
BLoG: Post-Silicon Bug Localization in Processors using Bug Localization Graphs

Sung-Boem Park
1,2

 Anne Bracy
2,3

 Hong Wang
2
 Subhasish Mitra

1,4

1
Dept. of Electrical Engineering, Stanford University, Stanford, CA, USA

2
Microarchitecture Research Lab., Intel Corporation, Santa Clara, CA, USA

3
Dept. of Computer Science & Engineering, Washington University in St. Louis, St. Louis, MO, USA

4
Dept. of Computer Science, Stanford University, Stanford, CA, USA

ABSTRACT
Post-silicon bug localization – the process of identifying the

location of a detected hardware bug and the cycle(s) during

which the bug produces error(s) – is a major bottleneck for

complex integrated circuits. Instruction Footprint Recording and

Analysis (IFRA) is a promising post-silicon bug localization

technique for complex processor cores. However, applying IFRA

to new processor microarchitectures can be challenging due to

the manual effort required to implement special

microarchitecture-dependent analysis techniques for bug

localization. This paper presents the Bug Localization Graph

(BLoG) framework that enables application of IFRA to new

processor microarchitectures with reduced manual effort. Results

obtained from an industrial microarchitectural simulator

modeling a state-of-the-art complex commercial

microarchitecture (Intel Nehalem, the foundation for the Intel

Core™ i7 and Core™ i5 processor families) demonstrate that

BLoG-assisted IFRA enables effective and efficient post-silicon

bug localization for complex processors with high bug

localization accuracy at low cost.

Categories and Subject Descriptors

B.8.1 Reliability, Testing and Fault-Tolerance

General Terms: Reliability, Verification.

Keywords: Silicon debug, post-silicon validation, IFRA, BLoG

1. INTRODUCTION
Post-silicon validation determines whether a set of

manufactured chips functions correctly in actual application
environments across a range of operating conditions. Post-silicon
validation is becoming increasingly difficult and expensive
[Abramovici 06, Patra 07]. Of the four major post-silicon
validation steps – bug detection, localization, root-cause and
fixing – the bug localization step dominates cost [Josephson 06].
Bug localization involves identifying the location of a detected
hardware bug and a cycle in which the bug creates error(s). In
particular, localization of electrical bugs – bugs caused by the
interactions between a design and electrical effects (unlike logic

bugs caused by design errors) – is extremely challenging
[Josephson 01]. Localizing electrical bugs is challenging due to
difficulties in reproducing observable failures caused by such
bugs in a system setup (often referred to as system-level failure

reproduction) and reliance on slow system-level simulation to
obtain golden responses for comparison purposes.

Recently, we demonstrated a new post-silicon bug localization
technique called IFRA (Instruction Footprint Recording and
Analysis) [Park 09] for effective localization of electrical bugs in
processors at low cost (< 1% chip area). IFRA does not require

system-level failure reproduction or system-level simulation. It
uses special hardware recorders (different from traditional trace
buffers [Abramovici 06]) to collect special information
(instruction footprints) on the last few thousand instructions that
were fetched before the occurrence of a system failure. After a
failure occurs, the instruction footprints are scanned out and
analyzed offline using special self-consistency-based post-analysis
techniques to localize the detected bug.

Although IFRA is applicable to any microarchitecture, the
manual effort required to devise microarchitecture-dependent
post-analysis techniques can be significant and could lead to an
error-laden implementation. This paper introduces a new concept
of Bug Localization Graph or BLoG, which overcomes this major
challenge. The BLoG framework enables systematic construction
and automated execution the post-analysis step of IFRA (Fig. 3.1).

We demonstrate the effectiveness of BLoG-assisted IFRA for
the latest commercial processor microarchitecture from Intel, the
Intel Nehalem [Casazza 09], which is the foundation of the Intel
Core™ i7 and Core ™ i5 processor series consisting of more than
a billion transistors.

The major contributions of this paper are:
1) Introduction of BLoG which overcomes the major barrier of

manual implementation of microarchitecture-dependent post-
analysis of IFRA. Hence, it enables IFRA to be systematically
applied to new (and complex) microarchitectures with reduced
engineering time and less expert knowledge resulting in
significant productivity gains.

2) Demonstration of the effectiveness of BLoG-assisted IFRA in
localizing electrical bugs with 90% accuracy using an industrial
microarchitecture simulator modeling a complex state-of-the-art
Intel Nehalem microarchitecture. Such high bug localization
accuracy was achieved without requiring system-level simulation
or failure reproduction.

The rest of this paper is organized as follows. Section 2 presents
an overview of IFRA. Section 3 introduces the BLoG concepts.
Sections 4 and 5 describe BLoG construction and usage during
post-analysis, respectively. Section 6 presents BLoG-assisted
IFRA results for the Intel Nehalem microarchitecture. Section 7
discusses related work followed by conclusions.

2. IFRA OVERVIEW
As discussed in Sec. 1, IFRA utilizes special hardware recorders,

placed at each pipeline stage, to collect instruction footprints or
simply footprints of instructions leaving the associated pipeline
stage. Each footprint consists of an instruction ID and a set of
auxiliary information (see Table 6.2) that describe the flow of the
instruction through the processor and what the instruction did at
each pipeline stage. (Note: given instruction will have multiple
footprints in recorders belonging to multiple pipeline stages. The
total distributed storage for footprint recorders amounts to
60KBbytes for an Alpha 21264-like processor). The recoding is
performed in a circular fashion; only the last few thousand
footprints are stored at any time. Special techniques for detecting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC’10, June 13-18, 2010, Anaheim, California, USA.
Copyright 2010 ACM 978-1-4503-0002-5 /10/06…$10.00.

failure symptoms, referred to as post-triggers in [Park 09], enable
short error detection latencies.

Upon detection of a problem using post-triggers, footprint
recording is terminated and the recorded footprints are scanned
out. Next, footprints are post-processed offline in three phases to
localize the bug. First, footprint linking links together footprints
belonging to the same instruction but stored across multiple
recorders in a distributed fashion. A special scheme for assigning
instruction IDs [Park 09] enables efficient footprint linking for
complex processors supporting speculative and out-of-order
execution with multiple clock domains. The linked footprints are
also mapped to the corresponding instruction in the test program
binary.

After footprint linking, two sets of self-consistency-based

checks are executed (off-line) to identify any contradictory events
in linked footprints with respect to the test program binary. Such
checks do not require system-level simulation. A set of
microarchitecture-independent checks, or high-level analysis,
finds the first sign of an inconsistency in program execution. The
inconsistency is in the form of a <location, footprint> pair. The
location element of the pair specifies a hardware block and the
footprint element is a pointer to an entry in one of the recorders.
This pair serves as the starting point for a set of microarchitecture-
dependent checks, or low-level analysis, which asks a series of

microarchitecture-specific questions according to a manually-

generated decision diagram (such a decision diagram for an
Alpha 21264-like processor in presented in [Park 09]) to identify
a set of bug candidates which are in the form of <location,
footprint> pairs. The location element indicates the hardware
block in which the electrical bug produces an error. The footprint
element indicates a cycle in which the error occurred relative to
the cycle when the post-trigger occurred. Once a bug is localized,
existing circuit-level debug techniques [Caty 05, Josephson 06]
can then identify the root cause of the bug.

3. BUG LOCALIZATION GRAPH (BLoG)
The BLoG framework, presented in this paper, provides a

systematic approach for devising the low-level analysis of IFRA
(Fig. 3.1). The BLoG is a directed graph with nodes and edges. A
processor is partitioned into design blocks; each design block is
represented as a BLoG node. Self-consistency checks are
performed at BLoG nodes in a modular fashion using special rules
associated with BLoG nodes. BLoG edges represent data or
control signals communicated between nodes. The BLoG
framework defines a set of edge attributes (Sec. 3.2) for obtaining
edge signal values from recorder entries. It also defines a set of
node types (Sec. 3.1) for executing self-consistency checks using
the signal values on the edges.

Once a BLoG is constructed, post-silicon bug localization flow
of the original IFRA is followed until high-level analysis is
performed. The inconsistency returned from the high-level
analysis initializes the BLoG (see Sec. 5). Low-level analysis is
then performed by traversing the BLoG (Fig 3.1) using BLoG
traversal algorithms (Sec. 5).

Figure 3.1. Bug localization flow using BLoG-assisted IFRA.

3.1 BLoG NODE TYPES
The BLoG framework defines seven node types, representing

different “types” of processor design blocks (Fig. 3.2). A final
default type is used for blocks not belonging to any of the seven
types. Each node type has its own set of self-consistency checks
(discussed in Sec. 5.2).

The types are broadly classified into storage and non-storage
types. Storage types represent design blocks containing hardware
structures with variable propagation delays from data entry to exit;
non-storage types represent hardware structures with fixed delays
between data entry and exit known a priori.

Node Type 1) Random-access: Storage with index-based entry
management (e.g., register file, register alias table).

Node Type 2) Associative: Storage with associative entry
management (e.g., reservation station, TLB).

Node Type 3) Queue: Storage with first-in-first-out entry
management (e.g., re-order buffer, load queue, store data queue,
store address queue, instruction queue).

Node Type 4) Transformation: Non-storage structure that
modifies input values and produces different output values (e.g.,
decoder, address generator, comparator, ALU).

Node Type 5) Connection: Non-storage structure that
propagates input values to output values without modification but
after some fixed delay (i.e., series of pipeline registers).

Node Type 6) Select: Non-storage structure that takes two input
values and chooses one as an output value according to control
signal values (e.g., forwarding path, register/immediate select,
next-PC select, instruction select).

Node Type 7) Protected: Transformation or Connection type
with built-in error detection techniques such as parity bits for
arrays and residue codes for arithmetic units. The Protected type
is not necessary if such error detection techniques are not present.

Node Type 8) Default: Any non-storage structure not included
in the aforementioned types (e.g., scheduler, load replay handler).

3.2 BLoG EDGE ATTRIBUTES
Self-consistency checks, performed at each node, require signal

values corresponding to each node’s inputs and outputs. The edge
attributes provide a framework for obtaining such values from the
recorded footprints. Each edge has the following five attributes:

Attribute 1) Recorder: specifies which recorder to look up in
order to obtain the data or control signal values for that edge.

Attribute 2) Auxiliary-information-field selector: specifies
which auxiliary information field (e.g., in Table 6.2) in the
recorder to look up for obtaining signal values.

Attribute 3) A footprint pointer: specifies which entry in the
recorder to look up for obtaining signal values.

Attribute 4) Set of <outgoing edge, edge dependency> pairs:
specify edge dependencies for a given incoming edge with respect
to each outgoing edge.

Attribute 5) Data or control signal values
During BLoG construction, attributes 1, 2 and 4 are specified

for BLoG edges. When inspecting a node during BLoG traversal,
we start with a footprint pointer at an outgoing edge of the node.
Using this pointer and the pre-specified attributes for the outgoing
edge, we derive footprint pointers for the incoming edges of the
node (Sec. 5.1). The corresponding signal values (in the entries
pointed at by the footprint pointers) are obtained by looking up
the specified auxiliary information fields of the assigned recorders
(Attributes 1 and 2 of the incoming edges). To derive footprint
pointers for incoming edges, we use edge dependencies. Each
edge dependency describes a relationship between a single
outgoing and incoming edge. The six edge dependency types in
our BLoG framework are:

Dependency Type 1) Same instruction: signal values (attribute
5) on the outgoing and incoming edges specified in the pair
belong to the same instruction (e.g., a Select-type node takes the
opcode of an instruction as a control input and selects a register or
immediate value for the same instruction).

Dependency Type 2) Same architectural register name:
signal values on the outgoing and incoming edges specified in the
pair belong to the same architecture register (e.g., a Connection-
type node passes a register value produced by one instruction to
another instruction that uses the same register name).

Dependency Type 3) Same physical register name: signal
values on the outgoing and incoming edges specified in the pair
belong to the same physical register (e.g., a Random-access-type
node uses physical register name as index to access register
value).

Dependency Type 4) Same memory address: signal values on
the outgoing and incoming edges specified in the pair belong to
the same memory address (e.g., an Associative-type node uses
memory addresses as tags for associative access).

Dependency Type 5) Pipeline flush: signal value on the
incoming edge is a pipeline flush event (e.g., a Queue-type node
is flushed by a pipeline flush event).

Dependency Type 6) Default: Any relationship not included in
the aforementioned types.

4. BLoG CONSTRUCTION
BLoG construction involves constructing nodes and edges using

the following two inputs: 1) Microarchitecture description of a
processor in the form of a microarchitectural block diagram from
an architectural manual [Colwell 05] or a language-based
specification [Halambi 99, Gorjiara 07] (e.g., similar to [Ketkar
09]); 2) Recorder field description (e.g., Table 6.2).

4.1 Node Construction
A given chip design is divided into as many partitions as

possible, while further maximizing: 1) the number of partitions
(BLoG nodes) that can be classified into one of seven non-default
node types; 2) the number of resulting partition interconnects
(BLoG edges) whose signal values can be obtained from recorded
footprints. Although more partitions enable more fine-grained bug
localization, fine-grained partitions without obtainable signal
values may reduce bug localization accuracy.

Once formed, each partition is assigned one of eight node types,
ideally a non-default node type. Partitions with storage are
assigned types depending on how stored entries are managed.
Partitions with protection mechanisms are assigned the Protected
type. Partitions consisting of a series of pipeline registers are
assigned the Connection type. The Transformation and Select
types are used for the remaining partitions with data input/outputs
defined. All other partitions belong to the Default type. Figure 5.1
shows an example for a simple branch unit.

4.2 Edge Construction
Once the partitions are defined, partition interconnects become

BLoG edges. For each edge, attributes 1, 2 and 4 are assigned by
inspection (Sec. 3.2).

5. BLoG TRAVERSAL
BLoG traversal takes four inputs: 1) a BLoG; 2) recorded

footprints; 3) a starting edge, where BLoG traversal starts; and 4)
a footprint pointer assigned to the starting edge. The last two
inputs are obtained from <location, footprint> pair, returned by
IFRA high-level analysis (Fig. 3.1). For example, if the high-level
control-flow analysis (explained in [Park 09]) returns <PC
register, 435th entry of fetch-stage recorder> as an inconsistency,
then the resulting starting edge is the outgoing edge of the BLoG
node corresponding to PC register (Fig. 5.1), and the resulting
footprint pointer points to the 435th entry of the fetch-stage
recorder assigned to that edge.

The BLoG traversal algorithm is shown in Fig. 5.2. After BLoG
traversal terminates, all the candidate labels are returned to report
the set of bug candidates in the form of <location, footprint>.

5.1 Footprint-propagation Rules
Footprint-propagation rules help obtain the footprint pointers of

the incoming edges once an outgoing edge has an assigned
footprint pointer. There are six footprint-propagation rules, each
associated with an edge dependency. We present the rules
corresponding to dependency types “Same architectural register”
and “Default”. The rest can be found in [Park 10].

We define a new operator, follow_link(), which takes three
inputs – a source recorder, a source footprint pointer (points at the
source recorder entry that contains a footprint belonging to a
particular instruction), and a destination recorder – and returns a
destination footprint pointer (points at a destination recorder entry
that contains the footprint belonging to the same instruction as the
source footprint pointer). The operation follows the links among
footprint recorder entries established during footprint linking step.

Denote the first (recorder) and third (footprint pointer) attributes
of the outgoing edge (whose footprint pointer has already been
assigned) by Ro and Po, respectively, and the first and third
attributes of the incoming edge (whose footprint pointer we are
interested in finding) by Ri and Pi.

• Same architectural register: Perform follow_link (Po, Ro,

fetch-stage recorder) to obtain a new pointer into a fetch-stage

recorder entry, Pf. Denote the architectural destination register
used by the instruction pointed by Pf as R. Move Pf towards older
entries until an instruction that uses R as its operand is found.
Perform follow_link (Pf, fetch-stage recorder, Ri) to obtain Pi.

• Default: Unless customized propagation rules are designed
for the default case, assign NULL to Pi and report that no
information is available.

If the end of recorded history is reached (i.e., the sought
footprint was overwritten due to limited storage) while performing
follow_link() or moving pointers, return NULL for Pi .

Figure 5.1. Example starting edge (without edge attributes).

Figure 5.2. BLoG traversal algorithm.

Figure 5.3. Node traversal algorithm.

5.2 Location-propagation Rules
Given a node with signal values on incoming and outgoing

edges, location-propagation rules are responsible for:
1. Propagating error labels from outgoing to incoming edges;

and/or

2. Creating candidate labels on one of the node’s localization

regions (individual regions discussed in Table 6.1)
Each rule requires signal values on some incoming edges, but

values may not be present due to NULL footprint pointer. There
are two possible reasons (Sec. 5.1):

• The end of history is reached. In this case, any rule using this
incoming edge will not produce any error or candidate labels.

• Not all edge attributes are specified or a Default-type edge
dependency is used. In this case, any rule using this incoming
edge will produce an error label on this edge with a footprint
pointer obtained by following the link from the pointer on the
outgoing edge to the recorder assigned to the incoming edge (i.e.,
assuming same instruction). If the rule can place a candidate label,
then this label is placed with the pointer on the outgoing edge.

Location-propagation rules for two node types are presented
next. Rules for remaining node types appear in [Park 10].

5.2.1 Location-propagation Rules for a Select-type Node
A Select-type node consists of a multiplexer with logic driving

the select decision (Fig. 5.4). The first rule checks whether the
data output value matches any of the data input values. The
second rule checks whether there are multiple instances of current
control input values by searching footprints in the recorder
assigned to the control input edge. If multiple instances are found,
the rule checks whether same select decisions were consistently
made at all times. If these two rules do not find a problem, then
the error label is propagated to the control input edge and the
selected data input edge (determined by the output value).

The algorithm is shown below. We denote the two data input
edges as X and Y, the data output edge as Z, and control input
edge as C. Denote footprint pointers assigned to C, Z, X, Y as Pc1,

Pz1, Px, Py. Denote temporary footprint pointer variables as Pc2,

Pz2, Pz3. Denote signal values obtained using Pc1, Pc2, Pz1, Pz2,

Px and Py as Vc1, Vc2, Vz1, Vz2, Vx, Vy. Note that the decrement
operator moves the pointer towards older entries in the recorder
and then wraps around. There are three outcomes.

Outcome 1) Candidate label on the multiplexer with Pz1 as the
footprint.

Outcome 2) Candidate label on the logic driving the select
decision. For this case, there can up to two candidate labels with
different footprints. The algorithm specifies the footprints.

Outcome 3) No error in the node. Create error label on the
control input edge and the selected data input edge with Pc1 and
Px as the footprints.

Note that, executing these rules does not require any simulation.

IF (Vz1≠Vx) AND (Vz1≠Vy) THEN Outcome 1;

ELSE{

 Pc2 = Pc1; Pz2 = Pz1;

 DO{ Decrement Pc2, Pz2, Px, Py;

 IF (Pc1=Pc2) THEN

 Outcome 2 with Pz1 and Outcome 3;

}WHILE (Vc1≠Vc2);

IF (Vz1=Vx AND Vz2=Vy) THEN{

 Pz3 = Pz2;

 DO{ Decrement Pc2, Pz2, Px, Py;

 IF (Pc1=Pc2) THEN

 Outcome 2 with Pz1 and Pz3;

 }WHILE (Vc1≠Vc2);

 IF(Vz1=Vx)AND(Vz2=Vy)THEN

 Outcome 2 with Pz1;

 ELSE outcome 2 with Pz3;}

ELSE Outcome 3;}

Figure 5.4. Location-propagation rule outcomes.

5.2.2 Location-propagation Rules for a Default-type Node
A Default-type node has little localization capability: i.e., given

an error at the node’s outgoing edge, the rules declare the node as
a candidate by default and propagate the error to all incoming
edges. There are three ways of handling Default-type nodes:

Method 1) Use it as is.
Method 2) Merge with predecessor/successor nodes so that the
merged node is of non-default type.
Method 3) Create customized location-propagation rules.

6. RESULTS
We used the techniques in this paper to construct a BLoG for

the Intel Nehalem microarchitecture and evaluated BLoG-assisted
IFRA on an industrial-grade, cycle-accurate IA-32
microarchitecture simulator that is extensively used during
product development.

The constructed BLoG contains 160 BLoG nodes, of which
86% are non-default types. Table 6.1 shows the number of nodes
used and the localization regions for each type. The Default-type
nodes were manually augmented (details in [Park 10]) with
customized location-propagation rules adapted from the IFRA
decision diagram in [Park 09].

Table 6.1. BloG node type distribution for Intel Nehalem.

Node type
Number
of nodes

Localization regions

Random-
access

6
Read/write circuitry,

clear handler

Associative 8
Read/write circuitry,

tag handler, clear handler

Queue 7
Enqueue/dequeue circuit,

FIFO management
Modifying 22 Entire node

Connection 46 Entire node

Select 42
Multiplexer,

logic driving select signal

Protected 6
No error occurs in the node

(pessimistic)
Default 23 Avg(2), std(1), min (1), max (4)

Total number of nodes: 160
Total number of locations: 269

The IA-32 microarchitecture simulator was augmented with
IFRA recording infrastructure (Table 6.2). We also included IA-
32 in-built exceptions [Intel 08] as post-triggers for BLoG-
assisted IFRA. While running programs from the SPECint 2006
benchmark suite, error injection campaign was conducted at error
injection sites grouped into 32 categories (details in [Park 10]).
Each category consists of 1-400 bits. To be pessimistic, no errors
were injected in array structures or arithmetic units which are
assumed to be protected using parity and residue codes,
respectively. All bugs were modeled as single bit-flips at flip-flops
to target hard-to-repeat electrical bugs. This is an effective model
because electrical bugs eventually manifest themselves as

incorrect values arriving at flip-flops for certain input
combinations and operating conditions [McLaughlin 09].

Out of over 30,000 error injection runs, 2,560 runs resulted in a
system failure. Figure 6.1 presents the localization results for
those 2,560 runs. For over 90% of the cases, BLoG-assisted IFRA
identified the correct candidate that matched both the location (1
out of 269) and cycle (1 out of over 1,000 footprints) of error
injection. Out of these 90% cases with correct localization, BLoG-
assisted IFRA returned a single correct bug candidate (i.e.,
<location, footprint> pair) for 62% of the cases (referred to as
exactly localized) and returned multiple candidates (average of 6
out of over 269,000 possible <location, footprint> pairs) for the
remaining 38% of the cases (referred to as multiple candidates

localized). To be pessimistic, the no localized category includes
any cases where either the location or the footprint is incorrect.

Table 6.2.Auxiliary information for recorder entries
corresponding to various pipeline stages.

Auxiliary information

Pipeline
stage Description

Bits
per

entry N
u

m
b

e
r

o
f

R
e
c
o

rd
e
rs

E
n

tr
ie

s
 p

e
r

R
e
c
o

rd
e
r

Fetch Instruction Pointer 32 4 512

Decode
Microcode, beginning
of macroinstruction,

decoded results
24 4 1,024

Alloc
3-bit residue of register

name
9 4 1,024

Schedule
4-bit residue of

operands
8 4 1,024

IEU 4-bit residue of result 4 3 1,024
AGU/
MEM

4-bit residue of result;
memory address;

36 2 1,024

Commit Exceptions 4 4 1,024

Total storage required for all recorders:
(Each entry contains an additional 8-bit ID)

66KBytes

Figure 6.1. BLoG-assisted IFRA bug localization summary.

7. RELATED WORK
Comparison of IFRA vs. existing post-silicon bug localization

techniques has been extensively discussed in [Park 09] and is not
included in this paper. Unlike most existing techniques, BLoG-
assisted IFRA overcomes major barriers because it does not rely
on system-level failure reproduction or system-level simulation.
Previous work related to the BLoG idea may be largely classified
into two categories: high-level test generation (e.g., [Lee 94,
Tupuri 97, van Campenhout 99]) and circuit-level fault diagnosis
(e.g., [Caty 05, Venkataraman 96]). Table 7.1 presents a
qualitative comparison of BLoG, which has been demonstrated
for a large and complex design, vs. related techniques. While error
detection techniques for processors in the context of fault-tolerant

computing (e.g., [Lu 82, Oh 02]) also use self-consistency checks,
their main purpose is to detect errors only. The specific bug
localization application enables us to perform deep self-
consistency analysis (as presented in this paper) that is generally
difficult and expensive to perform on-line during system operation
for fault-tolerant computing.

Table 7.1. Comparison with existing techniques.
 High-level

test
generation

Circuit-level
diagnosis

BLoG

Purpose
Test

patterns
Defect

diagnosis
Bug

localization
Failure

reproduce
N/A (-)Required

(+) Not
required

System-
level

simulation
(-)Required

(+)Not
required

Abstraction Arch./circuit Circuit Arch.
Granularity/
Complexity

Medium High Low

8. CONCLUSIONS
BLoG-assisted IFRA overcomes an outstanding challenge in

post-silicon validation of processors: post-silicon bug localization
(which is the most expensive and difficult step) without relying on
system-level failure reproduction or system-level simulation.
While we presented the idea of IFRA in the past, the major
innovations in this paper is the idea of BLoG which enables
systematic construction and automated execution of IFRA’s post-
analysis for bug localization purposes. Without BLoG, it would
be difficult, if not impossible, to apply IFRA to new
microarchitectures. The BLoG framework is highly effective and
practical as demonstrated by high bug localization accuracy of
90% obtained for a large complex commercial microarchitecture –
the Intel Nehalem design. The BLoG concept creates several
interesting research directions:

• Automatically constructing BLoG from a language-based
specification or an RTL description.

• Automatically selecting what information to record for a
BLoG borrowing concepts from research done at the circuit-level
[Ko 08].

• Enhancing the idea of BLoG for homogeneous /
heterogeneous multi-core systems, and system-on-chips (SoCs).

9. ACKOWLEDGMENTS
The authors thank Joe Schutz, Shekhar Borkar, Per

Hammarlund, Ronak Singhal, Mahesh Madhav, Nagib Hakim, Jag
Keshava, Gadi Ziv, Doug Josephson, Priyadarsan Patra and Jim
Schwartz of Intel for productive collaboration, guidance and
support. This research is supported in part by the Semiconductor
Research Corporation and the National Science Foundation.
Sung-Boem Park was also partially supported by the Samsung
Scholarship.

10. REFERENCES
[Abramovici 06] Abramovici, M., et al., “A Reconfigurable

Design-for-Debug Infrastructure for SoCs,” Proc. Design

Automation Conf., pp. 7-12, 2006.
[Casazza 09] Casazza, J., “First the Tick, Now the Tock: Intel

Microarchitecture (Nehalem),” Intel Corporation White paper.
[Caty 05] Caty, O., P. Dahlgren, and I. Bayraktaroglu,

“Microprocessor Silicon Debug based on Failure Propagation
Tracing,” Proc. Intl. Test Conf., pp. 293-302, Nov. 2005.

[Colwell 05] Colwell, R., et al., “Intel’s P6 Microarchitecture,”
Chapter 7 in Shen and Lipasti, Modern Processor Design, New
York: McGraw-Hill, 2005.

[Gorjiara 07] Gorjiara, B., M. Reshadi, and D. Gajski, "Generic
Architecture Description for Retargetable Compilation and
Synthesis of Application-Specific Pipelined IPs," Proc. Intl.

Conf. on Computer Design, pp. 356-361, Oct. 2007.
[Halambi 99] Halambi, A. et al. “EXPRESSION: A Language for

Architecture Exploration through Compiler/Simulator
Retargetability,” Proc. Design Automation and Test in Europe,
pp.485-450, 1999.

[Josephson 01] Josephson, D., S. Poehlman, and V. Govan,
“Debug Methodology for the McKinley Processor,” Proc. Intl.

Test Conf., pp. 451-460, 2001.
[Josephson 06] Josephson, D., “The Good, the Bad, and the Ugly

of Silicon Debug,” Proc. Design Automation Conf, pp. 3-6,
2006.

[Intel 08] “Intel® 64 and IA-32 Architectures Software
Developer’s Manual Volume 3A: System Programming Guide,
Part 1,” Order number: 253668-027US, 2008.

[Ketkar 09] Ketkar, M. and E. Chiprout, “A Microarchitecture-
based Framework for Pre- and Post-silicon Power Delivery
Analysis,” Proc. Intl. Symp. Microarchitecture, pp. 178-188,
2009.

[Ko 08] Ko, H.F. and N. Nicolici, “Automated trace signals
identification and state restoration for improving observability
in post-silicon validation,” Proc. Design, Automation and Test

in Europe, pp. 1298-1303, 2008.
[Lee 94] Lee, J. and J.H. Patel, "Architectural level Test

generation for microprocessors," IEEE Trans. CAD, Vol. 13,
No. 10, pp.1288-1300, Oct. 1994.

[Lu 82] Lu, D.J., “Watchdog Processors and Structural Integrity
Checking,” IEEE Trans. Computers, Vol.31, No.7, pp.681-685,
July 1982.

[McLaughlin 09] McLaughlin, R., S. Venkataraman, and C. Lim,
“Automated Debug of Speed Path Failures using Functional
Tests,” Proc. IEEE VLSI Test Symp., pp. 91-96, 2009.

[Oh 02] Oh, N., P.P. Shirvani, and E.J. McCluskey, “Control-
flow Checking by Software Signatures,” IEEE Trans.

Reliability, Vol. 51, No. 2, pp.111-122, March 2002.
[Park 09] Park, S., T. Hong and S. Mitra, “Post-Silicon Bug

Localization in Processors using Instruction Footprint
Recording and Analysis (IFRA),” IEEE Trans. CAD, Vol. 28,
No. 10, pp. 1545-1558, Oct. 2009.

[Park 10] Park, S., A. Bracy, H. Wang and S. Mitra., “BLoG:
Post-Silicon Bug Localization in Processors using Bug
Localization Graph,” Technical Report, Stanford University,
2010, url: http://www.stanford.edu/group/rsg_csl.

[Patra 07] Patra, P., “On the Cusp of a Validation Wall,” IEEE

Des. Test Comput., Vol.24, No.2, pp.193-196, March 2007.
[Tupuri 97] Tupuri, R.S., J.A. Abraham, “A Novel Functional

Test Generation Method for Processors using Commercial
ATPG,” Proc. Intl. Test Conf., pp. 743-752, 1997.

[van Campenhout 99] van Campenhout, D., T. Mudge and J.P.
Hayes, "High-Level Test Generation for Design Verification of
Pipelined Microprocessors," Proc. Design Automation Conf.,
pp. 185-188, 1999.

[Venkataraman 96] Venkataraman, S., I. Hartanto, and K. Fuchs,
“Dynamic diagnosis of sequential circuits based on stuck-at
faults,” Proc IEEE VLSI Test Symp., pp.198-203, 1996.

