
Revisiting the Power of Non-Equivocation
in Distributed Protocols

Benjamin Chan

Joint work with Naama Ben-David & Elaine Shi

Cornell Tech
July 28 2022 (PODC)

Question

What exactly is it about Byzantine behavior

that makes it more difficult to deal with than,

say, crash faults?

This Talk: Equivocation.
(cryptography lets us deal with everything else).

Preliminaries

Our Setting: Asynchronous Networks

n players

Network Adversary may choose
to deliver messages between

players in any order
(with eventual delivery)

● pairwise channels
● adversary sees message

contents

Recall: Asynchronous Consensus in the presence
of “crash faults”

n players

● feasible for f < n/2
● (probabilistic termination)

0

0

1 1

1

Agreement: honest players

must decide the same

value

Recall: Asynchronous Consensus in the presence
of “crash faults”

n players

● feasible for f < n/2
● (probabilistic termination)

decide 1
decide 0

(if n - f ≤ n/2)

partitionwhy f<n/2?

0

0

1 1

1

Recall: Asynchronous Byzantine Agreement

n players

● feasible for f < n/3
● a rather annoying loss

in fault tolerance
● feels like a

complete change in
setting

Byzantine failures

can behave arbitrarily

e.g. can “equivocate”

“I saw 0”

“I saw 1”

0

0

1 1

n players

A: Byzantine attackers can “equivocate.”

“Say different things to different people”
0

0

1 1

Q: Why does byzantine behavior break f<n/2 threshold?

“I saw 0”

“I saw 1”

Q: Why does byzantine behavior break f<n/2 threshold?
A: Byzantine attackers can “equivocate.”

[DLS88]

n players

0

0

1 1

partition

0

1

decide 1

(if n - f ≤ 2n/3)

decide 0

(if n - f ≤ 2n/3)
EQUIVOCATION!

Q: Why does byzantine behavior break f<n/2 threshold?
A: Byzantine attackers can “equivocate.”

[DLS88]

n players

0

0

1 1

partition

0

1

decide 1

(if n - f ≤ 2n/3)

decide 0

(if n - f ≤ 2n/3)
EQUIVOCATION!

But we really like our
f < n/2 thresholds…

✨ Non-Equivocation ✨, an up-and-coming primitive
This talk: understanding the power of

✨ Non-Equivocation ✨, an up-and-coming primitive
This talk: understanding the power of

“I saw 0”

“I saw 1”

If we prevent byzantine players from equivocating

can we get f < n/2?

✨ Non-Equivocation ✨, an up-and-coming primitive
This talk: understanding the power of

“I saw 0”

“I saw 1”

If we prevent byzantine players from equivocating

can we get f < n/2?

Interested in arbitrary protocols, not just consensus

✨ Non-Equivocation ✨, an up-and-coming primitive
This talk: understanding the power of

register
i
(k, m)

✨ Non-Equivocation ✨, an up-and-coming primitive

player i

sequence #
e.g. m is player i’s kth message

This talk: understanding the power of

register
i
(k, m)

✨ Non-Equivocation ✨, an up-and-coming primitive

player i

sequence #
e.g. m is player i’s kth message

Can only register one
m per k

This talk: understanding the power of

register
i
(k, m)

✨ Non-Equivocation ✨, an up-and-coming primitive

player i player j

sequence #
e.g. m is player i’s kth message

k, m

Can only register one
m per k

This talk: understanding the power of

register
i
(k, m)

✨ Non-Equivocation ✨, an up-and-coming primitive

player i

validate(i, k, m)

player j

sequence #
e.g. m is player i’s kth message

k, m

Can only register one
m per k

This talk: understanding the power of

register
i
(k, m)

✨ Non-Equivocation ✨, an up-and-coming primitive

player i

validate(i, k, m)

player jtrue if

player i previously

registered (k,m)

false otherwise

sequence #
e.g. m is player i’s kth message

k, m

Can only register one
m per k

This talk: understanding the power of

true if

player i previously

registered (k,m)

false otherwise

register
i
(k, m)

✨ Non-Equivocation ✨, an up-and-coming primitive

player i

validate(i, k, m)

player j

k, m

player h

k, m’

validate(i, k, m’)

false!

This talk: understanding the power of

register
i
(k, m)

✨ Non-Equivocation ✨, an up-and-coming primitive

player i

validate(i, k, m)

player jtrue if

player i previously

registered (k,m)

false otherwise

m

May be given by:

- Trusted Hardware

 (TPM, SGX)

- RDMA

- Blockchains

This talk: understanding the power of

register
i
(k, m)

✨ Non-Equivocation ✨, an up-and-coming primitive

player i

validate(i, k, m)

player jtrue if

player i previously

registered (k,m)

false otherwise

m

May be given by:

- Synchrony

This talk: understanding the power of

Prior Work:

● Asynchronous Byzantine Agreement [CMSK07, CVL10]

● Multiparty Computation (Malicious)* [BBCK14, Cohen16]

makes f < n/2 feasible!

*running into problems when using ABA to run ACS [BC18]

Prior Work:

● Asynchronous Byzantine Agreement [CMSK07, CVL10]

● Multiparty Computation (Malicious)* [BBCK14, Cohen16]

makes f < n/2 feasible!

*running into problems when using ABA to run ACS [BC18]

Q: is there a more direct relationship?
As protocol designers, given non-equivocation, can we reason
about each byzantine fault, as if it were a crash fault?

Prior Work:

● Asynchronous Byzantine Agreement [CMSK07, CVL10]

● Multiparty Computation (Malicious)* [BBCK14, Cohen16]

makes f < n/2 feasible!

*running into problems when using ABA to run ACS [BC18]

Then intuition in the crash world could translate immediately to the Byzantine regime.
^ really nice!

Q: is there a more direct relationship?
As protocol designers, given non-equivocation, can we reason
about each byzantine fault, as if it were a crash fault?

Our Work:
A 1:1 compiler from protocols for f < n/2 crash faults, to
protocols for f < n/2 byzantine faults, using non-equivocation.

Yes!

Our Work:
A 1:1 compiler from protocols for f < n/2 crash faults, to
protocols for f < n/2 byzantine faults, using non-equivocation.

Yes!

Theorem:
Let Π be a n-party protocol, which optionally uses a PKI and pseudorandom coins. Suppose that Π
computes some functionality F under f “crash faults” (that can choose their input), with
communication complexity M bits. Then, compiled(Π) computes F under f byzantine faults using
~O(n2M) bits, assuming a crs, PKI, and non-equivocation.

Roadmap

1. Introduction
2. What’s good about our compiler?
3. Compiler in a nutshell.

Our Work:
A 1:1 compiler from protocols for f < n/2 crash faults, to
protocols for f < n/2 byzantine faults, using non-equivocation.

● Supports arbitrary randomized protocols, secret state, and a PKI

Key properties of our compiler:

Our Work:
A 1:1 compiler from protocols for f < n/2 crash faults, to
protocols for f < n/2 byzantine faults, using non-equivocation.

● Supports arbitrary randomized protocols, secret state, and a PKI
● “One to one”

○ no additional processes or additional messages
○ preserves fault tolerance: we “transform” every byzantine fault

to a crash fault

Key properties of our compiler:

Our Work:
A 1:1 compiler from protocols for f < n/2 crash faults, to
protocols for f < n/2 byzantine faults, using non-equivocation.

● Supports arbitrary randomized protocols, secret state, and a PKI
● “One to one”

○ no additional processes or additional messages
○ preserves fault tolerance: we “transform” every byzantine fault

to a crash fault
● “small” overhead per message

Key properties of our compiler:

Our Work:
A 1:1 compiler from protocols for f < n/2 crash faults, to
protocols for f < n/2 byzantine faults, using non-equivocation.

● Supports arbitrary randomized protocols, secret state, and a PKI
● “One to one”

○ no additional processes or additional messages
○ preserves fault tolerance: we “transform” every byzantine fault

to a crash fault
● “small” overhead per message

Key properties of our compiler:

Why do we want this?

Requirements of a protocol designer
(trying to solve some problem P)

Π
our protocol

(for P)

● randomized

(e.g., for consensus)

● can use cryptography

(e.g. for secure communication)

● efficiency and fault tolerance

(i.e. minimize communication

complexity)

Requirements of a protocol designer
(trying to solve some problem P)

Π
our protocol

(for P)

● randomized

(e.g., for consensus)

● can use cryptography

(e.g. for secure communication)

● efficiency and fault tolerance

(i.e. minimize communication

complexity)

Prior Work [CJKR12]

exponential overhead
(in # of rounds of protocol)

Requirements of a protocol designer
(trying to solve some problem P)

Π
our protocol

(for P)

● randomized

(e.g., for consensus)

● can use cryptography

(e.g. for secure communication)

● efficiency and fault tolerance

(i.e. minimize communication

complexity)

Prior Work [CJKR12]

exponential overhead
(in # of rounds of protocol)

strong limitations that
we overcome in this
work.

Compiler in a Nutshell

Start with the crash fault protocol Π = {next_state
i
}

i ∈ [n]

player i
running Π

Our Work:
A 1:1 compiler from protocols for f < n/2 crash faults, to
protocols for f < n/2 byzantine faults, using non-equivocation.

state Sk-1

Start with the crash fault protocol Π = {next_state
i
}

i ∈ [n]

player i
running Π

Our Work:
A 1:1 compiler from protocols for f < n/2 crash faults, to
protocols for f < n/2 byzantine faults, using non-equivocation.

player j

state Sk-1
multicast m

Multicast model w.l.o.g.!

Start with the crash fault protocol Π = {next_state
i
}

i ∈ [n]

player i
running Π

Our Work:
A 1:1 compiler from protocols for f < n/2 crash faults, to
protocols for f < n/2 byzantine faults, using non-equivocation.

player j

state Sk-1

state Sk

if m ≄⟂, flip coins r
 (Sk , m’) = next_state

i
(Sk-1 , m, r)

multicast m

Start with the crash fault protocol Π = {next_state
i
}

i ∈ [n]

player i
running Π

Our Work:
A 1:1 compiler from protocols for f < n/2 crash faults, to
protocols for f < n/2 byzantine faults, using non-equivocation.

player j

state Sk-1

state Sk

multicast m

multicast m’
player p

if m ≄⟂, flip coins r
 (Sk , m’) = next_state

i
(Sk-1 , m, r)

Now, what if player i is Byzantine?

Our Work:
A 1:1 compiler from protocols for f < n/2 crash faults, to
protocols for f < n/2 byzantine faults, using non-equivocation.

player i player j

state Sk-1

state Sk

multicast m

multicast m’
player p

if m ≄⟂, flip coins r
 (Sk , m’) = next_state

i
(Sk-1 , m, r)

An age-old approach: given a byzantine fault, force it to behave like a crash fault.
(A GMW-style compiler)

player i player j

state Sk-1

state Sk

multicast m

multicast m’
player p

if m ≄⟂, flip coins r
 (Sk , m’) = next_state

i
(Sk-1 , m, r)

player i

An age-old approach: given a byzantine fault, force it to behave like a crash fault.
(A GMW-style compiler)

1. Force player i to correctly evaluate its state transition.

player j

state Sk-1

state Sk

multicast m

multicast m’
player p

if m ≄⟂, flip coins r
 (Sk , m’) = next_state

i
(Sk-1 , m, r)

player i player j

state Sk-1

state Sk

An age-old approach: given a byzantine fault, force it to behave like a crash fault.
(A GMW-style compiler)

multicast m

multicast m’, stateupdatei,k

1. Force player i to correctly evaluate its state transition.
stateupdatei,k messages: a proof that player i correctly evaluated its kth transition
 given input m and the correctness of first k-1 transitions

player p

if m ≄⟂, flip coins r
 (Sk , m’) = next_state

i
(Sk-1 , m, r)

player i player j

state Sk-1

state Sk

An age-old approach: given a byzantine fault, force it to behave like a crash fault.
(A GMW-style compiler)

multicast m

multicast m’, stateupdatei,k

1. Force player i to correctly evaluate its state transition.
stateupdatei,k messages: a proof that player i correctly evaluated its kth transition
 given input m and the correctness of first k-1 transitions

player p

Problem: player i wants to keep

its coins and state private!

See paper: a (standard) solution

using zero-knowledge proofs,

commitments, and PRFs.
if m ≄⟂, flip coins r
 (Sk , m’) = next_state

i
(Sk-1 , m, r)

player i player j

state Sk-1

state Sk

An age-old approach: given a byzantine fault, force it to behave like a crash fault.
(A GMW-style compiler)

multicast m, stateupdatej,k*

multicast m’, stateupdatei,k

1. Force player i to correctly evaluate its state transition.
stateupdatei,k messages: a proof that player i correctly evaluated its kth transition
 given input m and the correctness of first k-1 transitions

player p

if m ≄⟂, flip coins r
 (Sk , m’) = next_state

i
(Sk-1 , m, r)

player i player j

state Sk-1

state Sk

An age-old approach: given a byzantine fault, force it to behave like a crash fault.
(A GMW-style compiler)

multicast m, stateupdatej,k*

multicast m’, stateupdatei,k

1. Force player i to correctly evaluate its state transition.

player p

if m ≄⟂, flip coins r
 (Sk , m’) = next_state

i
(Sk-1 , m, r)

player i player j

state Sk-1

state Sk

An age-old approach: given a byzantine fault, force it to behave like a crash fault.
(A GMW-style compiler)

multicast m, stateupdatej,k*

multicast m’, stateupdatei,k

1. Force player i to correctly evaluate its state transition.
2. Prevent player i from lying about the message m that it received.

player p

if m ≄⟂, flip coins r
 (Sk , m’) = next_state

i
(Sk-1 , m, r)

player i player j

state Sk-1

state Sk

An age-old approach: given a byzantine fault, force it to behave like a crash fault.
(A GMW-style compiler)

multicast m, stateupdatej,k*

multicast m’, stateupdatei,k

1. Force player i to correctly evaluate its state transition.
2. Prevent player i from lying about the message m that it received.

a. m itself must be a product of a valid state transition by player j

player p

if m ≄⟂, flip coins r
 (Sk , m’) = next_state

i
(Sk-1 , m, r)

player i player j

state Sk-1

state Sk

An age-old approach: given a byzantine fault, force it to behave like a crash fault.
(A GMW-style compiler)

multicast m, stateupdatej,k*

multicast m’, stateupdatei,k

forward stateupdatej,k*

1. Force player i to correctly evaluate its state transition.
2. Prevent player i from lying about the message m that it received.

a. m itself must be a product of a valid state transition by player j

player p

if m ≄⟂, flip coins r
 (Sk , m’) = next_state

i
(Sk-1 , m, r)

player i player j

state Sk-1

state Sk

An age-old approach: given a byzantine fault, force it to behave like a crash fault.
(A GMW-style compiler)

multicast m, stateupdatej,k*

multicast m’, stateupdatei,k

forward stateupdatej,k*

1. Force player i to correctly evaluate its state transition.
2. Prevent player i from lying about the message m that it received.

a. m itself must be a product of a valid state transition by player j
b. player i should not equivocate which m it received

player p

if m ≄⟂, flip coins r
 (Sk , m’) = next_state

i
(Sk-1 , m, r)

player i player j*

state Sk-1

state Sk

An age-old approach: given a byzantine fault, force it to behave like a crash fault.
(A GMW-style compiler)

multicast m*, stateupdatej*,k*

multicast m’, stateupdatei,k

forward stateupdatej,k*

1. Force player i to correctly evaluate its state transition.
2. Prevent player i from lying about the message m that it received.

a. m itself must be a product of a valid state transition by player j
b. player i should not equivocate which m it received

player p*

if m ≄⟂, flip coins r
 (Sk , m’) = next_state

i
(Sk-1 , m*, r)

player i player j

state Sk-1

state Sk

An age-old approach: given a byzantine fault, force it to behave like a crash fault.
(A GMW-style compiler)

multicast m, stateupdatej,k*

multicast m’, stateupdatei,k

forward stateupdatej,k*

1. Force player i to correctly evaluate its state transition.
2. Prevent player i from lying about the message m that it received.

a. m itself must be a product of a valid state transition by player j
b. player i should not equivocate which m it received

player p

if m ≄⟂, flip coins r
 (Sk , m’) = next_state

i
(Sk-1 , m, r)

player i player j

state Sk-1

state Sk

An age-old approach: given a byzantine fault, force it to behave like a crash fault.
(A GMW-style compiler)

multicast m, stateupdatej,k*

multicast m’, stateupdatei,k

forward stateupdatej,k*

1. Force player i to correctly evaluate its state transition.
2. Prevent player i from lying about the message m that it received.

a. m itself must be a product of a valid state transition by player j
b. player i should not equivocate which m it received

player p

if m ≄⟂, flip coins r
 (Sk , m’) = next_state

i
(Sk-1 , m, r)

player i player j

state Sk-1

state Sk

An age-old approach: given a byzantine fault, force it to behave like a crash fault.
(A GMW-style compiler)

multicast m, stateupdatej,k*

multicast m’, stateupdatei,k

forward stateupdatej,k*

1. Force player i to correctly evaluate its state transition.
2. Prevent player i from lying about the message m that it received.

a. m itself must be a product of a valid state transition by player j
b. player i should not equivocate which m it received

player p

seqnum k

if m ≄⟂, flip coins r
 (Sk , m’) = next_state

i
(Sk-1 , m, r)

player i player j

state Sk-1

state Sk

An age-old approach: given a byzantine fault, force it to behave like a crash fault.
(A GMW-style compiler)

multicast m, stateupdatej,k*

multicast m’, stateupdatei,k

forward stateupdatej,k*

1. Force player i to correctly evaluate its state transition.
2. Prevent player i from lying about the message m that it received.

a. m itself must be a product of a valid state transition by player j
b. player i should not equivocate which m it received

Non-Equivocation forces player i
to commit to a single state
transition (per k) in honest view.

player p

seqnum k

if m ≄⟂, flip coins r
 (Sk , m’) = next_state

i
(Sk-1 , m, r)

In the end, validation is easy

player i
multicast m’, stateupdatei,k

forward stateupdatej,k*

player k

kth state transition

player j

In the end, validation is easy

player i
multicast m’, stateupdatei,k

forward stateupdatej,k*

player k

● validate the first k-1 state

transitions for player i

● validate all k* state transitions

for player j

● Finally, check that

stateupdatei,k is correct and not

equivocated.

kth state transition

player j

In the end, validation is easy

player i
multicast m’, stateupdatei,k

forward stateupdatej,k*

player k

● validate the first k-1 state

transitions for player i

● validate all k* state transitions

for player j

● Finally, check that

stateupdatei,k is correct and not

equivocated.

should have already been

done previously during

protocol execution!

kth state transition

player j

Wrapping it up: an intuitive security proof

Any behavior that passes validation, can be caused by a crash fault.

Wrapping it up: an intuitive security proof

compiled(Π)

Any behavior that passes validation, can be caused by a crash fault.

A byzantine

adversary

Wrapping it up: an intuitive security proof

Any behavior that passes validation, can be caused by a crash fault.

compiled(Π) Π

reduction

Looks like a

crash fault

adversary

≈
A byzantine

adversary

Wrapping it up: an intuitive security proof

Any behavior that passes validation, can be caused by a crash fault.

compiled(Π) Π

reduction

Looks like a

crash fault

adversary

≈
the outcomes of the
protocols in the two

worlds are
indistinguishableA byzantine

adversary

Wrapping it up: an intuitive security proof

Any behavior that passes validation, can be caused by a crash fault.

compiled(Π) Π

reduction

Looks like a

crash fault

adversary

≈
UC security:
Where the adversary
chooses the input/sees
the output of all
processes (in both worlds)

A byzantine

adversary

Final Corollaries

Assuming a CRS, a PKI, and

● Asynchronous Byzantine Agreement for f < n/2 [compiling AAKS17]

● Asynchronous Multiparty Computation for f < n/2 [compiling any crash-fault protocol]

● Can compile arbitrary protocols with secret state.

Assuming a CRS, a PKI, and

● Asynchronous Byzantine Agreement for f < n/2 [compiling AAKS17]

● Asynchronous Multiparty Computation for f < n/2 [compiling any crash-fault protocol]

● Can compile arbitrary protocols with secret state.

Final Corollaries

Future Work

● Further efficiency/setup improvements with the compiler

● Weaker notions of non-equivocation, or less cryptography?

● Applications

Conclusion: a Takeaway

Thank You!!!

● Equivocation essentially characterizes Byzantine faults (compared to crash

faults), even in settings with secret state, assuming cryptography and setup.

● Synthesize a somewhat messy literature on the capabilities of

non-equivocation, showing a compiler.

● A nice security proof!

