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ABSTRACT 
Post-silicon bug localization – the process of identifying the 

location of a detected hardware bug and the cycle(s) during 

which the bug produces error(s) – is a major bottleneck for 

complex integrated circuits. Instruction Footprint Recording and 

Analysis (IFRA) is a promising post-silicon bug localization 

technique for complex processor cores. However, applying IFRA 

to new processor microarchitectures can be challenging due to 

the manual effort required to implement special 

microarchitecture-dependent analysis techniques for bug 

localization. This paper presents the Bug Localization Graph 

(BLoG) framework that enables application of IFRA to new 

processor microarchitectures with reduced manual effort. Results 

obtained from an industrial microarchitectural simulator 

modeling a state-of-the-art complex commercial 

microarchitecture (Intel Nehalem, the foundation for the Intel 

Core™ i7 and Core™ i5 processor families) demonstrate that 

BLoG-assisted IFRA enables effective and efficient post-silicon 

bug localization for complex processors with high bug 

localization accuracy at low cost.  

Categories and Subject Descriptors 

B.8.1 Reliability, Testing and Fault-Tolerance 

General Terms: Reliability, Verification. 

Keywords: Silicon debug, post-silicon validation, IFRA, BLoG 

1. INTRODUCTION 
Post-silicon validation determines whether a set of 

manufactured chips functions correctly in actual application 
environments across a range of operating conditions. Post-silicon 
validation is becoming increasingly difficult and expensive 
[Abramovici 06, Patra 07]. Of the four major post-silicon 
validation steps – bug detection, localization, root-cause and 
fixing – the bug localization step dominates cost [Josephson 06]. 
Bug localization involves identifying the location of a detected 
hardware bug and a cycle in which the bug creates error(s). In 
particular, localization of electrical bugs – bugs caused by the 
interactions between a design and electrical effects (unlike logic 

bugs caused by design errors) – is extremely challenging 
[Josephson 01]. Localizing electrical bugs is challenging due to 
difficulties in reproducing observable failures caused by such 
bugs in a system setup (often referred to as system-level failure 

reproduction) and reliance on slow system-level simulation to 
obtain golden responses for comparison purposes. 

Recently, we demonstrated a new post-silicon bug localization 
technique called IFRA (Instruction Footprint Recording and 
Analysis) [Park 09] for effective localization of electrical bugs in 
processors at low cost (< 1% chip area). IFRA does not require 

system-level failure reproduction or system-level simulation. It 
uses special hardware recorders (different from traditional trace 
buffers [Abramovici 06]) to collect special information 
(instruction footprints) on the last few thousand instructions that 
were fetched before the occurrence of a system failure. After a 
failure occurs, the instruction footprints are scanned out and 
analyzed offline using special self-consistency-based post-analysis 
techniques to localize the detected bug.  

Although IFRA is applicable to any microarchitecture, the 
manual effort required to devise microarchitecture-dependent 
post-analysis techniques can be significant and could lead to an 
error-laden implementation. This paper introduces a new concept 
of Bug Localization Graph or BLoG, which overcomes this major 
challenge. The BLoG framework enables systematic construction 
and automated execution the post-analysis step of IFRA (Fig. 3.1). 

We demonstrate the effectiveness of BLoG-assisted IFRA for 
the latest commercial processor microarchitecture from Intel, the 
Intel Nehalem [Casazza 09], which is the foundation of the Intel 
Core™ i7 and Core ™ i5 processor series consisting of more than 
a billion transistors.  

The major contributions of this paper are: 
1) Introduction of BLoG which overcomes the major barrier of 

manual implementation of microarchitecture-dependent post-
analysis of IFRA. Hence, it enables IFRA to be systematically 
applied to new (and complex) microarchitectures with reduced 
engineering time and less expert knowledge resulting in 
significant productivity gains. 

2) Demonstration of the effectiveness of BLoG-assisted IFRA in 
localizing electrical bugs with 90% accuracy using an industrial 
microarchitecture simulator modeling a complex state-of-the-art 
Intel Nehalem microarchitecture. Such high bug localization 
accuracy was achieved without requiring system-level simulation 
or failure reproduction.  

The rest of this paper is organized as follows. Section 2 presents 
an overview of IFRA. Section 3 introduces the BLoG concepts. 
Sections 4 and 5 describe BLoG construction and usage during 
post-analysis, respectively. Section 6 presents BLoG-assisted 
IFRA results for the Intel Nehalem microarchitecture. Section 7 
discusses related work followed by conclusions.  

2. IFRA OVERVIEW 
As discussed in Sec. 1, IFRA utilizes special hardware recorders, 

placed at each pipeline stage, to collect instruction footprints or 
simply footprints of instructions leaving the associated pipeline 
stage. Each footprint consists of an instruction ID and a set of 
auxiliary information (see Table 6.2) that describe the flow of the 
instruction through the processor and what the instruction did at 
each pipeline stage. (Note: given instruction will have multiple 
footprints in recorders belonging to multiple pipeline stages. The 
total distributed storage for footprint recorders amounts to 
60KBbytes for an Alpha 21264-like processor). The recoding is 
performed in a circular fashion; only the last few thousand 
footprints are stored at any time. Special techniques for detecting 
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failure symptoms, referred to as post-triggers in [Park 09], enable 
short error detection latencies.  

Upon detection of a problem using post-triggers, footprint 
recording is terminated and the recorded footprints are scanned 
out. Next, footprints are post-processed offline in three phases to 
localize the bug. First, footprint linking links together footprints 
belonging to the same instruction but stored across multiple 
recorders in a distributed fashion. A special scheme for assigning 
instruction IDs [Park 09] enables efficient footprint linking for 
complex processors supporting speculative and out-of-order 
execution with multiple clock domains. The linked footprints are 
also mapped to the corresponding instruction in the test program 
binary.  

After footprint linking, two sets of self-consistency-based 

checks are executed (off-line) to identify any contradictory events 
in linked footprints with respect to the test program binary. Such 
checks do not require system-level simulation. A set of 
microarchitecture-independent checks, or high-level analysis, 
finds the first sign of an inconsistency in program execution. The 
inconsistency is in the form of a <location, footprint> pair. The 
location element of the pair specifies a hardware block and the 
footprint element is a pointer to an entry in one of the recorders. 
This pair serves as the starting point for a set of microarchitecture-
dependent checks, or low-level analysis, which asks a series of 

microarchitecture-specific questions according to a manually-

generated decision diagram (such a decision diagram for an 
Alpha 21264-like processor in presented in [Park 09]) to identify 
a set of bug candidates which are in the form of <location, 
footprint> pairs. The location element indicates the hardware 
block in which the electrical bug produces an error. The footprint 
element indicates a cycle in which the error occurred relative to 
the cycle when the post-trigger occurred. Once a bug is localized, 
existing circuit-level debug techniques [Caty 05, Josephson 06] 
can then identify the root cause of the bug.  

3. BUG LOCALIZATION GRAPH (BLoG) 
The BLoG framework, presented in this paper, provides a 

systematic approach for devising the low-level analysis of IFRA 
(Fig. 3.1). The BLoG is a directed graph with nodes and edges. A 
processor is partitioned into design blocks; each design block is 
represented as a BLoG node. Self-consistency checks are 
performed at BLoG nodes in a modular fashion using special rules 
associated with BLoG nodes. BLoG edges represent data or 
control signals communicated between nodes. The BLoG 
framework defines a set of edge attributes (Sec. 3.2) for obtaining 
edge signal values from recorder entries. It also defines a set of 
node types (Sec. 3.1) for executing self-consistency checks using 
the signal values on the edges.   

Once a BLoG is constructed, post-silicon bug localization flow 
of the original IFRA is followed until high-level analysis is 
performed. The inconsistency returned from the high-level 
analysis initializes the BLoG (see Sec. 5). Low-level analysis is 
then performed by traversing the BLoG (Fig 3.1) using BLoG 
traversal algorithms (Sec. 5).   

 
 

Figure 3.1. Bug localization flow using BLoG-assisted IFRA. 

3.1 BLoG NODE TYPES 
The BLoG framework defines seven node types, representing 

different “types” of processor design blocks (Fig. 3.2). A final 
default type is used for blocks not belonging to any of the seven 
types. Each node type has its own set of self-consistency checks 
(discussed in Sec. 5.2).  

The types are broadly classified into storage and non-storage 
types. Storage types represent design blocks containing hardware 
structures with variable propagation delays from data entry to exit; 
non-storage types represent hardware structures with fixed delays 
between data entry and exit known a priori. 

Node Type 1) Random-access: Storage with index-based entry 
management (e.g., register file, register alias table). 

Node Type 2) Associative: Storage with associative entry 
management (e.g., reservation station, TLB). 

Node Type 3) Queue: Storage with first-in-first-out entry 
management (e.g., re-order buffer, load queue, store data queue, 
store address queue, instruction queue). 

Node Type 4) Transformation: Non-storage structure that 
modifies input values and produces different output values (e.g., 
decoder, address generator, comparator, ALU). 

Node Type 5) Connection: Non-storage structure that 
propagates input values to output values without modification but 
after some fixed delay (i.e., series of pipeline registers).  

Node Type 6) Select: Non-storage structure that takes two input 
values and chooses one as an output value according to control 
signal values (e.g., forwarding path, register/immediate select, 
next-PC select, instruction select). 

Node Type 7) Protected: Transformation or Connection type 
with built-in error detection techniques such as parity bits for 
arrays and residue codes for arithmetic units. The Protected type 
is not necessary if such error detection techniques are not present.  

Node Type 8) Default: Any non-storage structure not included 
in the aforementioned types (e.g., scheduler, load replay handler). 
 

 
 



 

3.2 BLoG EDGE ATTRIBUTES 
Self-consistency checks, performed at each node, require signal 

values corresponding to each node’s inputs and outputs. The edge 
attributes provide a framework for obtaining such values from the 
recorded footprints. Each edge has the following five attributes: 

Attribute 1) Recorder: specifies which recorder to look up in 
order to obtain the data or control signal values for that edge. 

Attribute 2) Auxiliary-information-field selector: specifies 
which auxiliary information field (e.g., in Table 6.2) in the 
recorder to look up for obtaining signal values. 

Attribute 3) A footprint pointer: specifies which entry in the 
recorder to look up for obtaining signal values. 

Attribute 4) Set of <outgoing edge, edge dependency> pairs: 
specify edge dependencies for a given incoming edge with respect 
to each outgoing edge.  

Attribute 5) Data or control signal values  
During BLoG construction, attributes 1, 2 and 4 are specified 

for BLoG edges. When inspecting a node during BLoG traversal, 
we start with a footprint pointer at an outgoing edge of the node. 
Using this pointer and the pre-specified attributes for the outgoing 
edge, we derive footprint pointers for the incoming edges of the 
node (Sec. 5.1). The corresponding signal values (in the entries 
pointed at by the footprint pointers) are obtained by looking up 
the specified auxiliary information fields of the assigned recorders 
(Attributes 1 and 2 of the incoming edges). To derive footprint 
pointers for incoming edges, we use edge dependencies. Each 
edge dependency describes a relationship between a single 
outgoing and incoming edge. The six edge dependency types in 
our BLoG framework are: 

Dependency Type 1) Same instruction: signal values (attribute 
5) on the outgoing and incoming edges specified in the pair 
belong to the same instruction (e.g., a Select-type node takes the 
opcode of an instruction as a control input and selects a register or 
immediate value for the same instruction). 

Dependency Type 2) Same architectural register name: 
signal values on the outgoing and incoming edges specified in the 
pair belong to the same architecture register (e.g., a Connection-
type node passes a register value produced by one instruction to 
another instruction that uses the same register name).  

Dependency Type 3) Same physical register name: signal 
values on the outgoing and incoming edges specified in the pair 
belong to the same physical register (e.g., a Random-access-type 
node uses physical register name as index to access register 
value). 

Dependency Type 4) Same memory address: signal values on 
the outgoing and incoming edges specified in the pair belong to 
the same memory address (e.g., an Associative-type node uses 
memory addresses as tags for associative access). 

Dependency Type 5) Pipeline flush: signal value on the 
incoming edge is a pipeline flush event (e.g., a Queue-type node 
is flushed by a pipeline flush event). 

Dependency Type 6) Default: Any relationship not included in 
the aforementioned types.  

4. BLoG CONSTRUCTION 
BLoG construction involves constructing nodes and edges using 

the following two inputs: 1) Microarchitecture description of a 
processor in the form of a microarchitectural block diagram from 
an architectural manual [Colwell 05] or a language-based 
specification [Halambi 99, Gorjiara 07] (e.g., similar to [Ketkar 
09]); 2) Recorder field description (e.g., Table 6.2). 

4.1 Node Construction 
A given chip design is divided into as many partitions as 

possible, while further maximizing: 1) the number of partitions 
(BLoG nodes) that can be classified into one of seven non-default 
node types; 2) the number of resulting partition interconnects 
(BLoG edges) whose signal values can be obtained from recorded 
footprints. Although more partitions enable more fine-grained bug 
localization, fine-grained partitions without obtainable signal 
values may reduce bug localization accuracy.  

Once formed, each partition is assigned one of eight node types, 
ideally a non-default node type. Partitions with storage are 
assigned types depending on how stored entries are managed. 
Partitions with protection mechanisms are assigned the Protected 
type. Partitions consisting of a series of pipeline registers are 
assigned the Connection type. The Transformation and Select 
types are used for the remaining partitions with data input/outputs 
defined. All other partitions belong to the Default type. Figure 5.1 
shows an example for a simple branch unit.   

4.2 Edge Construction  
Once the partitions are defined, partition interconnects become 

BLoG edges. For each edge, attributes 1, 2 and 4 are assigned by 
inspection (Sec. 3.2).  

5. BLoG TRAVERSAL 
BLoG traversal takes four inputs: 1) a BLoG; 2) recorded 

footprints; 3) a starting edge, where BLoG traversal starts; and 4) 
a footprint pointer assigned to the starting edge. The last two 
inputs are obtained from <location, footprint> pair, returned by 
IFRA high-level analysis (Fig. 3.1). For example, if the high-level 
control-flow analysis (explained in [Park 09]) returns <PC 
register, 435th entry of fetch-stage recorder> as an inconsistency, 
then the resulting starting edge is the outgoing edge of the BLoG 
node corresponding to PC register (Fig. 5.1), and the resulting 
footprint pointer points to the 435th entry of the fetch-stage 
recorder assigned to that edge.  

The BLoG traversal algorithm is shown in Fig. 5.2. After BLoG 
traversal terminates, all the candidate labels are returned to report 
the set of bug candidates in the form of <location, footprint>. 

5.1 Footprint-propagation Rules 
Footprint-propagation rules help obtain the footprint pointers of 

the incoming edges once an outgoing edge has an assigned 
footprint pointer. There are six footprint-propagation rules, each 
associated with an edge dependency. We present the rules 
corresponding to dependency types “Same architectural register” 
and “Default”. The rest can be found in [Park 10]. 

We define a new operator, follow_link(), which takes three 
inputs – a source recorder, a source footprint pointer (points at the 
source recorder entry that contains a footprint belonging to a 
particular instruction), and a destination recorder – and returns a 
destination footprint pointer (points at a destination recorder entry 
that contains the footprint belonging to the same instruction as the 
source footprint pointer).  The operation follows the links among 
footprint recorder entries established during footprint linking step.  

Denote the first (recorder) and third (footprint pointer) attributes 
of the outgoing edge (whose footprint pointer has already been 
assigned) by Ro and Po, respectively, and the first and third 
attributes of the incoming edge (whose footprint pointer we are 
interested in finding) by Ri and Pi. 

• Same architectural register: Perform follow_link (Po, Ro, 

fetch-stage recorder) to obtain a new pointer into a fetch-stage 



recorder entry, Pf. Denote the architectural destination register 
used by the instruction pointed by Pf as R. Move Pf towards older 
entries until an instruction that uses R as its operand is found. 
Perform follow_link (Pf, fetch-stage recorder, Ri) to obtain Pi.  

• Default: Unless customized propagation rules are designed 
for the default case, assign NULL to Pi and report that no 
information is available. 

If the end of recorded history is reached (i.e., the sought 
footprint was overwritten due to limited storage) while performing 
follow_link() or  moving pointers, return NULL for Pi . 

 
Figure 5.1. Example starting edge (without edge attributes).  

 
Figure 5.2. BLoG traversal algorithm. 

 
Figure 5.3. Node traversal algorithm. 

5.2 Location-propagation Rules 
Given a node with signal values on incoming and outgoing 

edges, location-propagation rules are responsible for: 
1. Propagating error labels from outgoing to incoming edges; 

and/or  

2. Creating candidate labels on one of the node’s localization 

regions (individual regions discussed in Table 6.1) 
Each rule requires signal values on some incoming edges, but 

values may not be present due to NULL footprint pointer. There 
are two possible reasons (Sec. 5.1):   

• The end of history is reached. In this case, any rule using this 
incoming edge will not produce any error or candidate labels.  

• Not all edge attributes are specified or a Default-type edge 
dependency is used. In this case, any rule using this incoming 
edge will produce an error label on this edge with a footprint 
pointer obtained by following the link from the pointer on the 
outgoing edge to the recorder assigned to the incoming edge (i.e., 
assuming same instruction). If the rule can place a candidate label, 
then this label is placed with the pointer on the outgoing edge. 

Location-propagation rules for two node types are presented 
next. Rules for remaining node types appear in [Park 10]. 

5.2.1 Location-propagation Rules for a Select-type Node 
A Select-type node consists of a multiplexer with logic driving 

the select decision (Fig. 5.4). The first rule checks whether the 
data output value matches any of the data input values. The 
second rule checks whether there are multiple instances of current 
control input values by searching footprints in the recorder 
assigned to the control input edge. If multiple instances are found, 
the rule checks whether same select decisions were consistently 
made at all times. If these two rules do not find a problem, then 
the error label is propagated to the control input edge and the 
selected data input edge (determined by the output value).  

The algorithm is shown below. We denote the two data input 
edges as X and Y, the data output edge as Z, and control input 
edge as C. Denote footprint pointers assigned to C, Z, X, Y as Pc1, 

Pz1, Px, Py. Denote temporary footprint pointer variables as Pc2, 

Pz2, Pz3. Denote signal values obtained using Pc1, Pc2, Pz1, Pz2, 

Px and Py as Vc1, Vc2, Vz1, Vz2, Vx, Vy. Note that the decrement 
operator moves the pointer towards older entries in the recorder 
and then wraps around. There are three outcomes.  

Outcome 1) Candidate label on the multiplexer with Pz1 as the 
footprint.  

Outcome 2) Candidate label on the logic driving the select 
decision. For this case, there can up to two candidate labels with 
different footprints. The algorithm specifies the footprints.  

Outcome 3) No error in the node. Create error label on the 
control input edge and the selected data input edge with Pc1 and 
Px as the footprints.  

Note that, executing these rules does not require any simulation.  

IF (Vz1≠Vx) AND (Vz1≠Vy) THEN Outcome 1; 

ELSE{ 

  Pc2 = Pc1; Pz2 = Pz1; 

  DO{ Decrement Pc2, Pz2, Px, Py; 

    IF (Pc1=Pc2) THEN  

    Outcome 2 with Pz1 and Outcome 3;  

}WHILE (Vc1≠Vc2);  

IF (Vz1=Vx AND Vz2=Vy) THEN{  

  Pz3 = Pz2;   

  DO{ Decrement Pc2, Pz2, Px, Py; 

      IF (Pc1=Pc2) THEN  

        Outcome 2 with Pz1 and Pz3;   

  }WHILE (Vc1≠Vc2); 

  IF(Vz1=Vx)AND(Vz2=Vy)THEN  

    Outcome 2 with Pz1; 

  ELSE outcome 2 with Pz3;} 

ELSE Outcome 3;}  



 
 

Figure 5.4. Location-propagation rule outcomes. 

5.2.2 Location-propagation Rules for a Default-type Node 
A Default-type node has little localization capability: i.e., given 

an error at the node’s outgoing edge, the rules declare the node as 
a candidate by default and propagate the error to all incoming 
edges. There are three ways of handling Default-type nodes:  

Method 1) Use it as is. 
Method 2) Merge with predecessor/successor nodes so that the 
merged node is of non-default type. 
Method 3) Create customized location-propagation rules.  

6. RESULTS 
We used the techniques in this paper to construct a BLoG for 

the Intel Nehalem microarchitecture and evaluated BLoG-assisted 
IFRA on an industrial-grade, cycle-accurate IA-32 
microarchitecture simulator that is extensively used during 
product development.  

The constructed BLoG contains 160 BLoG nodes, of which 
86% are non-default types. Table 6.1 shows the number of nodes 
used and the localization regions for each type. The Default-type 
nodes were manually augmented (details in [Park 10]) with 
customized location-propagation rules adapted from the IFRA 
decision diagram in [Park 09].  

Table 6.1. BloG node type distribution for Intel Nehalem.  

Node type 
Number 
of nodes 

Localization regions  

Random-
access 

6 
Read/write circuitry,  

clear handler 

Associative 8 
Read/write circuitry,  

tag handler, clear handler 

Queue 7 
Enqueue/dequeue circuit,  

FIFO management 
Modifying 22 Entire node 

Connection 46  Entire node 

Select 42 
Multiplexer,  

logic driving select signal 

Protected 6 
No error occurs in the node 

(pessimistic) 
Default 23 Avg(2), std(1), min (1), max (4) 

Total number of nodes: 160 
Total number of locations: 269 

 

The IA-32 microarchitecture simulator was augmented with 
IFRA recording infrastructure (Table 6.2). We also included IA-
32 in-built exceptions [Intel 08] as post-triggers for BLoG-
assisted IFRA. While running programs from the SPECint 2006 
benchmark suite, error injection campaign was conducted at error 
injection sites grouped into 32 categories (details in [Park 10]). 
Each category consists of 1-400 bits. To be pessimistic, no errors 
were injected in array structures or arithmetic units which are 
assumed to be protected using parity and residue codes, 
respectively. All bugs were modeled as single bit-flips at flip-flops 
to target hard-to-repeat electrical bugs. This is an effective model 
because electrical bugs eventually manifest themselves as 

incorrect values arriving at flip-flops for certain input 
combinations and operating conditions [McLaughlin 09].  

Out of over 30,000 error injection runs, 2,560 runs resulted in a 
system failure. Figure 6.1 presents the localization results for 
those 2,560 runs. For over 90% of the cases, BLoG-assisted IFRA 
identified the correct candidate that matched both the location (1 
out of 269) and cycle (1 out of over 1,000 footprints) of error 
injection. Out of these 90% cases with correct localization, BLoG-
assisted IFRA returned a single correct bug candidate (i.e., 
<location, footprint> pair) for 62% of the cases (referred to as 
exactly localized) and returned multiple candidates (average of 6 
out of over 269,000 possible <location, footprint> pairs) for the 
remaining 38% of the cases (referred to as multiple candidates 

localized). To be pessimistic, the no localized category includes 
any cases where either the location or the footprint is incorrect. 

Table 6.2.Auxiliary information for recorder entries 
corresponding to various pipeline stages.  

Auxiliary information 

Pipeline 
stage Description 

Bits 
per 

entry N
u

m
b

e
r 

o
f 

R
e
c
o

rd
e
rs

 

E
n

tr
ie

s
 p

e
r 

R
e
c
o

rd
e
r 

Fetch Instruction Pointer  32 4 512 

Decode 
Microcode, beginning 
of macroinstruction, 

decoded results 
24 4 1,024 

Alloc 
3-bit residue of register 

name 
9 4 1,024 

Schedule 
4-bit residue of 

operands 
8 4 1,024 

IEU 4-bit residue of result 4 3 1,024 
AGU/ 
MEM 

4-bit residue of result; 
memory address; 

36 2 1,024 

Commit Exceptions 4 4 1,024 

Total storage required for all recorders: 
(Each entry contains an additional 8-bit ID ) 

66KBytes 

 
Figure 6.1. BLoG-assisted IFRA bug localization summary.  

7. RELATED WORK 
Comparison of IFRA vs. existing post-silicon bug localization 

techniques has been extensively discussed in [Park 09] and is not 
included in this paper. Unlike most existing techniques, BLoG-
assisted IFRA overcomes major barriers because it does not rely 
on system-level failure reproduction or system-level simulation. 
Previous work related to the BLoG idea may be largely classified 
into two categories: high-level test generation (e.g., [Lee 94, 
Tupuri 97, van Campenhout 99]) and circuit-level fault diagnosis 
(e.g., [Caty 05, Venkataraman 96]). Table 7.1 presents a 
qualitative comparison of BLoG, which has been demonstrated 
for a large and complex design, vs. related techniques. While error 
detection techniques for processors in the context of fault-tolerant 



computing (e.g., [Lu 82, Oh 02]) also use self-consistency checks, 
their main purpose is to detect errors only. The specific bug 
localization application enables us to perform deep self-
consistency analysis (as presented in this paper) that is generally 
difficult and expensive to perform on-line during system operation 
for fault-tolerant computing. 

Table 7.1. Comparison with existing techniques. 
 High-level 

test 
generation 

Circuit-level 
diagnosis 

BLoG 

Purpose 
Test 

patterns 
Defect 

diagnosis 
Bug 

localization 
Failure 

reproduce 
N/A (-)Required 

(+) Not 
required 

System-
level 

simulation 
(-)Required 

(+)Not 
required 

Abstraction Arch./circuit Circuit Arch. 
Granularity/ 
Complexity 

Medium High Low 

8. CONCLUSIONS 
BLoG-assisted IFRA overcomes an outstanding challenge in 

post-silicon validation of processors: post-silicon bug localization 
(which is the most expensive and difficult step) without relying on 
system-level failure reproduction or system-level simulation. 
While we presented the idea of IFRA in the past, the major 
innovations in this paper is the idea of BLoG which enables 
systematic construction and automated execution of IFRA’s post-
analysis for bug localization purposes. Without BLoG, it would 
be difficult, if not impossible, to apply IFRA to new 
microarchitectures. The BLoG framework is highly effective and 
practical as demonstrated by high bug localization accuracy of 
90% obtained for a large complex commercial microarchitecture – 
the Intel Nehalem design. The BLoG concept creates several 
interesting research directions: 

• Automatically constructing BLoG from a language-based 
specification or an RTL description.  

• Automatically selecting what information to record for a 
BLoG borrowing concepts from research done at the circuit-level 
[Ko 08].   

• Enhancing the idea of BLoG for homogeneous / 
heterogeneous multi-core systems, and system-on-chips (SoCs). 
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