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Question

What exactly is it about Byzantine behavior 

that makes it more difficult to deal with than, 

say, crash faults?

This Talk: Equivocation.
(cryptography lets us deal with everything else).



Preliminaries



Our Setting: Asynchronous Networks

n players

Network Adversary may choose 
to deliver messages between 

players in any order 
(with eventual delivery)

● pairwise channels
● adversary sees message 

contents



Recall: Asynchronous Consensus in the presence 
of “crash faults”

n players

● feasible for f < n/2
● (probabilistic termination)
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Recall: Asynchronous Byzantine Agreement

n players

● feasible for f < n/3
● a rather annoying loss

in fault tolerance
● feels like a 

complete change in 
setting

Byzantine failures

can behave arbitrarily

e.g. can “equivocate”

“I saw 0”

“I saw 1”

0

0

1 1



n players

A: Byzantine attackers can “equivocate.”

“Say different things to different people”
0

0

1 1

Q: Why does byzantine behavior break f<n/2 threshold?

“I saw 0”

“I saw 1”
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Q: Why does byzantine behavior break f<n/2 threshold?
A: Byzantine attackers can “equivocate.”

[DLS88]

n players

0

0

1 1

partition

0

1

decide 1

(if n - f ≤ 2n/3)

decide 0

(if n - f ≤ 2n/3)
EQUIVOCATION!

But we really like our 
f < n/2 thresholds…
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“I saw 0”

“I saw 1”

If we prevent byzantine players from equivocating

can we get f < n/2?

Interested in arbitrary protocols, not just consensus
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k, m

player h

k, m’

validate(i, k, m’)
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✨ Non-Equivocation ✨, an up-and-coming primitive

player i

validate(i, k, m)

player jtrue if 

player i previously 

registered (k,m)

false otherwise

m

May be given by:

- Trusted Hardware

   (TPM, SGX)

- RDMA

- Blockchains

This talk: understanding the power of
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✨ Non-Equivocation ✨, an up-and-coming primitive

player i

validate(i, k, m)

player jtrue if 

player i previously 

registered (k,m)

false otherwise

m

May be given by:

- Synchrony

This talk: understanding the power of
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Prior Work:

● Asynchronous Byzantine Agreement [CMSK07, CVL10]

● Multiparty Computation (Malicious)* [BBCK14, Cohen16]

makes f < n/2 feasible!

*running into problems when using ABA to run ACS [BC18]

Then intuition in the crash world could translate immediately to the Byzantine regime.
^ really nice!

Q: is there a more direct relationship?
As protocol designers, given non-equivocation, can we reason 
about each byzantine fault, as if it were a crash fault?
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Our Work: 
A 1:1 compiler from protocols for f < n/2 crash faults, to 
protocols for f < n/2 byzantine faults, using non-equivocation.

Yes!

Theorem: 
Let Π be a n-party protocol, which optionally uses a PKI and pseudorandom coins. Suppose that Π 
computes some functionality F under f “crash faults” (that can choose their input), with 
communication complexity M bits. Then, compiled(Π) computes  F under f byzantine faults using 
~O(n2M) bits, assuming a crs, PKI, and non-equivocation.



Roadmap

1. Introduction 
2. What’s good about our compiler?
3. Compiler in a nutshell.
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Our Work: 
A 1:1 compiler from protocols for f < n/2 crash faults, to 
protocols for f < n/2 byzantine faults, using non-equivocation.

● Supports arbitrary randomized protocols, secret state, and a PKI
● “One to one”

○ no additional processes or additional messages 
○ preserves fault tolerance: we “transform” every byzantine fault 

to a crash fault
● “small” overhead per message

Key properties of our compiler:

Why do we want this?
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Requirements of a protocol designer
(trying to solve some problem P) 

Π
our protocol

(for P)

● randomized

(e.g., for consensus)

● can use cryptography

(e.g. for secure communication)

● efficiency and fault tolerance

(i.e. minimize communication 

complexity)

Prior Work [CJKR12]

exponential overhead
(in # of rounds of protocol)

strong limitations that 
we overcome in this 
work.



Compiler in a Nutshell



Start with the crash fault protocol Π = {next_state
i
}

i ∈ [n]

player i
running Π

Our Work: 
A 1:1 compiler from protocols for f < n/2 crash faults, to 
protocols for f < n/2 byzantine faults, using non-equivocation.
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multicast m

Multicast model w.l.o.g.!



Start with the crash fault protocol Π = {next_state
i
}

i ∈ [n]

player i
running Π

Our Work: 
A 1:1 compiler from protocols for f < n/2 crash faults, to 
protocols for f < n/2 byzantine faults, using non-equivocation.

player j

state Sk-1

state Sk

if m ≄⟂, flip coins r
   (Sk , m’) = next_state

i
(Sk-1 , m, r)

multicast m



Start with the crash fault protocol Π = {next_state
i
}

i ∈ [n]

player i
running Π

Our Work: 
A 1:1 compiler from protocols for f < n/2 crash faults, to 
protocols for f < n/2 byzantine faults, using non-equivocation.

player j

state Sk-1

state Sk

multicast m

multicast m’
player p

if m ≄⟂, flip coins r
   (Sk , m’) = next_state

i
(Sk-1 , m, r)



Now, what if player i is Byzantine?

Our Work: 
A 1:1 compiler from protocols for f < n/2 crash faults, to 
protocols for f < n/2 byzantine faults, using non-equivocation.

player i player j

state Sk-1

state Sk

multicast m

multicast m’
player p

if m ≄⟂, flip coins r
   (Sk , m’) = next_state

i
(Sk-1 , m, r)



An age-old approach: given a byzantine fault, force it to behave like a crash fault. 
(A GMW-style compiler)
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multicast m’, stateupdatei,k 

1. Force player i to correctly evaluate its state transition.
stateupdatei,k messages: a proof that player i correctly evaluated its kth transition
                                                   given input m and the correctness of first k-1 transitions 

player p

Problem: player i wants to keep 

its coins and state private!

See paper: a (standard) solution 

using zero-knowledge proofs, 

commitments, and PRFs.
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   (Sk , m’) = next_state
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1. Force player i to correctly evaluate its state transition.
2. Prevent player i from lying about the message m that it received.

a. m itself must be a product of a valid state transition by player j
b. player i should not equivocate which m it received 

Non-Equivocation forces player i 
to commit to a single state 
transition (per k) in honest view.

player p

seqnum k

if m ≄⟂, flip coins r
   (Sk , m’) = next_state

i
(Sk-1 , m, r)
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player k

● validate the first k-1 state 

transitions for player i

● validate all k* state transitions 

for player j

● Finally, check that 

stateupdatei,k is correct and not 

equivocated.

should have already been 

done previously during 

protocol execution!

kth state transition

player j
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Wrapping it up: an intuitive security proof

Any behavior that passes validation, can be caused by a crash fault.

compiled(Π) Π

reduction

Looks like a 

crash fault 

adversary

≈
UC security: 
Where the adversary 
chooses the input/sees 
the output of all 
processes (in both worlds)

A byzantine 

adversary
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Assuming a CRS, a PKI, and 

● Asynchronous Byzantine Agreement for f < n/2 [compiling AAKS17]

● Asynchronous Multiparty Computation for f < n/2 [compiling any crash-fault protocol]

● Can compile arbitrary protocols with secret state.

Final Corollaries

Future Work

● Further efficiency/setup improvements with the compiler

● Weaker notions of non-equivocation, or less cryptography?

● Applications



Conclusion: a Takeaway

Thank You!!!

● Equivocation essentially characterizes Byzantine faults (compared to crash 

faults), even in settings with secret state, assuming cryptography and setup.

● Synthesize a somewhat messy literature on the capabilities of 

non-equivocation, showing a compiler.

● A nice security proof!


