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Abstract

Some instructions have more impact on processor perfor-
mance than others. Identification of these critical instruc-
tions can be used to modify and improve instruction pro-
cessing. Previous work has shown that the criticality of
instructions can be dynamically predicted with high accu-
racy, and that this information can be leveraged to optimize
the performance of load value prediction and instruction
steering for clustered architectures. In this work, we revisit
the idea of criticality, but we propose several processor en-
hancements that can exploit criticality information and can
be directly applied to modern x86 microarchitectures. For
the investment of a small (less than 1KB) criticality pre-
dictor, we can make a conventional single-read-port data
cache achieve the performance of an ideal dual-read-port
cache, yielding an average 10% performance improvement.
Our remaining techniques can reuse the predictor (i.e., no
additional overhead) to further optimize other aspects of
load processing (e.g., caching decisions, store-to-load for-
warding, etc.), yielding an overall performance improve-
ment of 16% over a conventional processor. Some of these
techniques also allow us to decrease power and area costs
for several related hardware structures.

1. Introduction
The sensitivity of overall processor performance to the exe-
cution latencies of different instructions may vary for many
reasons. For some instructions, any increase in the instruc-
tion’s execution latency, even by a single cycle, will result
in a corresponding increase in overall program execution
time. Such instructions are said to be on the program’s crit-
ical path of execution (or the instruction is called critical).
For other instructions, one may be able to increase the la-
tency of execution (or defer the start of execution) by one
or more cycles without impacting performance.

One of the limitations of past work on exploiting the
criticality of instructions is that the proposed applications
are predominantly geared toward specialized microarchitec-
tures. The first primary application area was for dynamic

value prediction [7, 11, 31], which after years of research
has not been adopted in a commercial processor. The other
primary application area is for clustered microarchitectures
with cross-cluster bypass penalties [11, 23, 31] or asymmet-
ric power or performance characteristics [5, 10, 19, 24], nei-
ther of which will be used in any known future main-stream
commercial processors. Other proposed applications in-
clude the Non-Critical Load Buffer [12] and the Penalty
Buffer [4], both of which augment the DL1 cache with
an auxiliary buffer that stores data accessed by non-critical
loads. Although the proposed buffers are relatively small,
adding any new structures to the DL1 processing path is
complex as memory accesses must get routed to multiple
structures, results require extra multiplexing, and it also rep-
resents one more structure that must be snooped for main-
taining cache coherence.

So while research has shown that the criticality of in-
structions, and loads in particular, can be accurately pre-
dicted, the hardware applications of criticality prediction so
far seem to be limited to more specialized or niche microar-
chitectures. In this work, we describe a simple but effec-
tive load criticality predictor, and then propose six new and
simple criticality-based optimizations that can be directly
applied to modern, conventional x86 microprocessor orga-
nizations. Our applications are divided into three categories
based on where in the load’s execution pipeline they are
applied. The first class involves the data cache port of a
processor where we use criticality predictions to make a
single-load-port data cache perform almost as well as an
ideal dual-load-port version. The second class deals with
the memory disambiguation and store-to-load forwarding.
The third class includes applications that modify the place-
ment of data in the Level 1 data cache (DL1) to increase the
hit-rates of critical loads. While the load-port optimization
for the DL1 has the greatest performance benefit, once the
overhead for the criticality predictor has been paid for, im-
plementing any (or all) of the remaining optimizations are
effectively “free.” By simultaneously combining several of
our criticality-based optimizations, not only is the perfor-
mance benefit higher, but the cost of the hardware predictor
also gets amortized across all of these multiple optimiza-
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Figure 1: Dataflow graph that depicts how delaying the execution
of some instructions increases the critical path.

tions.
The rest of the paper is organized as follows. Section 2

reviews the concept of load criticality and provides a brief
overview of the most relevant prior research. Section 3 de-
scribes the design and operation of our proposed critical
load predictor and Section 4 describes our simulation infras-
tructure. We then propose and evaluate several applications
in Sections 5-7, and we consider the combination of these
techniques in Section 8. We also compare our load criti-
cality predictor with another previously proposed criticality
predictor in this section. We draw some final conclusions in
Section 9.

2. Background and Related Work
In this section we first define the criticality of instructions
and explain the conditions that make some loads more crit-
ical than others. We then briefly describe some of the most
relevant prior studies and highlight some important obser-
vations.

2.1. Instruction (and Load) Criticality
Criticality can be described with a program’s data-
dependency graph; there exists one or more paths through
the graph with a maximum length; such a path is called a
critical path. Any instruction that appears in this path (or
paths) is critical. Consider the dataflow graph shown in
Figure 1(a). If each instruction takes a single cycle to ex-
ecute, then the longest path through this graph (the critical
path) has a length of four, starting from I1 and ending at
I4. Therefore, all four instructions I1 to I4 are critical in-
structions. For example, Figure 1(b) shows that when I2’s
execution is delayed by a cycle, then length of the longest
path increases. In contrast, instruction I0 is not critical be-
cause we can delay its execution (or increase its execution
latency) and the critical path length remains unchanged as
shown in Figure 1(c). Note that at some point, if we delay
I0 by enough cycles (in this case more than two cycles), it
can form a new longest path and therefore become critical.

Critical loads are simply load instructions that are criti-
cal. The reason we focus on loads is that they often have
long latencies due to cache misses in the L1 or L2, and

therefore are far more likely to lie on the critical path of
execution. The criticality of loads can manifest in many
ways. First, there is the simple case where the load is on the
critical path in the traditional dataflow sense, as described
earlier. Second, delaying loads that have a mispredicted
branch as a child (or a grand-child, etc.) directly delays the
detection and subsequent recovery from the branch mispre-
diction. Third, when a load is the oldest instruction in the
processor and suffers a long latency cache miss, the reorder
buffer may become full and new instructions (regardless of
whether they are data dependent on the load or not) will not
be able to allocate resources and execute.

The observation that some instructions are critical while
others are not has been known for quite some time [4, 28].
More recently, work has gone into carefully quantifying the
properties of the criticality [27, 32] and slack of instruc-
tions [10], as well as the dynamic predictability of critical-
ity [11, 31].
2.2. Predicting Instruction Criticality
In this sub-section, we focus on previous proposals to pre-
dict instruction criticality.
2.2.1. Dataflow-Based Prediction
Fields et al. proposed a token-passing algorithm that de-
velops dependence chains and learns the critical path of
the program [11]. The predictor builds dependence graphs
based on last-arriving chains of instructions assuming that
the critical path is likely to reside along the last-arriving
edges. The corresponding hardware implementation uses an
array that tracks certain tokens that are distributed randomly
at different instruction points. A set of pre-decided rules
builds a chain of last-arriving edges from the root instruc-
tions (where the tokens are planted) along which tokens are
propagated. All tokens that are propagated are checked for
“liveness” after a certain number of instructions. If a token
is alive when checked, the instruction at which the token
was inserted is on the path of a last arriving edge and is
deemed to be critical. While very accurate due to its ex-
plicit tracking through the program’s dataflow graph, this
approach is difficult to implement in hardware due to the
management of the token-based array, token free list, and
the simultaneous tracking of multiple tokens.
2.2.2. Criticality Prediction from Implicit Criteria
Several research proposals for criticality predictors make
use of information other than explicit dataflow to infer crit-
icality in a more heuristic-based manner. Fisk and Bahar
proposed two indicators of load criticality [12]. First, loads
that cause the processor utilization to fall below a certain
threshold are considered to be critical. The second heuristic
considers the number of instructions that are added to the
load’s “dependency chain” over the course of a miss. To
measure the number of dependents added during the course
of a miss, the predictor needs to first track the number of de-
pendencies at the time when a cache miss is detected, and



again when the miss returns, to check for additional depen-
dencies. Their proposed implementation adds counters to
the load queue and MSHRs, plus some extra state to track
which counter should be updated. Particularly troublesome
for implementation is the need to communicate or broad-
cast consumer information from the allocation stage to the
MSHR entries behind the DL1 cache. One interesting as-
pect of these predictors is that a load miss acts as the trigger
to start tracking the criticality of an instruction, thereby re-
ducing the number of instructions that need to be tracked.

Tune et al. also proposed several criticality predictors
based on simple heuristics [31]. The heuristics consider
the age of the instructions, the number of dependents, and
the number of dependents made ready. While the heuristics
are easy to describe, they are not all easily implementable
in hardware. For example, the “QOldDep” criteria marks
each instruction in the scheduling queue (RS) that is depen-
dent on the oldest instruction that is in the queue as critical.
This requires first knowing the oldest instruction (which
may change every cycle), and then somehow broadcasting
the information to all other instructions so that they can be
marked as critical if they are dependent. Another heuris-
tic, “QCons” checks each completing instruction and marks
the one whose result is used by the most instructions in the
queue that cycle as critical. Implementing this in hardware
would be expensive as it requires some way to immediately
detect the number of physical register tag matches and then
compare which instruction caused the most.

Srinivasan et al. proposed a more specific heuristic-based
predictor that considered the instruction type of the depen-
dents [27]. Their scheme proposes three conditions to clas-
sify a load as critical: 1) any of its dependents is a mispre-
dicted branch, 2) any of its dependents is a load that misses
in the cache, 3) the number of independent instructions is-
sued (within a certain number of cycles) following this load
is below a pre-determined criticality threshold. The predic-
tor table used in this proposal is comprised of dependency
vectors, one per ROB-entry which tracks the number and
type of instructions waiting for a specific load. This depen-
dence vector increases with both the ROB size and the LQ
size and can be a considerable area overhead.

3. Our Load-Criticality Predictor
Many of the previously proposed criticality predictors,
while effective, are fairly complex to implement directly
in hardware without severely impacting one or more ma-
jor functional unit blocks (e.g., the out-of-order scheduling
logic). In this section, we describe our simple yet effective
criticality predictor used in this study.

3.1. Basic Operational Description
As a base principle for our load criticality prediction al-
gorithm, we use the observation made by Tune et al. and

Fisk and Bahar that a load instruction with many depen-
dents is likely to be on the critical path. A simple statistical
explanation for this is that an instruction with many con-
sumers has that many more chances for one of them to be
on the critical path, thereby making the original parent more
likely to be critical as well. For our algorithm, the predic-
tion hardware includes two main components: a Consumer
Collection Logic (CCL) and a Critical Load Prediction Ta-
ble (CLPT).

Consumer Collection Logic The CCL is responsible for
collecting the number of direct consumers (i.e., the load’s
children, but not its grand-children or other deeper descen-
dants) that each load has while the load is in the instruction
window. The CCL inspects every allocated instruction: if it
is a load, the CCL sets a bit associated with the logical reg-
ister that this load writes to, indicating that the instruction
which wrote to this register is a load. This bit is concate-
nated to the physical register mapping stored in the register
alias table (RAT). Additionally, the CCL resets a counter in
the ROB entry corresponding to the load. If the instruction
is not a load, then the CCL reads the input operand map-
pings from the RAT and determines if the parent is a load.
Note that intra-group dependencies are also automatically
handled by the existing intra-group dependency check and
bypass logic, and we simply piggy-back on the regular RAT
reads and writes so we do not introduce the need for any ad-
ditional RAT ports. If the source is a load, we increment the
counter associated with load’s ROB entry.

Critical Load Prediction Table When a load instruc-
tion commits, the consumer count that is associated with its
ROB entry is written to the CLPT, which is a simple, un-
tagged, PC-indexed table of k-bit counters. For each load
that we allocate, we use the load’s PC to access the CLPT
to determine the number of consumers it had the last time
we saw the same load. Based on the consumer count as-
sociated with its entry, a load is predicted to be critical or
not. For a single application of load criticality, each entry
of the table would only need to have a bit to store whether
the load is critical or not, which in turn would be deter-
mined by whether the number of consumers exceeded some
pre-specified threshold. In this paper, we examine multiple
applications of load criticality where each technique may
have different criticality criteria (i.e., different thresholds).
By storing the consumer count directly in the CLPT, we
can reuse the same prediction structure across all of our op-
timizations, even if each optimization requires a different
criticality threshold.

3.2. Example
The following example demonstrates how the CCL collects
consumer information, and how the CLPT gets updated.
Consider the four instructions listed in Figure 2. Even
though the CCL is responsible for controlling all of the data
collection, we do not explicitly show it in the figures for
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Figure 2: Example showing the collection of consumer counts and update to the prediction table.

simplicity. For each load, its ROB entry has a counter that
tracks the number of immediate consumers. Every RAT en-
try has a load bit that indicates if the instruction that writes
to the corresponding logical register is a load. Each snap-
shot corresponds to a specific operation on a single instruc-
tion. The example starts with the CLPT with some counter
values that would have been collected the last time these
loads were executed. All updates in a given step are high-
lighted with bold text.

1. Alloc I0 In this step, the first load, I0 is allocated.
Since it is the first instruction, it is assigned ROB index 0.
This ROB ID also serves as the renamed physical register
(preg). The load bit is set in the RAT indicating that the in-
struction that wrote to register R1 is a load. The consumer
counter in the ROB entry is set to 0. In parallel with this,
the load PC A is used to look up the CLPT. The entry in the
CLPT has a value of 3 indicating that the last time this load
was seen, it had three consumers. Depending on the criti-
cality threshold, this instruction may be marked as critical.

2. Alloc I1 In this step, the second load, I1 is allocated.
It is assigned ROB ID 1, and the consumer counter in the
ROB entry is set to 0.

3. Alloc I2 In this step, the first add is allocated. First, the
RAT entries that correspond to the source operands of the
add are checked to see if either source is a load. For this add,
the RAT entry for the left operand indicates that its parent
is a load. Using the ROB ID stored in the RAT, we now
increment the corresponding child counter in ROB entry 0
(shown shaded in the ROB). Similarly, the right parent is
also a load, and so we also increment the respective counter
in ROB entry 1 (also shaded).

4. Alloc I3 In this step, the second add is allocated.
Checking the RAT, we see that the left source is a load, and
so the counter in ROB 0 is incremented. The right operand

is present in the ROB, but since the load-bit in the RAT in-
dicated that the right parent is not a load, no further actions
are taken. This add instruction is inserted into the ROB at
entry 3.

5. Commit I0 In this step, load I0 commits. We copy its
counter value from the ROB into the corresponding CLPT
entry to reflect its new consumer count which is 2. This
new consumer count value will be used to predict the load
criticality the next time Load A is encountered (or any other
load that aliases to the same predictor entry).

3.3. Issue-Rate Filtering of the Predictor
In the preceding sub-sections, we described and demon-
strated the basic operation of our load criticality predic-
tor. While the number of in-flight consumers of a load is
a strong indicator of its importance, the load’s criticality
also depends on the dynamic processor conditions while the
load is in the instruction window. Consider a load with five
direct consumers in the window. Such a load will be con-
sidered critical if the criticality threshold is four. If there
are enough independent instructions in the window that can
execute in parallel with this load however, then the latency
of the load may not significantly impact the performance
of the processor. We restrict our algorithm to only collect
consumer counts when the processor is in a period of low
processor utilization or a “critical period.” The idea is that
when the issue rate of the out-of-order processor is low, then
the probability of finding one or more long-latency, critical
loads is higher. Similarly, when the issue rate is high, most
loads will unlikely be critical; even those that are critical
will likely have relatively low tautness (the number of cy-
cles that can potentially be saved before another path be-
comes critical [32]).

Restricting the predictor’s training and usage based on
issue rate has two advantages. First, we do not need to mon-



itor loads during periods of sufficient performance. This
can reduce the storage requirements of the CLPT because
collecting data for fewer loads reduces the aliasing in the
CLPT. Consider a program with two alternating function
calls f(A) and f(B). Due to data-dependent control flow
within the function, f(A) may have six loads that always
hit in the cache while f(B) only has two loads that usu-
ally miss. Without filtering, these eight loads would need
at least eight CLPT entries to store all of their criticality
information. Since f(A)’s execution maintains a high in-
struction throughput due to the cache hits, criticality-based
optimization of the loads in f(A) are unlikely to provide
much benefit, and so storing the corresponding criticality
predictions in the CLPT wastes space. If the CLPT updates
only occur during periods of low performance, then updates
from f(A) will be entirely filtered out, and only the two up-
dates from f(B) will be stored in the CLPT. The result is
that the CLPT only needs two entries to store this informa-
tion. Another secondary advantage of filtering CCL/CLPT
activity is that it may not be necessary to explicitly account
for branch or path history when making criticality predic-
tions. The two loads in f(B) may have the same PCs as two
of the loads in f(A). If the predictors are always updated,
then it may be necessary to include, for example, branch
history to distinguish between the different instances of the
loads. At least in this example, our filtering mechanism
would simply eliminate the loads from f(A), eliminating the
path-ambiguity from the predictor. To determine the criti-
cal period, we make use of the issue rate of the processor.
Every cycle the number of instructions issued is monitored
and every s cycles a global or average issue rate for the pro-
cessor is noted. If the processor utilization falls below a
pre-specified target issue rate, this implies that a significant
portion of the processor resources are sitting idle waiting
for one or more stalls to resolve. When the global issue rate
falls below this target issue rate, we enable the tracking of
load consumers and subsequent updates to the CLPT.

We also include a 2-bit confidence counter for each entry
in the CLPT. This counter is incremented if the difference
between the previous and current number of consumers is
less than ∆=2, and decremented otherwise. In other words
the counter is incremented if the number of children is rea-
sonably stable, and decremented if the number varies too
much. If this confidence counter is low, then we assume the
load is critical regardless of the number of consumers stored
in the CLPT entry. To maintain implementation simplic-
ity, we do not repair the CLPT (or update consumer counts)
on pipeline flushes, as the design overhead to repair con-
sumer counts due to wrong-path consumers is non-trivial.
This could (slightly) impact the accuracy of the criticality
prediction, but our confidence counters can protect against
these cases. For the results presented in this paper, we use
the following parameters for our load criticality predictor.

Our largest criticality threshold used is twelve, and there-
fore the child counters associated with each ROB entry each
only use four bits. The exact threshold values were em-
pirically chosen; for different microarchitectures or cache
hierarchies, different thresholds may be used. The CLPT
has 1024 entries, each of which consists of a four-bit field
to store the observed number of children, and then also the
two-bit confidence counter. We also include another one-bit
field that will be described in Section 5. The total amount of
state required for the CLPT is 1024 entries × 7 bits per en-
try = 896 bytes. Even when including the extra bit per RAT
entry and the per-ROB entry 4-bit consumer count, the total
state is still under 1KB. Our simulated processor has a peak
execution width of six µops per cycle, and we only enable
the predictor when the actual issue rate is less than four.

While previous studies have proposed predictors that are
similar in spirit, the specifics of how to build hardware to
collect the required information had been omitted; in many
cases these predictors are perhaps easy to add to a simulator,
but non-trivial to build a practical circuit for. We have pro-
vided a detailed explanation of the microarchitecture-level
implementation of our load criticality predictor. The modi-
fications are few (one extra bit per RAT entry without re-
quiring any extra ports, the ROB counters which can be
implemented as a separate table to avoid impacting ROB
area and timing, the simple PC-indexed CLPT which can
be easily accessed in the processor front-end off any critical
timing paths, and a few bits in the RS or LDQ entries to
record the actual criticality predictions), which leads us to
conclude that the predictor is practical to implement.

3.4. Intuition for Predictor Effectiveness
Our predictor works on the assumption that when a load has
a larger number of consumers, the probability that at least
one of its consumers lies on a critical path increases. For
every committed load, we tracked the number of consumers
as well as the instruction types of each consumer. Figure 3
shows the breakdown/percentage of consumer instruction
type for loads with varying numbers of consumers. We sep-
arate the instruction types into six categories: low latency
(instructions like add, subtract, multiply and so on), cache
hit (loads that hit in the DL1 cache), correct branch (cor-
rectly predicted branches), cache miss (loads that miss in
the DL1 cache), mispredicted branch, and long latency (in-
structions like divide and other complex instructions). The
first three categories can be regarded as instructions that
will not experience very long latencies and are therefore un-
likely to significantly impact processor performance. The
last three categories are instructions with long latencies and
are likely to be critical.

At first glance, it does not appear that many consumers
are likely to be critical. Even in the cases where a load
has twelve consumers, only about 20% fall into one of
the likely-to-be-critical categories. This twelve-child load,



Figure 3: Distribution of consumers (for different consumer count
values) according to instruction type.

however, only needs one of its children to be critical for it-
self to likely be critical. The probability of each consumer
to be not critical is 80%, and so the probability of all twelve
of the load’s consumers not being critical is only 0.812 =
6.9%. In practice, this probability may be even lower since
we only consider the load’s immediate consumers, whereas
some of the low-latency operations may in turn have critical
consumers. The observed consumer instruction-type char-
acteristics combined with this statistical argument provide
a simple and intuitive explanation for why our predictor is
able to perform very well. Srinivasan et al. proposed a pre-
dictor that explicitly used an instruction’s type to determine
criticality. Our results suggest that a load’s consumer count
alone can implicitly lead to the same final conclusion about
whether a load is likely to be critical or not.

4. Simulation Infrastructure
Our simulation infrastructure uses a cycle-level model built
on top of a pre-release version of SimpleScalar for the x86
ISA [2]. This simulator models many low-level details of a
modern x86 microarchitecture including a detailed fetch en-
gine, decomposition of x86 macro instructions to micro-op
(µop) flows, micro-op fusion, execution port binding [26],
and detailed cache architectures including all inter-level
buses, MSHRs, etc. Our baseline configuration is loosely
based on the Intel Core 2 [9], employing a 96-entry reorder
buffer, 32-entry issue queue, 32-entry load queue, 20-entry
store queue, and a 14-stage minimum branch mispredic-
tion latency. The processor can fetch up to 16 bytes of
instructions per cycle (properly handling x86 instructions
that span cachelines as two separate fetches) using a 5KB
hybrid branch predictor [20], is 4-wide throughout its in-
order pipelines (decode/dispatch/commit), and 6-wide at is-
sue, with three integer ALUs, an integer multiplier, one
load port, one store port, one FP adder and one FP com-
plex unit (some of these units are bound to the same issue
ports, which is why the number of functional units exceeds
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Figure 4: (a) Conventional timestamp-based oldest-first select
logic, (b) augmenting the select logic to support criticality-
prioritized select

the issue width). We employ a load-wait table based mem-
ory dependence predictor [17]. The processor has 32KB, 3-
cycle, 8-way L1 caches, a 4MB, 16-way, 9-cycle L2 cache,
and DL1 and L2 hardware “IP-based” prefetchers [9]. Main
memory has a simulated latency of 250 cycles.

We make use of programs from the following suites:
SPECcpu2000 and SPECcpu2006, MediaBench [13, 18],
BioBench [1] and BioPerf [3]. All simulations warm the
caches and branch predictors for 500 million instructions
and then perform cycle-level simulation for 100 million in-
structions. We use the Sim-Point 3.2 toolset to choose rep-
resentative samples [15]. Some applications do not yet run
on SimpleScalar/x86 due to unsupported system calls and
libraries.

5. Optimization Class 1: Faking the Perfor-
mance of a Second Load Port

5.1. Problem Description
For modern out-of-order processors, a data cache with only
a single read port may limit performance. Providing addi-
tional read ports is not simple because the area of SRAM
arrays (such as the DL1 cache) increases quadratically with
the port count. Besides the additional die area, the larger
area increases the circuit path lengths which results in both
higher latencies and higher power consumption. In an in-
dustrial simulator that we had access to, a second load data
port increased the total active power of the processor by
more than 13%. As such, all out-of-order Intel x86 pro-
cessors since the Pentium-Pro have only supported a single
load port [14, 16, 26]. We would like to have the perfor-
mance benefits of a second load port, but we do not want to
pay the area and power costs.

5.2. Implementation Details
Our first optimization uses load criticality to prioritize ac-
cesses to the single DL1 read port so that critical loads are
given a higher priority. We use the consumer counter stored
in the CLPT to determine how many immediate consumers
are predicted to be waiting on a load. We also track whether
a load was ready to issue but delayed due to contention



for the data cache read port (i.e., there was another ready,
older load that the select logic chose to issue instead). We
augment each entry of the CLPT with the extra “ready-but-
delayed” bit.

Our non-critical load deferring technique works as fol-
lows. If the CLPT value for the load is below the critical-
ity threshold (five for this optimization), and the “ready-
but-delayed” bit is 0, the load is determined to be not crit-
ical. We then modify the select logic to give critical in-
structions higher priority. The select logic typically em-
ploys an oldest-first policy for choosing a ready instruction
to issue. One way of implementing this is to have each in-
struction keep a timestamp, where the oldest instruction has
the smallest timestamp [6], as shown in Figure 4(a). Instruc-
tion A is the oldest ready instruction (timestamp=0002) and
receives the grant to issue. To modify the select logic to
account for criticality, we extend the timestamp by a sin-
gle bit: critical instructions will have this bit set to zero,
while all other instructions will have this bit set to one. Fig-
ure 4(b) shows the same example instructions with the ex-
tended timestamps. Notice for example, that while load D
comes later in program order than A (ignoring the extended
bit of the timestamp, D has a timestamp of 0112 while A has
a timestamp of 0002), the select logic effectively believes
that D is the “older” instruction because its extended times-
tamp has a smaller value (00112 for D, and 10002 for A).
Since we do not actually allow multiple loads to issue to the
cache per cycle, this means that we do not require any addi-
tional tag broadcast buses for the wakeup/scheduling logic,
nor do we need any additional result bypass paths beyond
the path already present for the original load port.

The second component that we consider, in this opti-
mization, is an additional load address port (address gener-
ation unit or AGU). Note that load execution is effectively
broken into two stages: first the load issues from the reser-
vation stations to the AGU, which then deposits the address
in the LDQ. The load may need to wait in the LDQ for some
number of cycles until it is permitted to access the cache;
this could occur due to predicted memory dependencies on
earlier stores [21] or because the DL1 SRAM read port is
busy. In this component, we propose to hijack the store
AGU that currently only serves store address µops to also
execute load addresses. The output of this AGU must now
be routed to both the LDQ and the STQ, but this is far sim-
pler than if we had to, for example, add another result bus
to the bypass network. To prevent starvation of non-critical
loads, we only allow a particular load to be deferred up to
three times after which it gets priority to access the load
port.

5.3. Performance Evaluation
We present the performance of this application of load crit-
icality in two scenarios. First we incorporate non-critical
load deferring in a processor configuration with a single

DL1 read port and a single load address port and com-
pare this to a processor with a single load address port
and two true DL1 read ports. Figure 5 shows the rela-
tive speedup when critical load prediction is used to priori-
tize load port usage. We present averages across all of the
benchmark suites as well as present per benchmark results
for the SPEC2000 and SPEC2006 suites. FSLP (Faking
a Second Load Port) corresponds to deferring non-critical
loads and PSLP (Pure Second Load Port) shows the per-
formance if a complete additional DL1 read port is added.
As we can see, for almost all of the simulated applications,
FSLP is able to match the performance of the PSLP. For a
few applications like crafty, eon and bzip2-06, the perfor-
mance of FSLP is slightly lower than PSLP; in these appli-
cations we observed many loads being predicted as critical
and hence could not be deferred. For mgrid, FSLP slightly
outperforms PSLP. In this application, we observed extreme
contention for the load ports in the PSLP configuration. In
this case, it is better to issue a single critical load rather
than simply the two oldest loads which may be non-critical.
For our simulations, the PSLP results are slightly idealis-
tic because we have not accounted for the latency increase
that adding a second read port would cause; in practice, our
FSLP’s performance would be closer to, if not better than,
a real dual-read-port DL1 cache.

In the second part of this experiment we simulated the
baseline with two load address ports. Providing two load
AGUs and two DL1 read ports improves performance over
the baseline by 14.8%. In the FSLP technique, an extra
AGU can expose additional ready loads, both critical and
non critical, for the LDQ to send to the data cache (i.e.,
there are more opportunities to reschedule loads based on
criticality). As explained earlier, rather than adding an-
other functional unit for the second load AGU, we use the
same functional unit that is used to compute store addresses.
We refer to this strategy as FSLA (Faking Second Load
AGU). The third bar in Figure 5 shows the performance of
FSLP augmented with the FSLA technique (FSLP+FSLA),
and the fourth bar shows the performance benefit of hav-
ing two complete load data ports and two complete load
AGUs (PSLP+PSLA). The PSLP+PSLA technique here is
really an ideal truly dual-ported scenario. For some bench-
marks like hmmer, this difference is close to 4%, where the
dedicated second load AGU prevents loads from competing
with stores for the AGU. Additionally, when there are more
ready loads available, the PSLP technique is able to issue
two loads per cycle. Even though some of these issued loads
may be non-critical, they may expose some other indepen-
dent work that can keep the processor busy. On average,
however, the performance of FSLP+FSLA is within 1.7%
of PSLP+PSLA, which is not much when one considers the
low cost of our FSLP+FSLA compared to the overhead of
implementing a true second load AGU and DL1 read port.



Figure 5: Deferring non-critical loads to achieve the performance of a second load data port.

5.4. Why Does FSLP Work?

The previous sub-section demonstrated the performance
benefit that load criticality prediction provides, when used
to prioritize access to the data cache port. To understand
why FSLP performs so well, we conducted an experiment
that measures the average latency in cycles from when loads
are ready to issue (address computation and memory dis-
ambiguation are complete) to when they actually issue. A
delay in load issue in this experiment corresponds to the
number of cycles that a load was forced to wait for the DL1
port to become available.

Table 1 shows, for all of the application suites, the is-
sue delay in cycles for critical and non-critical loads for the
three load port configurations. The first column of the ta-
ble indicates the name of the suite, and the second and third
column give the average latencies for a single DL1 port for
critical and non-critical loads, respectively. The issue delay
values might seem slightly high since the average value is
biased by certain applications which experience very long
delays as well as some effects of contention in the MSHRs.
The fourth and fifth columns represent a single DL1 port
augmented with FSLP while the last two columns corre-
spond to the PSLP configuration. There are two important
results that can be obtained from this experiment. First, in
all four simulated benchmark suites, the issue delay of crit-
ical loads in the FSLP configuration is nearly equal to that
of the PSLP configuration. When a load is critical, hav-
ing a true second load port allows the critical load to issue
much sooner. With FSLP, critical loads experience a simi-
lar wait time. Second, since our FSLP approach still only
has one real load port, the average ready-to-issue delay for
non-critical loads is significantly higher than in the PSLP
case. This has little impact on performance, however, since
by definition these loads are not (likely to be) critical. These

Benchmark One Load Port FSLP PSLP
Suite CL NCL CL NCL CL NCL
BIO 14.8 16.4 3.4 14.4 3.3 6.6

SPECfp 12.1 16.2 4.4 11.5 4.4 8.5
SPECint 15.1 16.3 6.6 13.0 6.3 6.4
MEDIA 23.6 23.9 5.8 14.0 5.6 8.7

Table 1: Average ready-to-issue delay in cycles for critical (CL)
and non-critical loads (NCL).

results explain why our FSLP approach performs nearly as
well as the PSLP configuration.

6. Optimization Class 2: Data Forwarding
and Memory Disambiguation

6.1. Data Forwarding
Every load normally performs an associative search of the
store queue (STQ) to determine if it should receive a for-
warded value from an older store to the same address. This
CAM-based search comprises a significant portion of the
store queue’s power consumption. To avoid performing
these associative searches, one alternative is to force loads
to wait until all earlier stores have committed and finished
writing back to cache/memory. At this point, a load can
safely issue to the data cache and be guaranteed to receive
the most recent, architecturally correct value. Unfortu-
nately, forcing all loads to wait for all earlier stores to com-
mit and writeback can unnecessarily delay load execution.
In our experiments, constraining loads this way caused an
average performance degradation of 5% (but a 100% reduc-
tion in STQ searches). We observed, however, that while all
loads associatively searched the STQ, on average only 13%
of loads matched in the STQ and received forwarded data.

Using our load criticality predictor , we only allow the
predicted critical loads to search the STQ. Only these loads
can receive forwarded values from the STQ, while all other



non-critical loads must wait until all older stores have writ-
ten back to the data cache. The idea is that the power cost
of repeatedly searching the STQ far outweighs the small po-
tential performance benefit that can be achieved from earlier
execution of loads that are not likely to be critical in the first
place. Note that this optimization needs to be conservative
since the prevention of even a few critical loads from re-
ceiving forwarded data through the STQ can significantly
hurt performance, so we set a low criticality threshold of
two. We also monitor the global issue rate when deciding if
a load should be prevented from searching the store queue.
If the issue rate of the processor is very low (less than three
µops per cycle on average), we allow all loads, irrespective
of criticality, to search the store queue.

Applying this optimization of critical-load prediction re-
duces over 93% of the store queue searches with less than
1% performance loss on average. Only one benchmark, art
belonging to the SPECfp2000 suite saw a 7% slowdown due
to missed forwarding opportunities. This further reinforces
the fact that most of the STQ searches result in no matches,
which has been exploited by several other studies not di-
rectly related to load criticality [25, 29]. We extended our
analysis to estimate the energy savings that this reduction
in STQ searches would provide. We measured the activ-
ity numbers for the STQ in our simulator and used CACTI
4.1 to estimate the read, write and tag broadcast energy for
our simulated STQ configuration [30]. Our results showed
that reducing 93% of the store queue searches reduces the
energy consumption of the STQ by 16%. Note that while
this energy reduction does not account for the additional
energy consumed by our predictor, we are not really explic-
itly proposing this STQ optimization to be implemented in
isolation, but rather in conjunction with the other criticality-
based techniques described in this paper. Once one has al-
ready paid the cost of the predictor to provide the perfor-
mance of a second load port, then this STQ optimization
can effectively be had for no additional cost.

6.2. Memory Disambiguation
Our next application in this class involves speculative dis-
ambiguation of memory instructions. Before a load can is-
sue, it needs to check if there are any older stores in the
instruction window that have not resolved their addresses.
If the load finds any older store with an unknown address,
then the load cannot safely issue since it may have a true
data dependency with this store. Most experimental data
has shown that the majority of loads do not have true de-
pendencies with any stores currently in the processor [21].
To prevent all loads from incurring this stall, some proces-
sors use memory dependence predictors that, based on past
load behavior, predict whether a load will collide with any
earlier unknown stores [9, 17]. If the prediction is incor-
rect, then all instructions after the load get flushed from the
pipeline and need to be refetched.

Past research has shown that accurate memory de-
pendence prediction has the potential to increase perfor-
mance [8], but these memory dependence predictors need
to be fairly large to achieve maximum load coverage and
accuracy. In this optimization, we only allow critical loads
to access the memory dependence predictor and specula-
tively execute. All non-critical loads must wait until all pre-
vious store addresses have been resolved. The non-critical
loads can usually afford to wait and resolve all dependence
ambiguities since they will not have a significant impact
on performance. There is no need to risk a misprediction
and subsequent pipeline flush on a non-critical load where
correctly speculating is unlikely to provide any significant
performance benefits anyway. There is also less destruc-
tive interference in the memory dependence predictor since
only critical loads update the predictor table. This allows
a much smaller memory dependence predictor to be imple-
mented while maintaining the same performance levels as
the baseline predictor. In particular, using a memory depen-
dence predictor modeled on a load-wait table predictor (like
that used in the Alpha 21264 [17]), we were able to reduce
the number of entries in the predictor table from 1024 to a
meager 64 with no loss in performance.

7. Optimization Class 3: Data Cache
7.1. Insertion Policy for Non-Critical Loads
The first application in this class deals with the insertion
policy used on a cache fill. Previous research has shown that
inserting cache lines in the least-recently-used (LRU) posi-
tion instead of the conventional most-recently-used (MRU)
position can sometimes improve performance [22]. If the
line is accessed a second time (cache hit), then it is pro-
moted to the MRU position in the recency stack. The LRU
insertion policy has the benefit of preventing lines with low
reuse from residing in the cache for long periods of time.
The drawback to this policy is that while it helps some ap-
plications that have very low reuse, it also hurts other ap-
plications with short or medium reuse distances. Adaptive
selection of the insertion policy has been propose to deal
with this issue [22].

Rather than use an adaptive control scheme, we simply
use our load-criticality predictions to guide the insertion
policy. Data brought in by non-critical loads get inserted
in the LRU position in the cache, where they are more vul-
nerable to eviction. All data read by critical loads follow
the baseline MRU insertion policy, where several cache ac-
cesses must occur before the line is in danger of eviction.
This organization uses a criticality threshold of eight.

7.2. Cache Bypassing for Non-Critical Loads
Our second cache application deals with the placement of
the data in the cache hierarchy. Some loads do not only have
low reuse, but they sometimes have no reuse or extremely
large reuse distances. In the first scenario, the data required



Figure 6: Speedup when critical load prediction is employed to optimize the L1 data cache.

by the applications are used only once and then sit idle in
the cache until they are evicted. In the second case, the data
is sure to get evicted from its set before it can be reused. In
either case, these cache lines occupy space in the DL1 that
could be better used by other data.

We use our load criticality information to simply prevent
cache lines accessed by non-critical loads from being in-
stalled in the L1 data cache (i.e., they bypass the L1). Since
this data is anyway only used by non-critical loads, we can
afford the extra cycles required to access the L2 cache. Pre-
venting non-critical loads from bringing data into the L1
reduces the cache pressure and can improve the hit rates for
critical loads. As discussed in Section 1, while our non-
critical load bypassing has similarities to other earlier pro-
posals that prevent the data for non-critical loads from en-
tering the DL1, our approach does not require building any
additional caching structures such as the Non-Critical Load
Buffer [12] of the Penalty Buffer [4]. We use a criticality
threshold of four for this application.

7.3. Prefetching Policy for Non-Critical Loads
The third application deals with the DL1 hardware
prefetcher. In our simulator, turning off data prefetching
caused an average performance degradation of 2.9%. A
prefetching algorithm is often difficult to tune and can end
up polluting the cache by bringing in data that is never used.
Prefetching can also cause additional contention for the
off-chip bus, thereby causing further performance degrada-
tions. Unnecessary prefetches are even worse than the prob-
lems described for cache insertion and placement since, in
those cases, the data that are brought in were used at least
once. For this application we simply prevent non-critical
loads from causing any prefetch requests. By restricting the
prefetching algorithm to bring in data only for critical loads,
cache pollution and bus utilization are both decreased. The

criticality threshold for this technique is five.

7.4. Performance Evaluation
We now present results for the three applications described
above. Figure 6 shows the performance speedup with re-
spect to the baseline for the three optimizations. The first
bar shows the performance due to inserting non-critical
loads in the LRU position. While the overall perfor-
mance improvement is 2.3%, some applications see large
speedups. In particular, mcf sees a 95% improvement;
mcf has low data reuse and experiences a 38% speedup
even when the INS LRU technique is applied. By lim-
iting this strategy to only non-critical loads, the speedup
is increased. Among the non-SPEC benchmarks suites,
the media applications have nearly 5% performance im-
provement on average. Although not shown on this graph,
jpeg-encode observes a 25% speedup. For this benchmark,
the INS SLRU technique reduces the miss rate of critical
loads in the L1 cache by 10%. When compared to the
INS LRU technique which inserts all loads in the LRU po-
sition, this strategy degrades the performance of fewer ap-
plications. The second application in this class measures
the performance benefit obtained by completely preventing
non-critical data from entering the L1 data cache (INS SL1
= Insert Selectively in L1). Figure 6 shows that this opti-
mization achieves an average performance improvement of
3% for the SPECfp suite and 1% overall. While the aver-
age improvement is not very high, certain benchmarks do
benefit. Finally, the third bar in Figure 6 (INS SP = Insert
Prefetched Data Selectively) shows the impact of criticality-
based filtering of prefetches. The results indicate that the
floating point benchmarks seem to benefit the most by this
technique. The average performance improvement for the
SPECfp suite is nearly 4%, with wupwise showing speedup
of nearly 20%. For wupwise, only 0.1% of prefetches in



Figure 7: Speedup when combining all optimizations: (a) per-suite averages and (b) S-curves for all benchmarks.

the baseline configuration turned out to be useful, so when
load criticality prediction is used to filter out even some of
the useless prefetches, performance improves considerably.
Even though each of these techniques only improves aver-
age performance by a few percent, we emphasize that these
benefits are effectively free once the basic criticality predic-
tor has been implemented.

8. Combining All Load Optimizations
In this section we study the impact of simultaneously com-
bining our optimizations. We present three sets of optimiza-
tion configurations in Figure 7: faking a second load data
port with hijacking the store AGU (FSLP+FSLA), combin-
ing all of the optimizations (ALL), and combining all except
for hijacking the store AGU (ALL-FSLA). The ALL-FSLA
configuration is provided to quantify the impact of all of the
criticality-based optimizations without the impact of hijack-
ing the store AGU. Note that for the ALL configurations,
selective insertion policy takes precedence over the DL1
bypass optimization since it provided higher performance
(insertion position is irrelevant if the DL1 is bypassed).

Figure 7(a) shows the average results for the individ-
ual benchmark suites. Most of the suites see consider-
able speedups even with the ALL-FSLA combination.The
FSLP+FSLA technique provided a speedup of 12.3% on
average, while the ALL combination achieves a speedup
of 15.7%. Figure 7(b) shows the S-curves. When com-
bining all optimizations (ALL), we see that the majority
of benchmarks experience 10% or more improvement, a
few benchmarks are performance neutral, and only a very
small number exhibit some performance degradation. Re-
call that some of our optimizations target the reduction of
power and the size of related hardware structures. For ex-
ample, art (SPECfp2000) experienced a 7.0% performance
degradation due to the fact that filtering non-critical loads
from searching the STQ causes this benchmark to miss too
many forwarding opportunities. When combining all of the
optimizations, however, this degradation reduces to 3.5%.
One can reduce this performance degradation even further
by adjusting the thresholds to be more conservative about
when to block loads from searching the STQ.

While our criticality predictor is certainly not the first

one to be proposed, we believe that it is simpler and more
practical to implement than several of the earlier predic-
tors. We simulated our criticality-based load optimizations
(the simultaneous combination of all techniques on our aca-
demic simulator) using Tune et al.’s QCons heuristic that in
each cycle finds the completed instruction with the largest
number of children [31]. Note that in Tune et al.’s study,
they used a 64K-entry predictor, which we model here,
but we keep our own consumer-based predictor sized at
only 1K entries. Due to space constraints we omit report
per-benchmark numbers. Our simulations indicate that the
QCons heuristic is a fairly good indicator of load criticality
and it provides a 12.3% average speedup as compared to the
15.7% speedup provided by our predictor. Tune et al.’s pre-
dictor, however, uses 64× more entries than our predictor,
which shows that our predictor might be a more viable and
efficient option.

9. Conclusions
While load criticality has been extensively studied for op-
timizing value prediction and clustered microarchitectures,
we have demonstrated that the idea is useful even for con-
ventional, main-stream processor microarchitectures. We
have been able to use and reuse a single, simple criticality
predictor to optimize multiple facets of load execution. Our
predictor, along with our optimizations that use the predic-
tor, have all been designed with an eye toward minimizing
microarchitectural impact. As such, we believe that these
techniques are indeed practical to implement in near-term
future microarchitectures.

An interesting direction for future research is to explore
and understand how instruction criticality interacts with
cross-core interference in a multi-core processor. This may
require new fundamental definitions of criticality that ac-
count for interactions between the cores (is an instruction
critical if delaying hurts one core’s performance but im-
proves another’s due to the change in the order that the
cache hierarchy receives memory requests?). Once such
definitions have been established, additional research will
be needed to develop mechanisms to exploit this informa-
tion to better optimize the performance and/or power of
multi-core processors. In any case, we have demonstrated



that instruction criticality is useful for traditional microar-
chitectures, and we believe that there are still many more
opportunities to exploit it.
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