1020% | 97.8% 965% 96.8% | 101.9% 108.5% || 96.0% |

will be used in the ensemble. In other words ensemble se-
lection is hillclimbing using slightly different models than
the ones it actually adds to the ensemble.

9.2 Model Compression

While very accurate, the ensembles built by ensemble se-
lection are exceptionally complex. On average, storing the
learned ensemble requires 550 MB, and classifying a single
test case takes about 0.5 seconds. This prohibits their use
in applications where storage space is at a premium (e.g.
PDAs), where test sets are large (e.g. Google), or where
computational power is limited (e.g. hearing aids). In a sep-
arate paper we address these issues by using a model com-
pression [6] method to obtain models that perform as well
as the ensembles built by ensemble selection, but which are
faster and more compact.

The main idea behind model compression is to train a
fast and compact model to approximate the function learned
by a slow, large, but high performing model. Unlike the true
function that is unknown, the function learned by the high
performing model is available and can be used to label large
amounts of synthetic data. A fast, compact and expressive
model trained on enough synthetic data will not overfit and
will closely approximate the function learned by the orig-
inal model. This allows a slow, complex model such as a
massive ensemble to be compressed into a fast, compact
model with little loss in performance.

In the model compression paper, we use neural networks
to compress ensembles produced by ensemble selection. On
average the compressed models retain more than 90% of the
improvement provided by ensemble selection (over model
selection), while being more than 1000 times smaller and
1000 times faster.

10 Conclusions

Embedding cross-validation inside ensemble selection
greatly increases its performance. Half of this benefit is due
to having more data for hillclimbing; the other half is due to
a bagging effect that results from the way cross-validation
is embedded within ensemble selection. Unsurprisingly, re-
ducing the amount of hillclimbing data hurts performance
because ensemble selection can overfit this data more easily.

10

In comparison to model selection, however, ensemble selec-
tion seems much more resistant to overfitting when data is
scarce. Further experiments varying the amount of training
data provided to the base-level models are needed to see if
ensemble selection is truly able to outperform model selec-
tion by such a significant amount on small data sets.

Counter to our and others’ intuition [9], calibrating mod-
els to put all predictions on the same scale before averaging
them did not improve ensemble selection’s effectiveness.
Most of calibration’s improvement comes from the superior
base-level models.

Our experiments show that directly optimizing to a tar-
get metric is better than always optimizing to some prede-
termined metric. That said, always optimizing to RMS or
MXE was surprisingly competitive. These metrics may be
good optimization proxies if the target metric is too expen-
sive to compute repeatedly during hillclimbing.

Finally, pruning the number of available models reduces
the risk of overfitting during hillclimbing while also yield-
ing faster ensemble building. In our experiments pruning
rarely hurt performance and frequently improved it.

Acknowledgments

We thank Lars Backstrom for help with exploring alter-
native model calibration methods and the anonymous re-
viewers for helpful comments on paper drafts. This work
was supported by NSF Award 0412930.

References

[1] S. D. Bay. Combining nearest neighbor classifiers through
multiple feature subsets. In ICML, pages 37-45, 1998.

L. Breiman. Heuristics of instability in model selection.
Technical report, Statistics Department, University of Cal-
ifornia at Berkeley, 1994.

L. Breiman. Bagging predictors.
24(2):123-140, 1996.

L. Breiman. Random forests. Machine Learning, 45(1):5—
32,2001.

R. K. Bryll, R. Gutierrez-Osuna, and F. K. H. Quek. At-
tribute bagging: Improving accuracy of classifier ensem-
bles by using random feature subsets. Pattern Recognition,
36(6):1291-1302, 2003.

(2]

(3] Machine Learning,

(4]

(5]

(6]

(7]

(8]

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

C. Bucila, R. Caruana, and A. Niculescu-Mizil. Model com-
pression: Making big, slow models practical. In Proc. of the
12th International Conf. on Knowledge Discovery and Data

Mining (KDD’06), 2006.
R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes.

Ensemble selection from libraries of models. In ICML,

2004.

P. Domingos. Bayesian averaging of classifiers and the over-
fitting problem. In ICML, pages 223-230. Morgan Kauf-
mann, San Francisco, CA, 2000.

R. P. W. Duin. The combining classifier: To train or not to
train? In ICPR (2), pages 765-770, 2002.

P. Giudici. Applied Data Mining. John Wiley and Sons, New

York, 2003.

L. I. Kuncheva and C. J. Whitaker. Measures of diversity in
classifier ensembles and their relationship with the ensemble
accuracy. Machine Learning, 51(2):181-207, 2003.

D. D. Margineantu and T. G. Dietterich. Pruning adaptive
boosting. In ICML, pages 211-218. Morgan Kaufmann,
1997.

G. Martinez-Munoz and A. Sudrez. Pruning in ordered bag-
ging ensembles. In ICML, pages 609-616, New York, NY,

USA, 2006. ACM Press.
A. Munson, C. Cardie, and R. Caruana. Optimizing to

arbitrary NLP metrics using ensemble selection. In HLT-

EMNLP, pages 539-546, 2005.
A. Niculescu-Mizil and R. Caruana. Predicting good proba-

bilities with supervised learning. In ICML’05, 2005.
C. Perlich, F. Provost, and J. S. Simonoff. Tree induction

vs. logistic regression: A learning-curve analysis. J. Mach.

Learn. Res., 4:211-255, 2003.
A. H. Peterson and T. R. Martinez. Estimating the poten-

tial for combining learning models. In Proc. of the ICML

Workshop on Meta-Learning, pages 6875, 2005.

J. Platt. Probabilistic outputs for support vector machines
and comparison to regularized likelihood methods. In Adv.
in Large Margin Classifiers, 1999.

F. J. Provost and T. Fawcett. Analysis and visualization of
classifier performance: Comparison under imprecise class
and cost distributions. In Knowledge Discovery and Data
Mining, pages 43-48, 1997.

F. Roli, G. Giacinto, and G. Vernazza. Methods for design-
ing multiple classifier systems. In Multiple Classifier Sys-
tems, pages 78-87, 2001.

R. Schapire. The boosting approach to machine learning: An
overview. In In MSRI Workshop on Nonlinear Estimation
and Classification, 2001.

W. N. Street and Y.-H. Kim. A streaming ensemble algo-
rithm (SEA) for large-scale classification. In KDD, pages

377-382, 2001.

G. Tsoumakas, L. Angelis, and 1. Vlahavas. Selective fu-
sion of heterogeneous classifiers. Intelligent Data Analysis,
9(6):511-525, 2005.

1. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, San

Francisco, second edition, 2005.
D. H. Wolpert. Stacked generalization. Neural Networks,

5:241-259, 1992.
Y. Zhang, S. Burer, and W. N. Street. Ensemble pruning via

semi-definite programming. Journal of Machine Learning
Research, 7:1315-1338, 2006.

11

A Learning Methods

In addition to the learning methods used by Caruana
et al. [7] (decision trees, bagged trees, boosted trees and
stumps, KNN, neural nets, and SVMs), we use three more
model types: logistic regression, naive bayes, and random
forests. These are trained as follows:

Logistic Regression (LOGREG): we train both unregular-
ized and regularized models, varying the ridge parameter
by factors of 10 from 1078 to 10%. Attributes are scaled to
mean 0 and standard deviation 1.

Random Forests (RF): we use the Weka implementa-
tion [24]. The forests have 1024 trees, and the size of the
feature set to consider at each splitis 1, 2,4, 6, 8, 12, 16 or
20.

Naive Bayes (NB): we use the Weka implementation and
try all three of the Weka options for handling continuous at-
tributes: modeling them as a single normal, modeling them
with kernel estimation, or discretizing them using super-
vised discretization.

In total, around 2,500 models are trained for each data
set. When calibrated models are included for ensemble se-
lection the number doubles to 5,000.

B Data Sets

We experiment with 11 binary classification prob-
lems. ADULT, COV_TYPE, HS, LETTER.P1, LET-
TER.P2, MEDIS, and SLAC were used by Caruana et
al. [7]. The four new data sets we use are BACT, COD,
CALHOUS, and MG. COD, BACT, and CALHOUS are
three of the datasets used in Perlich et al. [16]. MG is a
medical data set. See Table 6 for characteristics of the 11
problems.

Table 6. Description of problems

PROBLEM #ATTR TRAIN TEST %POZ
ADULT 14/104 4000 35222 25%
BACT 11/170 4000 34262 69%
CcOD 15/60 4000 14000 50%
CALHOUS 9 4000 14640 52%
COV_TYPE 54 4000 25000 36%
HS 200 4000 4366 24%
LETTER.P1 16 4000 14000 3%
LETTER.P2 16 4000 14000 53%
MEDIS 63 4000 8199 11%
MG 124 4000 12807 17%
SLAC 59 4000 25000 50%

Table 7. Scales used to compute normalized scores. Each entry shows bottom / top for the scale.

ACC FSC LFT ROC APR BEP RMS MXE
ADULT 0.752/0.859 0.398/0.705 1.000/2.842 | 0.500/0.915 0.248/0.808 0.248/0.708 | 0.432/0.312 0.808 /0.442
BACT 0.692/0.780 0.818/0.855 1.000/1.345 | 0.500/0.794 0.692/0.891 0.692/0.824 | 0.462/0.398 0.891/0.697
CALHOUS | 0.517/0.889 0.681/0.893 1.000/1.941 | 0.500/0.959 0.517/0.964 0.517/0.895 | 0.500/0.283 0.999/0.380
COD 0.501/0.784 0.666/0.796 1.000/1.808 | 0.500/0.866 0.499/0.864 0.499/0.782 | 0.500/0.387 1.000/0.663
COVTYPE 0.639/0.859 0.531/0.804 1.000/2.487 | 0.500/0.926 0.362/0.879 0.361/0.805 | 0.480/0.320 0.944/0.478
HS 0.759/0.949 0.389/0.894 1.000/3.656 | 0.500/0.985 0.243/0.962 0.241/0.898 | 0.428/0.198 0.797/0.195
LETTER.pl | 0.965/0.994 0.067/0.917 1.000/4.001 | 0.500/0.999 0.036/0.975 0.035/0.917 | 0.184/0.067 0.219/0.025
LETTER.p2 | 0.533/0.968 0.696/0.970 1.000/1.887 | 0.500/0.996 0.534/0.997 0.533/0.970 | 0.499/0.157 0.997/0.125
MEDIS 0.893/0.905 0.193/0.447 1.000/2.917 | 0.500/0.853 0.108/0.462 0.107/0.469 | 0.309/0.272 0.491/0.365
MG 0.831/0.900 0.290/0.663 1.000/3.210 | 0.500/0.911 0.170/0.740 0.169/0.686 | 0.375/0.278 0.656/0.373
SLAC 0.501/0.726 0.667/0.751 1.000/1.727 | 0.500/0.813 0.501/0.816 0.501/0.727 | 0.500/0.420 1.000/0.755

C Performance Scales

Table 7 lists the performance numbers that determine the
normalized scores. Each entry contains the baseline per-
formance (bottom of the scale) and the best performance
achieved by any model or ensemble (top of the scale).

12

