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Network Location Service

Select nodes based on a set of network properties

Real-world problems:

a

a

Locate closest game server

Distribute web-crawling to
nearby hosts

Perform efficient application
level multicast

Satisfy a Service Level
Agreement

Provide inter-node latency
bounds for clusters

1
{

Underlying abstract problems

a

Finding closest node to target

Finding the closest node to the
center of a set of targets

Finding a node that is <r; ms
from target t; for all targets



Current State-of-the-Art: Virtual Coordinates

Maps Internet latencies into low dimensional space
o GNP, Vivaldi, Lighthouse, ICS, VL, BBS, PIC, NPS, etc.

Reduces number of real-time measurements

3 practical problems:
o Introduces inherent embedding error
o A snapshot in time of the network location of a node

Coordinates become stale over time

Latency estimates based on coordinates computed at different times
can lead to additional errors

o Requires additional P2P substrate to solve network location
problems without centralized servers or O(N) state



Meridian Approach

Solve node selection directly without computing coordinates

o Combine query routing with active measurements

3 Design Goals:
o Accurate: Find satisfying nodes with high probability
o General: Users can fully express their network location requirements

o Scalable: O(log N) state per node, O(log D) hops per query

Design tradeoffs:
o Active measurements incur higher query latencies

o Overhead more dependent on query load



Meridian Operation

Framework:

o Loosely structured overlay network

Algorithms:

o Solve network location problems in O(log D) hops

Language:

o General-purpose language for expressing network location requirements



Multi-resolution Rings

Organize peers into small fixed
number of concentric rings

Radii of rings grow outwards /
exponentially /
o Logarithmic # of peers per ring l

o Favors nearby neighbors ‘

o Retains a sufficient number of \
pointers to remote regions \

Gossip protocol used for peer
discovery
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Multi-resolution Rings

Organize peers into small fixed
number of concentric rings

Radii of rings grow outwards /

exponentially /

o Logarithmic # of peers per ring ll

o Favors nearby neighbors |\ ®

o Retains a sufficient number of \
pointers to remote regions \

Gossip protocol used for peer
discovery




Closest Node Discovery

Multi-hop search

o Similar to finding the closest identifier in DHTs

Replaces virtual identifiers with physical latencies
o Each hop exponentially reduces the distance to the target
o Reduction threshold B for0< 3 < 1

Only take another hop if a peer node is 3 times closer

o Limits # of probed peers through triangle inequality
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Meridian Theoretical Analysis

Analytical guarantees for closest node discovery

Meridian can find the closest node with high probability
o Given nodes in a space with a doubling metric

o As well as a growth constrained metric
Scales well with increasing system size

Does not lead to hot spots



Central Leader Election

Select the closest node to the center of a set of targets

o Multi-cast trees can place central nodes higher in the hierarchy
Algorithm similar to closest node discovery

Minimizes avg. latency to a set of targets instead of one target
o Uses distance metric d,, instead of d

Inter-node latencies of targets not known

o Need to be conservative in pruning peers



‘ Central Leader Election
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Multi-constraint System

Find a node that satisfies a set of latency constraints
o ISP can find a server that can satisfy a SLA with a client
o Grid users can find a set of nodes with a bounded inter-node latency

There exists a solution space, containing 0 or more nodes
o Only a solution point in previous problems

Requires a different distance metric s :

g = Zmax (0,d; — range,)”

o S =0 when all constraints are satisfied

o Sum of squares places more weight on fringe constraints
Allows for faster convergence to solution space

o Other metrics can be used, square works well in practice
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Meridian Query Language

Variant of C/Python
o Safe, polymorphic, and dynamically-typed
o Includes an extensive set of library functions

Allows users to:

o Access multi-resolution rings
o Issue latency probes

o Forward queries to peers

Tight resource limits on:

o Execution time of query

o Number of hops

o Amount of memory allocated



Evaluation

Evaluated our system through a large scale simulation and a
PlanetLab deployment

Simulation parameterized by real latency measurements
o 2500 DNS servers, latency between 6.25 million node pairs

o DNS servers are authorities name servers for domains found in the
Yahoo! web directory

We evaluated system sizes of up to 2000 nodes
o 500 nodes reserved as targets



Evaluation: Closest Node Discovery

Meridian has an order of magnitude less error than virtual
coordinate schemes

Error (ms)
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Evaluation: Closest Node Discovery

CDF of relative error shows Meridian is more accurate for both
typical nodes and fringe nodes

Meridian
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Evaluation: Closest Node Discovery

With k = Llog1_6 N, error and query latency remain constant as N
increases

Average query latency determined by slowest node in each ring
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Evaluation: Central Leader Election

Meridian incurs significantly less relative error

Meridian 2 targets
Vivaldi 2 targets
QNF 2 targets

Cunulative fraction of nodes

0 o 10

Eelative error of central leader election
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Evaluation: Multi-constraint System

Categorized multi-constraint queries by its difficulty
o Difficulty a measure of the number of nodes in solution space

Success rate for queries that can be satisfied by only 0.5% of the nodes:

2 Constraints 3 Constraints 4 Constraints
Meridian: 91% VC: 35% | Meridian: 90% VC: 19% | Meridian: 91% VC: 11%
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Evaluation: PlanetLab Deployment

A PlanetLab deployment of 166 nodes shows the closest node discovery
accuracy to be very close to the simulation results

Have expanded deployment to 325 PlanetLab nodes supporting all 3
applications and MQL
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Implementation

Includes query language and the 3 protocols
Works with firewalled hosts

Can use DNS queries, TCP connect times, and Meridian UDP
packets to measure latency

Optimizations:
o Measurement cache reduces query latency
o Ring management scheme to select more diverse peers



ClosestNode.com

ClosestNode.com is a DNS redirection service that returns the IP
address of closest node to the client

o e.g. cobweb.closestnode.com will resolve to the closest CobWeb DHT
node to the requesting client

Requires minimal changes to the service
o Linking the Meridian library and calling one function at startup

o Or add standalone Meridian server to start script
No changes required for the client
Can register your service at:

o http://www.closestnode.com



Conclusions

A lightweight accurate system for selecting nodes
Combines query routing with active measurements
An order of magnitude less error than virtual coordinates

Solves the network location problem directly
o Does not need to be paired with CAN

Code, data, demos and more information at
http://www.cs.cornell.edu/People/egs/meridian



