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Abstract
Instruction aggregation—the grouping of multiple opera-

tions into a single processing unit—is a technique that has
recently been used to amplify the bandwidth and capacity of
critical processor structures. This amplification can be used to
improve IPC or to maintain IPC while reducing physical
resources. Mini-graph processing is a particular instruction
aggregation technique that targets dynamically-scheduled
superscalar processors and achieves bandwidth and capacity
amplification throughout the pipeline.

The dark side of aggregation is serialization. External
serialization is an effect common to many aggregation
schemes. An aggregate cannot issue until all of its external
inputs are ready. If the last-arriving input to an aggregate
feeds what is not the first instruction, the entire aggregate can
be delayed. Mini-graphs additionally suffer from internal seri-
alization. Serialization can degrade performance, sometimes
to the point of overwhelming the benefits of aggregation.

This paper examines the problem of serialization and
serialization-aware aggregation in the context of mini-graphs.
An aggressive mini-graph selection scheme that seeks to maxi-
mize amplification, produces amplification rates of 38% but,
due to serialization, cannot use them to compensate for a 33%
reduction in physical resources (i.e., a reduction from 4-way
issue to 3-way issue). A conservative selection scheme that
avoids serialization by static inspection produces amplifica-
tion rates of only 20%, making a performance neutral reduc-
tion in resources virtually impossible.

To reconcile the seemingly conflicting goals of resource
amplification and serialization avoidance, this paper develops
three schemes that identify and reject mini-graphs with harm-
ful serialization. The most effective of these, Slack-Profile,
uses local slack profiles to reject mini-graphs whose estimated
delay cannot be absorbed by the rest of the program. Slack-
Profile virtually eliminates serialization-induced slowdowns
while providing 34% amplification rates. A 3-way issue pro-
cessor augmented with Slack-Profile mini-graphs outperforms
a 4-way issue processor by an average of 2%.

1.  Introduction
Instruction aggregation—the grouping of multiple opera-

tions into a single processing unit—is a technique that has
received significant attention in recent years. Traditionally,
aggregation techniques have targeted performance, using cus-
tom functional units to reduce aggregate execution latency [5,
18]. More recently, aggregation has been used as a “complex-
ity-effective” superscalar performance technique, amplifying
the effective bandwidth and capacity of critical structures like
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the issue queue. By performing certain actions once per aggre-
gate instead of on a per-instruction basis [1, 11, 19], structure
bandwidth and capacity can be allocated to other instructions,
creating an amplification effect.Mini-graph processingis a
form of instruction aggregation that targets performance effi-
ciency via bandwidth and capacity amplification throughout
the entire pipeline, from instruction cache to commit. This
wholesale amplification enables either improved IPC through-
put at a fixed resource point or, alternatively, fixed (or better)
IPC with fewer resources.

Instruction aggregation can improve performance either
directly (via custom acceleration) or indirectly (via resource
amplification). However, it also has the potential for direct per-
formance degradation. The mechanism for this isserializa-
tion, and there are two forms.External serialization, the more
frequent and destructive form, occurs because an aggregate
cannot issue until all of its external register inputs are avail-
able. Delay can result when the last-arriving input to the
aggregate is not an input to the first instruction.Internal seri-
alization, a less dominant form, occurs if the technique
requires aggregate constituent instructions to execute in series
even when those instructions may be independent. Effectively
exploiting instruction aggregation requires avoiding serializa-
tion penalties.

This paper examines the problem of intelligent, serializa-
tion-aware instruction aggregation in the context of mini-
graph processing. Mini-graphs are vulnerable to both forms of
serialization, although most aggregation schemes are vulnera-
ble to external serialization, and many are also vulnerable to
internal serialization as well [15, 18]. Mini-graphs also suffer
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FIGURE 1. Serialization-aware Mini-graph Selection.
Performance on a reduced processor relative to a fully
provisioned one for 78 programs. The serialization-aware
Slack-Profile (X) mini-graph selector outperforms two
naive selectors and (on average) allows mini-graphs to
compensate for the performance loss of the reduced
configuration (grey line).
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from serialization more than most other aggregation tech-
niques because they don’t provide a direct latency-reduction
benefit that can directly counter-act serialization-induced
delay. Finally, by focusing on resource amplification, mini-
graphs require wholesale (rather than opportunistic) aggrega-
tion, increasing the probability of harmful aggregates.

In mini-graph processing, resource amplification is pro-
portional to dynamic coverage, the fraction of dynamic
instructions “embedded” in mini-graphs.Struct-All, a naive,
serialization-blind mini-graph selection algorithm that
attempts to maximize amplification achieves average coverage
rates of 38%. Without serialization, these amplification rates
should allow mini-graphs to compensate—in terms of perfor-
mance—for a reduction from 4-way fetch/issue/commit to 3-
way fetch/issue/commit and from 30 issue queue entries and
80 rename registers to 20 and 56, respectively; a reduction that
typically results in an 18% slowdown, on average. Unfortu-
nately,Struct-Alladmits a small number of pathological serial-
izing mini-graphs that degrade the performance of 40% of all
programs, even on the fully-provisioned processor.Struct-
None, a selection algorithm that conservatively rejects any
mini-graph whose dataflow structure makes it vulnerable to
serialization, eliminates these slowdowns but also cuts cover-
age to 20%, making it impossible to achieve performance neu-
trality on the reduced processor.

The problem withStruct-Noneis that serialization and
serialization-induced performance loss cannot be deduced by
inspecting dataflow structure. Some mini-graphs are structur-
ally vulnerable to serialization but do not manifest it at run-
time, because the potentially serializing input is always ready
first. Other mini-graphs manifest serialization but don’t
degrade performance because the delayed output is “off the
critical path.” This paper reconciles the tension between maxi-
mizing coverage and minimizing serialization penalties by
presenting three mini-graph selection algorithms that are seri-
alization-aware in a more sophisticated way.
• Struct-Boundeduses program structure to accept aggre-

gates whose delay can be qualitatively bounded.
• Slack-Profileuses local slack profiles [7] to quantify the

delay induced by mini-graph formation, to estimate
whether that delay can be absorbed by the rest of the pro-
gram, and to reject mini-graphs whose estimated delay
cannot be absorbed.

• Slack-Dynamic is a hardware implementation ofSlack-
Profile. It monitors actual execution to identify and disable
mini-graphs that actually suffer from serialization delay
and whose delay is actually propagated to consumers.
Cycle-level simulation of benchmarks from four suites

shows thatSlack-Profilesuccessfully reconciles the competing
goals of high coverage and serialization avoidance. It produces
average coverage rates of 34% and allows the mini-graph
enabled reduced processor to actually out-perform its fully-
provisioned counter-part by 2% (see Figure 1). It also shows
that the profile information on whichSlack-Profileis based is
robust to both gross microarchitectural features and program
input data sets.Struct-BoundedandSlack-Dynamicare some-
what less effective, managing to reduce performance loss to
only 2% and 6% (down from 18%), respectively, but require
no profiling information. All three selectors are compatible

with aggregate techniques beyond mini-graph processing.
The next section reviews the basics of mini-graph process-

ing. Section 3 evaluates serialization-unaware selection and
motivates the new serialization-aware selectors.Struct-
Bounded, Slack-Profile, and Slack-Dynamicare presented in
Section 4 and evaluated in Section 5. Section 6 discusses
related works and other aggregate selection techniques.

2.  Mini-Graph Primer
Mini-graphs are instruction aggregates that are specifically

tailored to exploit capacity and bandwidth amplification in
dynamically scheduled superscalar processors. This section
reviews the basics of mini-graphs, mini-graph selection, and
mini-graph processing.

Definition. Mini-graphs are aggregates with the external
interfaces of singleton RISC instructions: they are atomic units
with a maximum of three register inputs, one register output,
one memory reference, and one control transfer [1].

The RISC singleton interface makes mini-graphs appropri-
ate for superscalar processors which rely on simple book-
keeping units to implement register renaming and dynamic
scheduling (this is the function of micro-ops, after all). Atom-
icity is the key to amplification, it allows register communica-
tion that is “interior” to a mini-graph to take place without
actual registers and thus to amplify both the capacity of the
physical register file as well as the bandwidths of all stages
that manipulate either register names or values. Atomicity
restricts mini-graphs to basic blocks.

As originally described, mini-graphs were limited to two
register inputs and internal dataflow connectivity [1]. To boost
amplification, this work relaxes these constraints. Support for
a third register input includes an additional register tag and
match bus in the issue queue, and one or two additional regis-
ter file read ports. These changes are acceptable considering
mini-graphs otherwise amplify issue queue and register file
capacity and bandwidth. Internally disconnected mini-graphs
require no special support.

Encoding.The need to identify mini-graph “interior” reg-
ister values requires liveness analysis [3] and implies static
identification. A software tool (compiler or binary rewriter)
identifies instruction groups that satisfy mini-graph criteria
and encodes them into the executable.

Mini-graphs use a new encoding scheme called “outlin-
ing” [17], that supports functional compatibility on non mini-
graph processors and enables instruction cache capacity and
fetch bandwidth amplification on mini-graph processors [2].
The instructions that form the body of the mini-graph are
prepended with a new instruction that includes a special
opcode, the names of the mini-graph’s interface register, and a
short identifier. This extended sequence is then “outlined”
from the code (as opposed to “inlined”) using a pair of jumps
(Figure 2b). On a non-mini-graph processor, the special
instruction that precedes the mini-graph is a nop; the processor
jumps to the outlined location, ignores the nop, executes the
mini-graph instructions, and jumps back to the program main
line. On a mini-graph processor, the instruction cache fill path
recognizes the special instruction and performs the following
transformation (Figure 2c). In the instruction cache, the outlin-
ing jump (i.e., the jump to the mini-graph) is replaced by the
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special instruction, which acts as the mini-graph’shandle. The
mini-graph constituent instructions are pre-processed and
written to themini-graph table (MGT), an on-chip cache that
holds mini-graph template descriptions (i.e., constituent opera-
tions and their dataflow), at an index corresponding to the
short identifier in the handle.

Execution. A mini-graph processor fetches handles and
treats them as singleton instructions at every pipeline stage
except execute. The scheduler, the only stage modified to rec-
ognize handles, invokes the MGT, which then drives the cycle-
by-cycle execution of the mini-graph’s constituent instruc-
tions, micro-code style.

Mini-graphs naturally amplify the capacity of all book-
keeping structures and the bandwidths of all book-keeping
stages. To prevent execution itself from becoming a bandwidth
bottleneck, a mini-graph processor replaces some of its ALUs
with ALU pipelines, single-entry, single-exit chains of ALUs
with forward-only interior operand networks. ALU pipelines
add ALU execution bandwidth without requiring matching
increases in register file and bypass bandwidths.

Figure 2d shows an example of singleton (i.e., non-mini-
graph) and mini-graph execution on a 4-way issue pipeline.
Whereas singleton execution consumes five fetch, rename,
schedule, writeback and retire slots, mini-graph execution con-
sumes only three.

Selection.The goal of a mini-graph selection algorithm is
to maximize dynamic coverage (resource amplification) given:
(i) an initial pool of static mini-graph candidates, and (ii) a
static template budget,i.e., the size of the MGT.

The initial pool of mini-graph candidates is formed by
some combination of static analysis, heuristics, and profiling
information. All selectors start with the same pool of mini-
graphs that are not vulnerable to serialization by virtue of their
dataflow shape. However, different selectors start with differ-
ent pools of potentially-serializing mini-graphs,i.e., mini-
graph that have an external register input to any instruction
other than the first.Struct-All, an aggressive selector, admits
all potentially serializing mini-graphs into the starting pool.
Struct-None, a conservative selector, admits none of them. A

more refined selector may use some profiling information or
heuristics to obtain a starting pool that includes some, but not
all, potentially-serializing mini-graphs.

Once the starting pool is set, all selectors follow the same
basic procedure. First, mini-graph candidates from multiple
static locations that can share an MGT template are grouped.
Each template is assigned a coverage score which is computed
as(n–1)*f, wheren is the mini-graph’s size in instructions and
f is the (estimated or profiled) dynamic execution frequency of
all instances of the template. The selection algorithm then iter-
atively chooses the template with the highest score and dis-
counts the scores of remaining templates whose instances
overlap with instances of the chosen template (mini-graphs
must be dynamically disjoint and so selecting one mini-graph
precludes the selection of any overlapping mini-graph). Itera-
tion terminates when the template budget is reached.

3.  Evaluation I: Serialization-Blind Selection
To motivate serialization-aware mini-graph selection, this

section presents a short evaluation and analysis ofStruct-All
andStruct-None.

3.1.  Methodology
We use the 78 benchmarks from the SPECint2000, Media-

Bench [16], CommBench [21], and MiBench [9] suites, com-
piled for the Alpha EV6 using the Digital OSF compiler with
optimization flags –O3. All benchmarks were run to comple-
tion: SPEC programs on their training inputs at 2% periodic
sampling with warm-up; all other benchmarks on their largest
available inputs with no sampling. Not all of these suites (e.g.,
MiBench) actually target dynamically scheduled superscalar
processors. We include them to show the applicability of
aggregation and mini-graphs to different kinds of codes.

The timing simulator uses the SimpleScalar 3.0 Alpha
AXP ISA and system call modules to model a dynamically
scheduled superscalar processor. Table 1 details both the fully-
provisioned and reduced configurations, and the mini-graph
support. The fully-provisioned baseline is tuned to the perfor-
mance “knee” for both issue queue entries (30) and physical

FIGURE 2. Mini-graph Basics. (a) Original singleton binary.(b) Outlined mini-graph binary: the mini-graph is removed
from its original static location and replaced with a jump.(c) Contents of instruction cache and Mini-Graph Table (MGT).
Instruction fill unit places outlined code into MGT, overwrites the outlining jump with the handle in the I$.(d) Singleton and
mini-graph execution on a 4-way fetch/issue/commit pipeline. In mini-graph execution, the handle is processed as a singleton
at all stages but execute. Mini-graph execution consumes less bandwidth and fewer issue queue slots and physical registers.
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registers (144). A configuration with 40 issue queue entries
and 164 registers outperforms this baseline by only 1.5%.

Most of the data is displayed using S-curve graphs. Each
line represents an experiment in which all programs are sorted
from worst to best; hashes mark every other program. In the
same graph, each experiment is sorted independently so that
the same horizontal point may correspond to different pro-
grams in different experiments. S-curves effectively display
trends and medians for large numbers of benchmarks and pre-
vent outliers from hiding in averages.

3.2.  Performance and Coverage
The top graph in Figure 3 shows performance—IPC rela-

tive to the fully-provisioned processor, whose own perfor-
mance corresponds to the y=1 axis—for mini-graphs selected
by theStruct-All andStruct-Noneschemes. The reduced pro-
cessor alone (no mini-graphs,light grey line) is on average
18% slower than the fully-provisioned baseline. To provide
additional insight, the bottom graph shows mini-graph perfor-
mance on the fully-provisioned processor. Here, any perfor-
mance loss can be attributed to mini-graph serialization.

Struct-All. On the reduced configuration,Struct-Allmini-
graphs (circle) compensate for half of the original 18% perfor-
mance loss, yielding an average slowdown of 10% relative to
the fully-provisioned baseline. However, individual results
vary greatly. For some programs (on the right side of the
graph),Struct-Allallows the reduced processor to out-perform
the baseline. On 7 programs, it yields lower performance than
the reduced processor with no mini-graphs at all. Actually,
Struct-Allproduces performance degrading mini-graph sets on
29 programs. For 22 of these, however, this performance deg-
radation is hidden on the reduced processor, which translates
amplification to performance at a high rate. On the fully provi-
sioned processor, on which amplification provides fewer per-
formance benefits and serialization penalties are more
exposed, these slowdowns are apparent.

Struct-None. On the reduced configuration,Struct-None
mini-graphs (triangle) produce better average performance,
compensating for 13% of the original 18% performance loss.
Performance gains are also more consistent.Struct-None
always outperforms the non-mini-graph processor. However,
for about half the programs, it provides less performance than
Struct-All. The key here is coverage.Struct-Allyields coverage

rates from 18% to 60% (38% on average). By conservatively
rejecting all mini-graphs with serialization potential,Struct-
Nonehas only half this coverage, ranging from 6% to 38%
(20% on average). On the fully provisioned processor, where
amplification provides relatively less benefit and serialization
is relatively more costly, this strategy allowsStruct-Noneto
consistently outperformStruct-All. However, on the reduced
processor, where coverage’s importance is increased and seri-

Parameter Configuration
Memory System 32KB, 2-way associative 3-cycle access instruction and data caches. 64-entry, 4-way associative instruc-

tion and data TLBs. 1MB, 4-way associative, 12-cycle access on-chip L2. Infinite, 200 cycle-access main
memory. 16B memory bus clocked at 1/4 core frequency.

Branch Prediction 24Kb hybrid bimodal/gShare branch direction predictor, 2K-entry, 4-way associative BTB, 32-entry RAS
Pipeline 13 stages: 1 predict, 3 I$, 1 decode, 2 rename, 1 schedule, 2 regread, 1 execute, 1 regwrite, 1 commit
Instruction Window 128-entry ROB, 48-entry load queue, 32-entry store queue. Loads are scheduled aggressively using a 1K-

entry StoreSets predictor. Memory ordering violations flush the pipeline. Cache miss replays are modeled.
Baseline Processor4-way fetch/issue/commit, 30-entry issue queue, 144 physical registers. The scheduler may issue up to 4

simple integer, 1 complex integer/floating-point, 2 loads and 1 store per cycle.
Reduced Processor3-way fetch/issue/commit, 20-entry issue queue, 120 physical registers. The scheduler may issue up to 3

simple integer, 1 complex integer/floating-point, 1 load and 1 store per cycle.
Mini-Graphs Mini-graphs are up to 4 instructions long. The scheduler issues at most 2 mini-graphs per cycle, only one

of which may contain a memory operation. 512-entry MGT. 2 4-stage ALU pipelines.

TABLE 1. Simulated Processors.For fully-provisioned and reduced processors. Shared configuration aspects are in white.

FIGURE 3. Naive Structural Selectors. Top:
Performance on the reduced processor.Bottom:
Performance on the fully provisioned processor.Struct-
All (circle) accepts all serialization;Struct-None
(triangle) accepts none. Target Selector (dashed) is
strictly better than both.
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alization’s decreased,Struct-None’s performance is “shifted
down” relative toStruct-All. Here,Struct-All’s superior cover-
age allows it to outperformStruct-Nonefor about half of the
programs.

The case for a serialization-aware “hybrid” scheme.
The different shapes of theStruct-All and Struct-NoneS-
Curves and their “cross-over” behavior on the reduced proces-
sor illustrate the tension between resource amplification on
one hand and serialization on the other. They also suggest the
existence of an intelligent hybrid scheme. Any hybrid should
provide the “best of either world”, matching the performance
of Struct-All when amplification is at a premium andStruct-
Nonewhen amplification is ineffective and serialization domi-
nates. However, a hybrid scheme that is intelligently serializa-
tion-aware should be able to consistently outperform both
Struct-NoneandStruct-All, as it should be able to make cover-
age vs. serialization decisions on a per mini-graph basis. The
expected performance of this hybrid (Target selector, dashed
black line) is sketched on each graph.

4.  Serialization-Aware Mini-Graph Selection
This section first discusses the problem of serialization

and then presents three serialization-aware mini-graph selec-
tors: the heuristicStruct-Boundedand the quantitativeSlack-
Profile andSlack-Dynamic.

4.1.  What Exactly is Serialization?
A dynamically scheduled processor ostensibly executes

singleton instructions in data dependence order. An aggrega-
tion-induced serialization is an artificial dependence between
two singleton instructions that is created when both instruc-
tions are placed in the same aggregate.

In the context of instruction aggregation, there are two
forms of serialization.External serializationis a dependence
of the first instruction in an aggregate on any instruction out-
side the aggregate that produces a value for any instruction in
the aggregate other than the first. External serialization occurs
because an aggregate cannot issue until all of its external regis-
ter inputs are available. Most forms of instruction aggregation
that we know of are subject to external serialization.Internal
serialization is a dependence between an instruction in an
aggregate and a previous independent instruction in the same
aggregate. Internal serialization occurs only in techniques in
which aggregate constituents must execute in series. Most
aggregation techniques (including mini-graphs) are subject to
internal serialization as well.

Figure 4 shows an example of serialization using six
abstract instructions, A-F. Figure 4a shows a singleton execu-
tion of these instructions (assume microarchitectural con-
straints create an execution schedule that is longer than the
height of the dataflow graph). Figure 4b shows the execution
of the same instructions, but with instructions C, D, and E
aggregated into a mini-graph. External serialization effectively
creates a new dependence edge between instructions B and C.
Internal serialization effectively creates an edge between
instructions C and D. Notice, each serializing edge induces a
1-cycle delay on the corresponding instruction: C is delayed
by 1 cycle, as is D. However, the total delay on the output of
the aggregate, E, is 1 cycle. Here, the external serialization

masks the internal serialization.
Our experience with mini-graphs shows that internal seri-

alization is often masked by external serialization. This sug-
gests that, at least for mini-graphs, an aggregate execution
model that simplifies implementation at the cost of adding
internal serialization is a reasonable design choice.

4.2.  Struct-Bounded
Struct-All and Struct-Noneare two extreme structural

approaches to dealing with potentially serializing mini-graphs.
Struct-Boundedrepresents a heuristic compromise. The obser-
vation behindStruct-Boundedis that a dynamically scheduled
execution core can tolerate short execution delays (e.g., data
cache misses) quite well, but is less effective at tolerating
longer delays (e.g., L2 misses). In line with this reasoning,
Struct-Boundedaccepts mini-graphs whose serialization-
induced delay can be bounded (i.e., proven to be short) by
inspection and rejects only ones with “unbounded” delay.

A mini-graph has a single register output, but may also
have a memory output (via a store) and a control output (via a
branch). From the point of view of dynamic scheduling, stores
act as outputs only if they forward their values to younger in-
flight loads (empirically, most stores do not) and branches only
act as outputs when they are mis-predicted (empirically, most
branches are not). Without knowledge of which stores forward
and which branches mis-predict,Struct-Boundedattempts to
bound the delay on a mini-graph’s register output only.

Figure 4 uses abstract examples to illustrate bounded and
unbounded serialization delays. Bounded serialization is any
serialization that delays a mini-graph’s register output by a
number of cycles that is less than the execution latency of the
entire mini-graph. Clearly, all strictly internal serialization is
bounded. Just as clearly, all disconnected mini-graphs are
prone to unbounded serialization; if the input to the instruction
that does not produce the mini-graph’s output arrivesn cycles
after the input to the instruction that does, the mini-graph’s
output is delayed byn cycles. In fully connected mini-graphs
with external serialization, serialization delay is bounded if the
serializing input is “upstream” from the register output. The
mini-graph in Figure 4c has bounded serialization. Even if this
serializing input is readyn cycles after the input to the first
instruction in the mini-graph, the delay on the mini-graph’s

FIGURE 4. Serialization. (a) Singleton execution.(b)
Aggregate execution and resulting serialization.(c)
Bounded serialization.(d) Unbounded serialization.
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output (B) would be equal only to the latency of instruction A.
This is because in a singleton execution, B would wait for the
serializing input anyway. In contrast, the slightly different
mini-graph in Figure 4d is vulnerable to unbounded serializa-
tion. Here the serializing input is “downstream” from the mini-
graph register output. If the serializing input is readyn cycles
after the input to A, the mini-graph’s output is delayed byn
cycles. Here, in a singleton execution, A would not wait for
B’s input.

In general, static inspection can bound delays to any num-
ber of cycles up to the execution latency of the mini-graph.
One could construct a selector that accepts only mini-graphs
with a potential serialization delay of 1 cycle (or less). In our
experiments, the maximum execution latency of any mini-
graph is 6 cycles, andStruct-Boundedaccepts all mini-graphs
with bounded serialization.

Struct-Boundedaccepts strictly more mini-graphs than
Struct-Noneand strictly fewer thanStruct-All. Being only a
heuristic, it rejects some mini-graphs with statically
unbounded delay which are benign in practice; a delay may be
statically unbounded but short or non-existent at run-time. It
also accepts some harmful mini-graphs with bounded delay;
even bounded delay is bad if it delays the resolution of a mis-
predicted branch.

4.3.  Slack-Profile
Purely structural selectors—even heuristically serializa-

tion-aware ones—cannot determine whether serialization actu-
ally takes place and whether its delay degrades performance.
Not all mini-graphs with the potential for serialization are
actually delayed by the serializing input. And even if delay is
induced, it might be masked by other delays and have no per-
formance effect.Slack-Profile uses local slack profiles to
quantify these structural unknowns.

Slack-Profilebegins with a singleton execution schedule
which details the ready times of all values and the issue times
of all instructions. It then applies four simple rules to: (i) cal-
culate the delay induced on an instruction by virtue of being
placed in a mini-graph, and (ii) estimate whether a delay on a
mini-graph’s output can be absorbed by the program. Figure 5
uses an example to illustrate these rules. This section also dis-
cussesSlack-Profile’s profiling support and the rationale for its
use of local, rather than global, slack.

Quantifying mini-graph induced serialization delay. As
a singleton, an instruction’s issue time is limited by the ready
times of its inputs. As the first instruction in a mini-graph, an
instruction waits for all inputs to the mini-graph. As a second
(or later) instruction in a mini-graph, an instruction’s issue
time is determined by the issue time of the previous mini-
graph instructions. For each mini-graph candidate,Slack-Pro-
file uses rule #1 “external serialization” to determine the issue
time of the first instruction and rule #2 “internal serialization”
to determine the issue times of the remaining mini-graph
instructions. For each instruction in the mini-graph candidate,
the delay induced by mini-graph formation is the difference
between the issue time of that instruction as a singleton and its
issue time as part of the mini-graph.Slack-Profileuses rule #3
“instruction delay” to calculate this.

The bottom of figure 5 steps through a delay calculation.

Slack-Profilestarts with the singleton execution schedule on
the left and calculates the mini-graph execution schedule on
the right. The quantity of interest is the delay induced on
instruction E by the formation of mini-graph BDE. The mini-
graph has two external inputs, from instructions A and C,
which are ready in cycles 2 and 6. Profile-Slack uses rule #1 to
calculate the new issue time of instruction B, rule #2 to calcu-
late the new issue times of instructions D and E, and rule #3 to
calculate E’s delay. The calculations agree with the depicted
mini-graph schedule.

Quantifying performance impact of delay. Instruction
delay degrades performance only if it cannot be “absorbed” by
consuming instructions. The ability to absorb delay is formal-
ized bylocal slack[7]. An instruction’s local slack is the num-
ber of cycles by which it can be delayed without delaying any
consumer. In Figure 5, instruction B has 3 cycles of local
slack; it could be delayed 3 cycles without delaying E.

Slack-Profile uses per-static instruction local slack esti-
mates to calculate whether a given mini-graph, if formed, will
degrade performance. Specifically, a mini-graph will degrade
performance if for any of its outputs—the profiler provides
slack information for stores and branches and so these can be
explicitly considered—the induced delay is greater than that
output’s local slack. This is rule #4. In the example in Figure 5,
the formation of mini-graph BDE delays E by 1 cycle. BDE is
rejected because E has a local slack of 0 cycles, and its delay is
propagated to F.

Profiling support. As explained,Slack-Profile requires
local slack estimates, issue times, and ready times. The slack
profiling tool—in our case a simulator—generates these. It is
important to note that issue and ready times are generated and
used in the course of slack profiling. Acquiring these doesn’t
require heavier profiling, just more verbose profiler output1.
The profiler outputs this information on a per-static instruction

FIGURE 5. Slack-Profile. Top: delay and performance
calculation rules.Bottom: An example calculation of the
delay on instruction E induced by the formation of mini-
graph BDE.
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instances,Slack-Dynamicuses a simple saturating counter
hysteresis scheme to both avoid rashly disabling a mini-graph
that serializes once and to support mini-graph resurrection.

Downsides of dynamic pruning.There are two potential
downsides to dynamic pruning, at least in the context of mini-
graphs. The first is reduced coverage. Static selection algo-
rithms essentially restrict the pool of initial mini-graph candi-
dates; instructions that reside inside in rejected candidates can
still contribute to coverage as parts of other overlapping mini-
graphs. In contrast, whenSlack-Dynamicrejects a mini-graph,
the lost coverage cannot be reclaimed because the singletons
cannot be dynamically re-constituted into smaller mini-graphs.
This downside is common to techniques that perform aggrega-
tion statically.

The second downside is reduced performance and is a
function of mini-graphs’ use of the “outlining” encoding
scheme, which optimizes for mini-graph-enabled execution at
the expense of mini-graph-disabled execution. Disabling an
outlined mini-graph may remove execution serialization, but it
introduces fetch serialization in the form of two additional
jumps. In some cases, this exchange actually back-fires. An
encoding scheme that supports high-performance dynamic
pruning is a topic for future work.

5.  Evaluation II: Serialization-Aware Selection
This section evaluates the proposed serialization-aware

mini-graph selection algorithmsStruct-Bounded, Slack-Pro-
file, andSlack-Dynamic, and compares them toStruct-Alland
Struct-None. It also presents a detailed analysis of the algo-
rithms using an exhaustive limit study and measures the
robustness of slack profiles.

5.1.  Performance and Coverage
The top graph in Figure 6 shows the performance of mini-

graphs selected using the different schemes on the reduced
processor. To provide additional insight, the middle and bot-
tom graphs show relative performance on the fully-provi-
sioned processor and coverage, respectively. The graphs
include S-curves corresponding to the two naive selectors
Struct-All andStruct-None.

Struct-Bounded. Struct-Bounded(diamond) behaves like
a shifted version ofStruct-All (black circle); its coverage and
performance curves have the same basic shapes and slopes.
Struct-Boundedprovides less coverage and amplification than
Struct-All (30% vs. 38%), but significantly better relative per-
formance (–2% vs. –10%). LikeStruct-All, Struct-Bounded
has a performance “intersection” withStruct-None; however,
that intersection is shifted to the left. By avoiding unbounded
serialization,Struct-Boundedadmits fewer pathological mini-
graphs and the pathological mini-graphs it does admit do only
“bounded harm”. WhereasStruct-All induces slowdowns for
29 programs on the fully-provisioned processor,Struct-
Bounded induces similar slowdowns on only 12 programs.

Slack-Dynamic. Slack-Dynamic(grey circle) has similar
coverage (30%) to and slightly worse average performance (–
6% on the reduced configuration and +6% on the fully-provi-
sioned configuration) thanStruct-Bounded. However, its per-
formance and coverage curves have a shape and slope that
resembleStruct-None, instead.Slack-Dynamicprovides sub-

basis, using averages over all profiled dynamic instances.
Average issue and ready times for an instruction are reported
relative to the issue time of the first instruction in its basic
block (a convenient fixed reference point).

Think globally, act locally. In the strictest terms, delay on
a given instruction translates into performance loss only if it
consumes more than that instruction’sglobal slack. However,
our experience shows that local slack is a more useful indica-
tor of mini-graph performance impact than global slack. The
problem with global slack is that it relates all slack to a single
critical path which can change with the introduction of a single
mini-graph (a mini-graph’s effect on fetch and commit band-
width alone are enough to change the critical path through a
program section). Global slack is more accurate than local
slack on a per mini-graph basis. However, local slack is much
less sensitive to the introduction of other mini-graphs. To
effectively use global slack to select multiple mini-graphs
requires re-profiling the program after every mini-graph is
selected to obtain the new critical path and new global slacks.
In contrast, effectively using local slack requires a single pro-
file of a singleton (i.e., non-mini-graph) execution.

4.4.  Slack-Dynamic
Slack-Dynamic implements Slack-Profile in hardware.

Rather than pruning the mini-graph candidate pool before
selection,Slack-Dynamicidentifies mini-graphs with harmful
serialization at run-time and disables them. A mini-graph is
disabled by restoring the original outlining jump in the instruc-
tion cache.Slack-Dynamicrequires no profiling support and
can detect serialization delays based on actual program behav-
ior rather than qualitative heuristics or predictive models based
on profiles of non-mini-graph runs.

Like Slack-Profile, Slack-Dynamictargets serialization
directly as the root of performance loss; it considers a mini-
graph harmful if it experiences serialization delayand if this
serialization delays the execution of a consumer instruction.

To recognize when a mini-graph is actually delayed by a
serializing input,Dynamic-Slacktracks last-arriving operands
to mini-graphs. If a last arriving operand is a serializing oper-
and (i.e., an input to an instruction that isn’t the first in the
mini-graph)and if the mini-graph issues as soon as the oper-
and arrives, serialization delay is flagged. Note, a simpler form
of this serialization detection logic, one that only tracks oper-
and arrival order and does not consider actual issue time rela-
tive to the arrival of the last operand, was first introduced as
part of the dynamic “shotgun” critical path profiler [8] and
later adopted as the serialization-avoidance heuristic by
macro-op scheduling [15].

To determine whether a mini-graph’s serialization delays a
consuming instruction,Slack-Dynamicalso tracks last-arriving
operands and relative issue times for instructions that consume
mini-graph output values. If a mini-graph consumer is delayed
by a mini-graph which is itself serialized, the mini-graph is
disabled.

Because execution schedules can change over dynamic

1. It is possible to reconstruct an execution schedule from local slack,
but only for connected mini-graphs.



8

Appears in Proceedings of 39th International Symposium on Microarchitecture (MICRO-39), Dec. 11-13, 2006.

FIGURE 6. Serialization-aware Mini-graph
Selectors. Top: Performance on reduced processor.
Middle: Performance on fully-provisioned processor.
Bottom: Coverage.Slack-Profileoutperforms all other
selectors and allows the reduced machine (with mini-
graphs) to out-perform the fully-provisioned one
(without mini-graphs).
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stantially more coverage and slightly less performance.
Slack-Dynamichas lower coverage because it cannot re-

constitute dynamically-disabled mini-graphs into smaller,
more conservative mini-graphs. And although it out-performs
Struct-All, Slack-Dynamicunder-performs the other serializa-
tion-aware selection schemes. This is because althoughSlack-
Dynamiceliminates execution serialization penalties, it effec-
tively replaces them with fetch serialization penalties as a dis-
abled mini-graph must execute in outlined form, which
involves two jumps per instance.

Slack-Profile. Slack-Profileprovides performance that is
strictly superior to any other selection scheme, both on the
reduced processor and the fully-provisioned processor1. Slack-
Profile provides a 15% average performance improvement for
the fully-provisioned processor and is the only selector capa-
ble of fully compensating (on average) for the reduced config-
uration. The reduced processor withSlack-Profilemini-graphs
outperforms the fully-provisioned baseline by 2%. And
although 35% of programs experience some performance loss
relative to the fully-provisioned processor, only 15% experi-
ence more than a 5% loss. For comparison, with no mini-
graphs, every program experiencesat least a 5% loss.

The key toSlack-Profile’s success is its combination of
aggressive coverage (34% on average) and intelligent serial-
ization avoidance. On the reduced configuration, it is aggres-
sive enough to outperformStruct-All on the right side of the
graph, and selective enough to outperformStruct-Noneon the
left. On the fully-provisioned processor, where amplification
benefits are lower and serialization costs are exposed, it pro-
vides the additional coverage needed to consistently out-per-
form Struct-None. Slack-Profileis the “target selector” we
earlier argued should exist.

5.2.  Slack-Profile: Breaking Down the Model
TheSlack-Profilemodel has two components: mini-graph-

induced instruction delay (rules #1–3) and impact of delay on
consumer instructions (rule #4). The top graph in Figure 7 iso-
lates the contribution of these components. For comparison,
the graph also shows fullSlack-Profile, Struct-None, and
Struct-All.

Contribution of “consumer delay”. Slack-Profile-Delay
corresponds to a partial model that does not include rule #4.
This model rejects mini-graphs whose output is delayed,
regardless of whether that delay can be absorbed by consumer
instructions. It generates a strictly smaller mini-graph candi-
date pool thanSlack-Profile. On average, explicit accounting
for the impact of delay on consumers contributes 1% perfor-
mance on the reduced configuration. However, it does change
the slope ofSlack-Profile, contributing 4% for some programs
on the right side of the graph while actually reducing the per-
formance of a few programs on the left. Here, slightly reduced
coverage is exposing the few pathological mini-graphs that
bothSlack-Profile andSlack-Profile-Delay admit.

Contribution of “serialization delay”. The difference

1. The lone exception ismcfon the fully-provisioned machine, where
Slack-Profileis outperformed byStruct-None. Slack-Profileuses
optimistic execution latencies that do not account for cache misses,
which plaguemcf. Remedying this is left for future work.
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betweenSlack-Profile-Delayand eitherStruct-All or Struct-
Nonecorresponds to the contribution of explicit accounting of
serialization delay. Obviously, it is this component of the
model that accounts for bulk ofSlack-Profile’s advantage over
serialization-blind selection schemes.

Slack-Profile-SIAL(SIAL=Serial Input Arrives Last) is a
variant ofSlack-Profile-Delaythat ignores actual issue delays
and focuses only on operand arrival times. Some aggregation
schemes [15] use SIAL as their serialization-avoidance heuris-
tic. The difference betweenSlack-Profile-Delayand Slack-
Profile-SIAL(4% on average) shows that explicit accounting
for delay is preferred to the operand-arrival-order heuristic.

5.3.  Dynamic Slack: Breaking Down the Model
Like Slack-Profile, theSlack-Dynamicserialization avoid-

ance model also has two components: serialization delay and
impact on consumers.Slack-Dynamicalso has additional per-
formance components that correspond to the outlining penalty
for disabled mini-graphs and loss of coverage. Loss of cover-
age is difficult to isolate, but the bottom graph of Figure 7
attempts to isolate the other three.

Contribution of “outlining” penalty. Ideal-Slack-
Dynamicis an implementation ofSlack-Dynamicin which the
“outlining” penalty for disabled mini-graphs is removed. This
curve isolates the performance ofSlack-Dynamic’s model
from the performance effects of the mini-graph encoding
scheme. On average, the performance penalty of “outlining”
degradesSlack-Dynamic’s performance by 3% on the reduced
processor. Without this penalty,Slack-Dynamicis much more
competitive withSlack-Profile.

Contribution of “consumer impact”. Ideal-Slack-
Dynamic-Delayis a penalty-freeSlack-Dynamicselector that
considers only serialization delay, not impact on consuming
instructions. This model disables more mini-graphs than
Slack-Dynamic. The contribution of explicit accounting for the
potential absorption of delay is the difference between this
selector andIdeal-Slack-Dynamic. Interestingly, in the ideal-
ized Slack-Dynamiccase, explicit consideration of consumer
impact makes less than 1% difference on average. However,
when Slack-Dynamicis used with outlining penalties, this
component of the model contributes almost 2% to perfor-
mance. Here, explicit accounting avoids disabling mini-graphs
over-aggressively and incurring their outlined execution pen-
alty.

Contribution of “serialization delay”. The contribution
of Slack-Dynamic’s serialization delay detection component is
the difference betweenIdeal-Slack-Dynamic-Delayand
Struct-All. As in Slack-Profile, delay accounting provides the
bulk of Slack-Dynamic’s impact. Ideal-Slack-Dynamic-SIAL
again compares true delay accounting with heuristic tracking
of relative operand arrival times. Again, explicit delay
accounting provides superior performance.

5.4.  Analysis: Comparison with Exhaustive Search
Mini-graph selection algorithms choose at most 512 mini-

graph templates from tens of thousands of candidates. Because
of the huge number of possible combinations and because the
choice of one template affects the pool of remaining templates,
it is not computationally feasible to perform a traditional
“limit study” to determine the ideal set of mini-graphs for each
program. To analyze our selection algorithms, we create a sig-
nificantly smaller search space over which we can exhaus-
tively search. For one short-running benchmark (adpcm.c) we
choose the 10 most frequently occurring non-overlapping
static mini-graphs. We then evaluate all 1024 combinations of
mini-graphs and compare the sets chosen by each selector to
the best performing set chosen by exhaustive search.

The graph of Figure 8 shows a coverage (x-axis) and per-
formance (y-axis) scatter plot for the 1024 possible mini-graph
sets running on the reduced configuration. Again, because
only 10 static mini-graphs are considered, this data does not
represent the actual coverage or performance foradpcm.c. The
results of each selection algorithm is highlighted at its cover-
age/performance intersection.

The results are strikingly intuitive.Struct-All (light box)
occupies the right-most point in the graph; it includes all 10
mini-graphs.Struct-None(dark square) occupies the left-most,
i.e., lowest coverage, point among all non-exhaustive selec-
tors. Struct-Bounded(diamond), which heuristically allows
bounded serialization, yields decent coverage but poor perfor-

FIGURE 7. Isolating Components of the Models. Top:
Slack-Profile. Bottom: Slack-Dynamic.
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mance. The quantitative slack-based selectors,Slack-Profile
(triangle) andSlack-Dynamic, combine high coverage with
high performance, with both approaching the performance of
the ideal mini-graph set obtained by exhaustive search.

One unintuitive result is the position ofSlack-Dynamic,
especially relative toSlack-Profile.In a realistic selection sce-
nario, Slack-Dynamichas poorer coverage and performance
than Slack-Profile because of its inability to re-constitute
dynamically disabled mini-graphs into smaller, benign alterna-
tives. In this less realistic experiment, this disadvantage is
eliminated because the initial pool consists only of non-over-
lapping mini-graph candidates.

Examining selector choices.The table in Figure 8 shows
each selector’s set of chosen mini-graphs. None of our selec-
tors picks the best performing set (X in the graph). The first
two mini-graphs (0,1) are non-serializing and are automati-
cally included by all selectors.Struct-Boundedadmits three
mini-graphs whose serialization is bounded, for a total of five
(0-4). Slack-Profilerejects three mini-graphs whose estimated
delay is larger than the output slack, including two mini-
graphs with bounded serialization that were accepted by
Struct-Bounded (3,4). It selects a total of seven (0-2, 5-8).

The best performing set includes a mini-graph which
Slack-Profilerejects (3). Although this mini-graph is delayed a
full cycle more than its slack, it improves performance. This is
because its constituent instructions are fetch critical over 50%
of the time; coalescing them into a handle creates enough
slack to compensate for the delay.Slack-Profile does not
account for fetch criticality—none of our models do—and
thus has no means of assessing such a trade-off.

Slack-Profileincludes a mini-graph which the best per-
forming set excludes (7). When chosen in isolation, this mini-
graph actually improves performance! That mini-graph 7 is

not included in the best performing set speaks to the fact that
mini-graph selection is non-decomposable. (Similarly, 0, a
mini-graph without any serialization vulnerability, is not
included in the best performing set!) Estimating how a mini-
graph might change the execution of an unmodified program is
not always an accurate indicator as to how it might change the
execution of a program with other mini-graphs. Because
Slack-Profiledoes not re-profile local slack after each mini-
graph is selected, it assesses mini-graphs in isolation without
considering potential interference.

5.5.  Robustness of Slack Profiles
In the experiments so far,Slack-Profile—the best perform-

ing selector—used “self-trained” profiles collected from simu-
lations on the target configuration (the reduced processor) and
on the target program data input set. Although self-training
with respect to the target microarchitecture is realistic, self-
training with respect to the input data set is not; inputs vary
across dynamic program invocations. Here, we measure the
robustness of slack profiles across microarchitecture configu-
rations and program input data sets.

Robustness to machine configuration.Intuitively, the
main determinants of performance (and subsequently of slack)
are the dataflow graph, the latency of the memory system (via
cache misses) and branch predictor (via mis-predictions), and
the capacity and bandwidth of the pipeline. Of these, the fac-
tors that are most likely to vary across machines are pipeline
bandwidth and capacity, and on-chip memory-system capacity.

The top graph in Figure 9 shows the performance S-curve
for MediaBench and CommBench programs running self-
trainedSlack-Profilemini-graphs on the reduced processor. In
addition to this S-curve, the graph also shows results for mini-
graphs cross-trained on three configurations: (i) a further
reduced 2-way issue processor (cross 2-way, circle), (ii) an 8-
way issue processor (cross 8-way, triangle), and a reduced pro-
cessor with an 8KB data cache and a 256KB L2 (cross dmem/
4, diamond). These are not shown as S-curves, but rather as
points at the same horizontal position as the corresponding
program on the S-curve.

The performance of cross-trained mini-graphs is stable
across these three configurations, suggesting that slack profiles
are robust across a relatively wide range of realistic microar-
chitectures. This is evidenced by the fact that most points lie
directly under the self-trained S-curve. Performance is occa-
sionally somewhat lower—and coverage somewhat higher—
for mini-graphs selected using the 2-way issue profile (circle).
This is intuitive. The 2-way issue processor generally yields
more execution slack as ready instructions wait due to limited
issue bandwidth. A profile generated on a relatively reduced
machine will result in the selection of a few harmful mini-
graphs whose delay cannot be absorbed on a more provisioned
processor that typically generates less slack.

Robustness to input sets.Intuitively, slack profiles should
be insensitive to inputs. Slack is largely a product of parallel-
ism, branch predictability, and memory behavior. These fac-
tors are regarded as being program—not input—specific.

The bottom graph of Figure 9 shows performance results
for SPECint and MiBench programs runningSlack-Profile
mini-graphs on the reduced processor. In addition to the self-

FIGURE 8. Limit study and analysis. Top: coverage
vs. performance scatter plot of all possible combinations
of 10 mini-graph candidates foradpcm.c. Mini-graph
combinations chosen by the five selectors are highlighted.
Bottom: Detailed selector choices.
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trained mini-graphs S-curve (self), there are points for mini-
graphs cross trained on a different data input set (cross-input,
circle): ref for SPECint andsmallfor MiBench. Again, there is
little difference (less than 2% absolute, on average) in both
coverage and performance between self-trained and cross-
trained mini-graphs, suggesting that slack profiles are robust
across program input data sets. Where variation does occur,
the reason is differences in code coverage between the two
runs. Such differences can arguably be eliminated by training
on multiple input sets that exercise most of the static code.

5.6.  Applicability to Other Aggregate Schemes
Although presented and evaluated in the context of mini-

graphs, the selection algorithms presented here should be
applicable to other aggregation schemes that target dynami-
cally scheduled processors [4, 15, 18]. Different schemes tend
to offer different benefits, depending on the underlying
microarchitecture, the pipeline stages and structures that
exploit aggregation, aggregate size and interface restrictions,
and the use (or lack thereof) of custom aggregate acceleration.
Aggregation costs, on the other hand, are common to many
aggregation schemes. External serialization is almost unavoid-
able with the use of aggregation in a dynamically-scheduled
context. Internal serialization is less fundamental—although
several aggregation schemes do suffer from it—but it is also a
lesser effect.

Our selection algorithms should be applicable to other
aggregation schemes because they focus on the aspect of
aggregation that is common to all of them: the cost of serial-
ization. And although as presented,Struct-BoundedandSlack-
Profileexplicitly model internal serialization, this aspect of the

model can be easily removed if it does not apply.Slack-
Dynamic only implicitly accounts for internal serialization.

Our algorithms do not explicitly account for mini-graph
performance benefit; partly because the indirect benefits of
resource amplification are smaller than the direct costs of seri-
alization and partly because they are also more difficult to
model. However, the models can be easily extended to account
for direct performance benefits, like ones provided by custom
latency reduction [4, 18] or explicit tolerance of some latency
in the underlying micro-architecture,e.g., a pipelined sched-
uler [15].

Our early experiments with macro-op scheduling, indicate
that Slack-Dynamic(modulo the penalties of outlining and
reduced coverage) is a more selective, better performing seri-
alization-filter than macro-op’s own heuristic (SIAL, Serial
Input Arrives Last) and that a retargeted version ofSlack-Pro-
file produces better results than the heuristics used by macro-
op execution [11]. The SIAL results in Sections 5.2 and 5.3
provide additional support for this observation, albeit in the
context of mini-graphs, not macro-ops.

6.  Related Work
Mini-graphs are instruction aggregates [5, 18, 20] that tar-

get dynamically-scheduled superscalar processors. Many pro-
posed aggregation techniques use custom functional units to
reduce the latency of graphs of arithmetic operations [10, 22,
23]. These generally target simple in-order pipelines.

Mini-graph processing is not alone in exploiting aggrega-
tion for superscalar resource amplification, but it is more gen-
eral than other techniques. AMD’s Athlon [6] breaks some
integer operations apart at the issue stage, bypassing the need
to rename and issue RISC micro-instructions individually.
Intel’s Pentium M [13] fuses load/execute and store-address/-
data micro-op pairs, reducing the number of x86 instructions
that decode into multiple micro-op sequences, and the number
of micro-ops renamed, scheduled, and committed, and ampli-
fying issue queue capacity. Extensions to the x86 ISA for fus-
ing instruction pairs have also been proposed [11, 12]. Macro-
op scheduling [15] micro-architecturally fuses instructions in
order to boost scheduling capacity and hide scheduling loop
latency, but does not amplify the bandwidths or capacities of
any other structures. Dynamic strands [18] extend macro-op
scheduling beyond pair-wise fusion and execute on closed-
loop ALUs, yielding a transparent, partial Instruction Level
Distributed Processing (ILDP)[14] implementation. Static
strands [19] are similar to mini-graphs, but do not amplify
instruction cache capacity or pipeline bandwidth, because
strand instructions are aggregated after fetch.

A few aggregation proposals address the subject of serial-
ization. Macro-op scheduling [15] avoids “harmful grouping”
by disabling macro-ops whose serializing input is the last-
arriving operand.Slack-Dynamicdetects actual issue delay
and the impact it has on dependent instructions. Macro-op exe-
cution [11] uses a two-pass fusing algorithm to dynamically
fuse x86 micro-ops. This algorithm is based on heuristics for
instructions that tend to be on the critical path (e.g., ALU oper-
ations), for ones that do not (e.g.,stores), and for instruction
pairs that are likely to be critical (e.g., instructions near each
other in the original x86 code). LikeStruct-Bounded,two-pass

FIGURE 9. Slack profile robustness. Top: Micro-
architecture sensitivity. Profiles generated with 2-, 8- way
machines, as well as a machine with 1/4 the cache size.
Bottom: Program input data set sensitivity.
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fusing is heuristic and does not actually determine the critical
path of the program nor does it quantify the potential for or
cost of serialization. Configurable Compute Accelerator
(CCA) graphs [4] target performance improvement via custom
or pseudo-custom acceleration. CCA graph selection uses
“slack” as a dataflow graph traversal tie-breaker, not as a per-
formance diagnostic. CCA exploits graph latency reduction
which tends to mask serialization problems.

7.  Conclusions
Instruction aggregation is a technique that can be exploited

to amplify the capacity and bandwidth of dynamically sched-
uled superscalar processors, theoretically improving the IPC
throughput that can be achieved with a given amount of physi-
cal resources. Mini-graphs are a particular form of instruction
aggregation that targets resource amplification throughout the
entire pipeline.

Aggregation techniques are afflicted by serialization,
which delays the issue and execution of instructions within
aggregates. The most pervasive and destructive form of serial-
ization is external serialization, which forces an aggregate to
wait for all of its external inputs before it can issue. Serializa-
tion can degrade performance if not explicitly accounted for
during the aggregate formation process.

This paper examines serialization in the context of mini-
graph processing—where serialization’s negative effects are
especially pronounced—and develops three mini-graph selec-
tors that identify and reject mini-graphs with performance-
degrading serialization. The most promising of these isSlack-
Profile,which uses local slack profiles to calculate mini-graph
induced delay and reject only mini-graphs whose delay
exceeds the program’s ability to absorb it.Slack-Profile
achieves coverage and amplification rates of 34% while virtu-
ally eliminating serialization penalties. This combination
allows a 3-way issue processor withSlack-Profilemini-graphs
to (on average) outperform a 4-way issue processor by 2%.
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