

A Resources Virtualization Approach

Supporting Uniform Access to Heterogeneous

Grid Resources1

Cunhao Fang1, Yaoxue Zhang
2
, Song Cao3

1 Tsinghua National Labatory of Inforamation Science and Technology

2 Department of Computer Science and Technology,Tsinghua Univeristy
3 School of Software, Tsinghua University

100084 Beijing, P. R. China

fangch@tsinghua.edu.cn

1 Introduction

Grid system has various kinds of resources such as computing resources, storage

resources, instrument resources, data resources, etc. However, because of the

differences of formats, descriptions, structures, and access modes of these resources,

grid computing fails to access these resources uniformly and make full use of them.

How to organize and manage all sorts of resources as a whole In Grid Environment,

and provide the upper application with coherent description as well as uniform access

interface is the problem of coherency access of different resources In Grid

Environment.

Resources virtualization makes better use of the dynamic and distributed service

resources under grid environment. It is a proper method to solve the problem

described above.

Web service is a set of protocol warehouse defined by XML. Through protocols

and standards such as SOAP，WSDL，UDDI，WSFL，BPEL4WS, it provides

uniform service registry, discovery, binding, and integration mechanism facing

Internet. Web service has become an important mechanism of resources mutual

manipulation underlying extensive environment.

This research starts with various physical resources In Grid Environment,

transforms and encapsulates various resources into services on the basis of Web

service technology, and further provides upper applications with uniform service

resources through uniform description and management of these services. Based on

this, multi application cases with the same function body are merged, different

function bodies are analyzed, and services resource view on the user function layer is

extracted in support of service logic integration process on the user end. The whole

virtualization architecture consists of three Views and three Processes, as shown in

Fig.1.

* This paper is sponsored by National Natural Science Foundation of China (NO. 90604027)

service service service

serviceservice

service

Services

Cluster

Services

Cluster

service

Services

Cluster

Function

Classifi-

cation

Specifi-

cation

Abstract

Service

Abstract

Service Abstract

Service

Function

Clustering

 Service

Resources View

Services

Transform View

Services Pool

Physical

Resources View

Encapsulating resources

 as services

Component

Device
Component

Device
Data

Data service

service

functional relation

Services

Abstracting

Fig. 1. Layered Architecture of the Framework
The remainder of the paper is organized as follows. Related definitions are

presented in Section 2. Section 3 introduces in detail the process of resources

virtualization and organization, followed by conclusion in Section 4.

2. Some Definitions

Grid system has various kinds of resources such as computing resources, storage

resources, instrument resources, data resources, etc. R refer to the resources pool, all

resources in the grid system are in it. Suppose there are n kinds of resources in the

resources pool, they are R1， R2， …， Rn.

Definition 1:

Resource Ri =(Category, Fi, Ii, Pi)

Category is the kind of resource Ri;

Fi is the functional description of resource Ri;

Ii is the interface of resource Ri (such as calling parameter and running results, etc.);

Pi indicates the using policy set of resource Ri.

We use deputy mechanism to demonstrate different kinds of services through

service uniformly. With regard to services, we have the following definition:

Definition 2:

Service Si = (Namei，BaseInfoi，Interfacei，Bindingi，Functioni， ADi)

Namei is service identification;

BaseInfoi is basic non-behavior information of the service including name, author,

version, manufacture, etc;

Interfacei is the interface of service Si (such as calling parameter and running

results, etc.);

Bindingi is binding protocol set of the service;

Functioni is function description of the service;

ADi is application domain of the service.

3. Resources virtualization and organization process

As Fig. 1 shows, resources virtualization and organization composes of three

Views and three Processes:

Three Views:

1) Physical Resources View: this view refers to various Grid resources and

corresponding supporting tools (e.g. resource deploying tools).

2) Services Transform View: this view aims to implement the uniform resources

transform (to Web Services format) and to organize the structure of transformed

Services Pool by analyzing, categorizing and managing these service resources

according to Function Classification Specification (FCS).

3) Service Resource View: this view aims to provide users with well-organized

services resource views on the application level through further mining the semantic

relations of services, to support service active discovery, service composition on

demand and other upper-layer applications.

Three Processes:

1) Service instancing process of Resources (Encapsulating resources as services):

As described above, Web service based on Internet protocol provides us an

important mechanism to realize resources mutual manipulation underlying extensive

environment. Thus, the first step of resources virtualization and organization process

is to transform all resources into services and pack them up in the service format.

Through uniform description and management of these services, uniform service

resources are provided to upper application.

In this process, we adopt service component deputy mechanism. During the active

service implementation process, we view various resource formats such as

components, data and equipments as service component deputies. Transferring

between these resources is converted into service requests and responds between

service component deputies (based on message mechanism).

Resource Ri is transformed and encapsulated as a web services (denoted as Si) by

mapping the information of Ri to Web Services Specification.(e.g. mapping the Ri.Fi

to the UDDI registration information of service Si , mapping the Ri.Ii to the WSDL

description information, mapping the Ri.Pi to the WSDL binding information, etc.).

After that, a Service Agent is initiated to delegate the “virtual service Si”. the Service

Agent first deploy the Ri entity into the grid environment according to the resource

kind denoted by Ri.Category, when a calling request comes, the Service Agent calls

resource Ri and encapsulate the calling results of resource entity to the message style

of services Si. Through the description mapping and Service Agent mechanism,

resource Ri is completely transformed to service Si.

We present the general process of resources service instancing as follows. With

regard to service resources, we directly deploy them into the grid environment; with

regard to other resources, we can firstly deploy them into the grid environment

through deputy mechanism, and then pack them up into services.

niRr seti 1,

If WSr
i
 then i set

r R

Else

(())
i i set

GridServices r deploy r R

Endif

2) Function Clustering Process of Services:

Service function clustering is to extract the functions of all service components,

and to constitute a function categorization norm according to the relationship between

different functions.

Based on the function categorization norm, a set of services with similar functions

are merged upon this function, and is demonstrated as an abstract service. There are

some related definitions:

(1) Func(Si) is the function extraction function, indicating the extracted function of

service Si.

(2) FS is the function categorization norm. Initially, it is empty. According to each

service, through function extraction function, extracted function key words are made

one item of FS. Users are required to define relationships between different function

key words.

The service clustering flow is described as followings. (a) Services pool directory

according to the FCS is setup. Each service will advertise its function in the directory.

(b) Based on the Services pool directory, a set of services with similar functions are

merged upon a directory item, and are demonstrated as a service cluster. (c) The

whole service cluster forms a net-shaped organization structure, which sets the

foundation for service discovery and further organization.

The general process of service function clustering is described as follows:

,1i sets S i n

If （ , ((),)
k i k

funcItem FS map Func s funcItem TRUE ）

Then

 (,)
i k

ServiceCluster s funcItem ;

Else

(, 1)New funcItem m ;

1
()

m i
funcItem Func s

 ;

(,)
i k

ServiceCluster s funcItem

Endif

3) Service Abstracting and Functional Relations linking Process:

After the above two processes, a set of services with similar functions are linked to

the same function item with identical transferring interfaces and semantics

transferring relationships.

The relationships between services can be combination, inheritance, inclusion,

equation (replacement), calling, etc. Combinations compose of gradation, filiations,

coalition, recursion, etc. No matter the relationship is combination, inheritance,

inclusion, equation, or transferring, there are different semantic relationships between

these services.

In order to better virtualize service resources, we organize up the semantic

relationships between services to form up a hierarchical function relationship network,

namely service function semantics Ontology and form the services resources view on

the application semantics level. There are some related definitions.

(1)Abstract function

() , , ((),)ik i i k
AS funcItem s s map Func s funcItem TRUE

(2)Semantic relationships between abstract services

Let Si and Sj be two different sub services in A1, the relationships between them R

has the same logic relationship with function sub set defined in Def 4.

(3) Service function semantics Ontology

Service function semantics ontology composes of three parts: a set of abstract

services, integration combination relationships between services, and information

sequences of integration.

Ontology =（AAS-subset，AMessage，AScenario）

 AAS-subet =(AS1, AS2, … , ASn) It is the abstract services subset cited in the

ultimate active service combination layer. This active service is composed of services

in this subset.

 AMessage =(M1, M2, … , Mn) is a finite set of messages. One message is composed

of message type, message dispatcher, message receiver, and message body. Message

body includes message parameters and protocol-related data. Definitions of this part

is the same as the message definition of WSDL.

 AScenario is the composition scheme of active service defined on abstract service

component subsets AS1 and AS2. It describes sequence relationships and controlling

relationships of each abstract service in AS.

On the bases of the above definitions, the definition process of semantics

relationships between abstract services are defined as follows:

, , (),1 ,i set i i ias AS funcItem as AS funcItem i n

,, 1 ,i j setas as AS i j n 其中

If （ (,)i jRelation as as TRUE ）

Then

 Add（ , , (,), (,)i j i j i jas as Relation as as Message as as ）to Ontology）

Endif

With the help of service function semantics Ontology, we can further record users’

requirement analysis and re-composition results after functions decomposition. We

use service function semantics Ontology to define the relationships between this the

sub-functions of decomposed service.

4. Conclusion

In this paper, we present a virtualization architecture consisting of three views and

three processes to organize and manage all sorts of resources as a whole In Grid

Environment, and provide the upper application with coherent description as well as

uniform access interface.

First, various physical resources In Grid Environment are transformed and

encapsulated into services on the basis of Web service technology, and uniform

service resources are provided for upper applications through uniform description and

management of these services. Then by analyzing, identifying, classifying, organizing,

storing, and managing these transformed services (i.e. Function Clustering Process of

Services), multi application cases with the same function body are merged, and then

the semantic relationships between services are further mined to better virtualize

service resources. At last, we organize the semantic relations among services to

establish a hierarchical function relationship network, and form the Services

Resources View on the application semantics level.

References

1. Zhang yaoxue, Fang cunhao. Active services: Concepts, Architecture and Implementation

[M]. Thomson Learning, 2005 July.

2. Borenstein, N., and Freed, N. (1993). MIME (Multipurpose Internet Mail Extensions) Part

One: Mechanisms for Specifying and Describing the Format of Internet Message Bodies,

RFC 1521 September.

3. Chan, S.W. K., and Franklin, J. (2003). Dynamic context generation for natural language

understanding: a multifaceted knowledge approach. IEEE Transactions on Systems, Man

and Cybernetics, Part A, 3(31), 23–41.

4. Hristidis,V., Papakonstantinou, Y., and Balmin, A. (2003). Keyword proximity search on

XML graphs. Proc. of the 19th International Conference on Data Engineering, 5–8 March,

(pp. 367–378).

5. Lawrence, S., Giles, C. L., and Fong, S. (2000). Natural language grammatical inference

with recurrent neural networks. IEEE Transactions on Knowledge and Data Engineering,

12(1), 126–140.

6. Meuller, A., Mundt, T., and Lindner, W. (2001). Using XML to semi-automatically derive

user interfaces. Second International Workshop on User Interfaces to Data Intensive

Systems,May 31 to June 01.

7. Nakauchi, K., Ishikawa, Y., Morikawa, H., and Aoyama, T. (2003). Peer-to-peer keyword

search using keyword relationship. Proc. of the CCGrid 2003. 3rd IEEE/ACM International

Symposium on Cluster Computing and the Grid, 12–15 May, (pp. 359–366).

8. Hai, Z. G. (2000). A problem-oriented and rule-based component repository. The Journal of

Systems and Software, 50, 201–208.

9. Fang, C. H., Zhang, Y. X., and Xu, K. G. (2003). An XML-based data communication

solution for program mining. Intelligent Data Engineering and Automated Learning, 4th

International Conference (pp. 569–575). Hong Kong, Berlin Heidelberg: Springer-Verlag.

10. Zhang, Y. X., Fang, C. H., and Wang, Y. (2004). A feedback-driven online scheduler for

processes with imprecise computing. Journal of Software, 15(4), 616–623.

