
UNified Instruction/Translation/Data (UNITD) Coherence:
One Protocol to Rule Them All

Bogdan F. Romanescu, Alvin R. Lebeck, Daniel J. Sorin Anne Bracy
Duke University Intel Corporation

bfr2@ee.duke.edu, alvy@cs.duke.edu, sorin@ee.duke.edu anne.c.bracy@intel.com

Appears in the 16th International Symposium on High-Performance Computer Architecture (HPCA)
Bangalore, India, January, 2010
Abstract

We propose UNITD, a unified hardware coherence
framework that integrates translation coherence into the
existing cache coherence protocol. In UNITD coherence
protocols, the TLBs participate in the cache coherence
protocol just like the instruction and data caches, with-
out requiring any changes to the existing coherence pro-
tocol. UNITD eliminates the need for the software TLB
shootdown routine, a procedure known to be perfor-
mance costly and non-scalable. We evaluate snooping
and directory UNITD coherence protocols on multicore
processors with 2-16 cores, and we demonstrate that
UNITD reduces the performance penalty associated
with TLB coherence to almost zero.

1. Introduction
Shared memory multiprocessors, including multi-

core processors, have many caches, and these caches
must be kept coherent. For caches that hold instructions
or data, coherence is almost invariably maintained with
an all-hardware cache coherence protocol. Hardware
controllers at the caches coordinate amongst them-
selves—using snooping or directories—to ensure that
instructions and data are kept coherent, and this coher-
ence is not software-visible. However, for caches that
hold address translations (i.e., translation lookaside
buffers), coherence is almost always maintained by an
OS-managed software coherence protocol. Even for
architectures with hardware control of TLB fills and
evictions, when an event occurs that affects the coher-
ence of TLB entries (e.g., eviction of a page of virtual
memory), the OS ensures translation coherence through
a software routine called TLB shootdown [6].

This dichotomy between using hardware for cache
coherence1 and software for TLB coherence inspires
two questions. First, why is cache coherence performed
in hardware? Second, why is TLB coherence performed

in software? Our answers to these questions lead us to
conclude that the time is right to move TLB coherence
into hardware.

We begin by exploring why cache coherence is per-
formed in hardware, and we discover two primary rea-
sons: performance and microarchitectural decoupling.
Performance-wise, hardware is far faster than software,
and for coherence this performance advantage grows as
a function of the number of caches. Although using soft-
ware for local activities (e.g., TLB fills and replace-
ments) might have acceptable performance, even some
architectures that have traditionally relied on software
for such operations (e.g., SPARC) are now transitioning
to hardware support for increased performance [29]. In
contrast, activities with global coordination are pain-
fully slow when performed in software. For example,
Laudon [23] mentions that for a page migration on the
SGI Origin multiprocessor, the software routine for TLB
shootdown is three times more time-consuming than the
actual page move. The second reason for performing
cache coherence in hardware is to create a high-level
architecture that can support a variety of microarchitec-
tures. A less hardware-constrained OS can easily
accommodate heterogeneous cores as it does not have to
be aware of each core’s particularities [22]. Further-
more, hardware coherence enables migrating execution
state between cores for performance, thermal, or reli-
ability purposes [10, 19] without software knowledge.

Given that hardware seems to be an appropriate
choice for cache coherence, why has TLB coherence
remained architecturally visible and under the control of
software? We believe that one reason architects have not
explored hardware TLB coherence is that they already
have a well-established mechanism that is not too costly
for systems with a small number of processors. For pre-
vious multiprocessor systems, Black [6] explains that
“the low overhead of maintaining TLB consistency in
software on current machines may not justify a com-
plete hardware implementation.” As we show in Section
3, this conclusion is likely to change for future many-
core chips.1. We will use “cache coherence” as shorthand for referring to coher-

ence for instruction and data caches.
1

In this paper, we argue that the time has come for
hardware TLB coherence. Hardware TLB coherence
provides three primary benefits. First, it drastically
reduces the performance impact of TLB coherence. This
performance benefit is worthwhile on its own, but it also
lowers the threshold for adopting features that incur a
significant amount of TLB coherence activity, includ-
ing: hardware transactional memory (e.g., XTM [13]),
user-level memory management for debugging [14], and
concurrent garbage collection [12]. Second, hardware
TLB coherence provides a cleaner interface between the
architecture and the OS, which could help to reduce the
likelihood of bugs at this interface, such as the recent
TLB coherence bug in the AMD Barcelona chip [38].
Third, by decoupling translation coherence from the OS,
hardware TLB coherence can be used to support designs
that use TLBs in non-processor components such as net-
work cards or processing elements [26, 32].

We propose UNified Instruction/Translation/Data
(UNITD) Coherence, a hardware coherence framework
that integrates translation coherence into the existing
cache coherence protocol. At a high level, the TLBs par-
ticipate in the cache coherence protocol just like instruc-
tion and data caches. UNITD eliminates the need for the
software TLB shootdown routine, a procedure known to
be performance costly [15, 23, 34]. UNITD is more gen-
eral than the only prior work in hardware TLB coher-
ence [37], which required specific assumptions about
allowable translation caching (e.g., copy-on-write is dis-
allowed). We evaluate snooping and directory UNITD
coherence protocols on multicore processors with 2-16
cores using Simics [25]. We show that UNITD reduces
the performance penalty associated with TLB coherence
to almost zero, performing nearly identically to a system
with zero-latency TLB invalidations.

This paper is organized as follows. Section 2
describes the problem of TLB coherence and how TLB
shootdown works. Section 3 explores the performance
impact of TLB shootdowns. Section 4 describes
UNITD, our proposed mechanism for maintaining trans-
lation coherence. In Section 5, we discuss implementa-
tion issues, including platform-specific issues and
optimizations. We experimentally evaluate UNITD in
Section 6. We discuss related work in Section 7 and con-
clude in Section 8.

2. Address Translation
Address translation is a level of indirection that reg-

ulates a thread’s access to physical memory given a vir-
tual address. Architectures facilitate this indirection by
supporting a set of software managed structures called
page tables. Each page table entry (PTE) contains a
mapping from a virtual memory sub-space to a physical
memory sub-space, as well as additional bits represent-

ing metadata associated with the mapping (e.g., protec-
tion or status bits).

Because accessing a translation can be on the criti-
cal path of a memory access, copies of the translations
are cached in TLBs. Changes to the PTEs result in trans-
lations being modified or invalidated in the page tables,
and coherence must be maintained between the cached
copies of the translations and the page table defined
translations.

2.1 Address Translation Coherence
Maintaining coherence between the TLBs and the

page tables has historically been named “TLB consis-
tency” [37], but in this paper we will refer to it as “TLB
coherence,” due to its much closer analogy to cache
coherence than to memory consistency.

One important difference between cache coherence
and TLB coherence is that some architectures do not
require maintaining TLB coherence for each datum (i.e.,
TLBs may contain different values). These architectures
require TLB coherence only for unsafe changes [36]
made to address translations. Unsafe changes include
mapping modifications, decreasing the page privileges
(e.g., from read-write to read-only) or marking the trans-
lation as invalid. The remaining possible changes (e.g.,
increasing page privileges, updating the accessed/dirty
bits) are considered to be safe and do not require TLB
coherence. Consider one core that has a translation
marked as read-only in the TLB, while another core
updates the translation in the page table to be read-write.
This translation update does not have to be immediately
visible to the first core. Instead, the first core's TLB can
be lazily updated when the core attempts to execute a
store instruction; an access violation will occur and the
page fault handler can load the updated translation.

2.2 TLB Shootdown
TLB shootdown [6, 11, 33] is a software routine for

enforcing TLB coherence using inter-processor inter-
rupts. TLB shootdown is the most common technique
for maintaining TLB coherence; we defer a discussion
of alternative techniques to Section 7. Because manag-
ing the virtual memory system is the responsibility of
privileged software, TLB shootdowns are invisible to
the user application, although shootdowns directly
impact the user application’s performance. This perfor-
mance impact depends on several factors, including the
position of the TLB in the memory hierarchy, the shoot-
down algorithm used, and the number of processors
affected by the shootdown (victim processors). We dis-
cuss the first two factors in this section, and we analyze
the impact of the number of victim processors on the
TLB shootdown cost in Section 3.
TLB position. TLBs can be placed at different levels
between the core and the memory [30]. Most microar-
2

chitectures implement per-core TLBs associated with
virtually-indexed physically-tagged caches. These
designs pose scalability problems for many-core sys-
tems, because the performance penalty for the shoot-
down initiator increases with the number of victim
processors. Because this solution is most common,
throughout the paper we also assume per-core TLBs
unless otherwise mentioned. Another option is to posi-
tion the TLB at the memory [37], such that a translation
occurs only when a memory access is required. This
design might appear attractive for many-core chips,
since TLB coherence must be ensured only at memory
controllers, whereas cache coherence is ensured using
virtual addresses. However, virtual caches suffer from
the well-known problem of virtual synonyms [8, 9].
Shootdown algorithm. The TLB shootdown procedure
can be implemented using various algorithms that trade
complexity for performance. Teller’s study [36] is an
excellent description of various shootdown algorithms.
In this paper, we assume the TLB shootdown procedure
implemented in Linux kernel 2.6.15 and described in
Figure 1. The shootdown is triggered by one processor
(i.e., initiator) that programs an inter-processor interrupt
to determine all other processors sharing the same
address space (i.e., victims) to invalidate the transla-

tion(s). The procedure leverages Rosenburg’s observa-
tion that a shootdown victim can resume its activity as
soon as it has acknowledged the shootdown (i.e., has
removed itself from the shootdown list) [33]. The algo-
rithm thus reduces the time spent by victims in the
shootdown interrupt.

3. Performance Impact of TLB Coherence
In this section, we analyze the penalty associated

with TLB shootdown routines and its impact on the per-
formance of real applications. We perform these experi-
ments on a real (not simulated) 32-Xeon processor
system with 64GB RAM running Suse Enterprise Linux
Server Edition 10 (kernel 2.6.15). We study systems
with fewer cores by disabling cores in the system.

Figure 2 shows the latency of a single TLB shoot-
down for both the initiator and victims as a function of
the number of processors involved in the shootdown. We
measured the latency by reading the timestamp counter
at the beginning and end of the shootdown. As described
in Section 2, the latency of a shootdown is application-
independent and depends on microarchitectural charac-
teristics, the number of processors involved, and the OS.
Figure 2 shows that the latency of a shootdown
increases roughly linearly with the number of proces-

Initiator Victim

•disable pre-emption and acquire page table lock

•construct list of victim processors

•construct list of translation(s) to invalidate

•flush translation(s) in local TLB

• if (victim list not empty), send interrupts to victims

• service interrupt & get list of translations to invalidate

•while (victim list not empty) {wait} • invalidate translation(s) from TLB

•acknowledge interrupt & remove self from victim list

• release page table lock and enable pre-emption

Figure 1. TLB shootdown routines for initiator and victim processors

Average TLB shootdown latency

0

20000

40000

60000

80000

100000

120000

2 4 8 16 24 32
Cores

C
yc

le
s

Shootdown initiator
Shootdown victim

TLB shootdown performance overhead

0

2

4

6

8

10

12

8 16 24 32

Cores

P
er

ce
n

ta
g

e
o

f
ru

n
ti

m
e

(%
) wordcount

reverse_index

matrix_multiply

Figure 2. Per-shootdown latency Figure 3. Shootdown performance overhead on
Phoenix benchmarks
3

sors involved. This latency does not capture the side
effects of TLB shootdowns such as the TLB invalida-
tions that result in extra cycles spent in repopulating the
TLB with translations after the shootdown. This addi-
tional cost depends on the thread’s memory footprint, as
well as the position of the corresponding cache blocks in
the memory hierarchy. For an Intel64 architecture, fill-
ing a translation in the TLB requires two L1 cache
accesses in the best-case scenario; the worst-case sce-
nario requires four main memory accesses. On
x86/Linux platforms, this additional cost is sometimes
increased by the fact that, during shootdowns triggered
by certain events, the OS forces both the initiator and
the victims to flush their entire TLBs rather than invali-
date individual translations.

Our second experiment analyzes the impact of TLB
shootdowns on real applications. For this study we
chose three benchmarks from the Phoenix suite [31] that
cover a wide range in terms of the number of TLB
shootdowns incurred within a given amount of applica-
tion code. We use Oprofile [24] to estimate the percent
of total runtime (i.e., fraction of Oprofile’s samples)
spent by the applications in TLB shootdowns. Figure 3
shows the increased runtime associated with the TLB
shootdowns, which becomes significant for applications
that use the routine more often (e.g., wordcount).

These experiments allow us to make two important
observations. First, as the number of cores increases,
maintaining TLB coherence is likely to have an increas-
ingly significant impact on performance if it is enforced
through the current TLB shootdown routine. To alleviate
this performance impact, architects need to either
change the way pages are shared across threads or
change the mechanism for maintaining TLB coherence.
The solution that we propose in this paper is the latter,
by maintaining TLB coherence in hardware. The second
observation supported by Figure 3 is that there can be
large variations in the usage patterns of TLB shoot-
downs across applications. As such, we will evaluate
UNITD across a wide range of shootdown frequencies.

4. UNITD Coherence
In this section we present UNITD, a framework for

unifying TLB coherence with cache coherence in one
hardware protocol. At a high level, UNITD integrates
the TLBs into the existing cache coherence protocol that
uses a subset of the typical MOSI coherence states.
TLBs are simply additional caches that participate in the
coherence protocol like coherent, read-only instruction
caches. UNITD has no impact on the cache coherence
protocol and thus does not increase its complexity.

With respect to the coherence protocol, TLB entries
are read-only—translations are never modified in the
TLBs themselves—and thus only two coherence states

are possible: Shared (read-only) and Invalid. Because
there are only two possible states, UNITD uses the
existing Valid bit to maintain an entry’s coherence state.
When a translation is inserted into a TLB, it is marked
as Shared. The cached translation can be accessed by the
local core as long as it is in the Shared state. The transla-
tion remains in this state until the TLB receives a coher-
ence message invalidating the translation. The
translation is then Invalid and thus subsequent memory
accesses depending on it will miss in the TLB and reac-
quire the translation from the memory system.

Despite the similarities between TLBs and instruc-
tion and data caches, there is one key difference between
caches and TLBs: cache coherence is based on physical
addresses of blocks, but a translation cached in a TLB is
not directly addressable by the physical addresses on
which it resides (i.e., the physical address of the PTE
defining the translation, not to be confused with the
physical address to which the translation maps a virtual
address). For the TLBs to participate in the coherence
protocol, UNITD must be able to perform coherence
lookups in the TLB based on the physical addresses of
PTEs. To overcome this key difference between TLBs
and caches, we must address two issues:
•Issue #1: For each translation in a TLB, UNITD

must discover the physical address of the PTE asso-
ciated with that translation.
•Issue #2: UNITD must augment the TLBs such that

they can be accessed with a physical address.
We discuss UNITD’s solutions to these two issues

in the following two subsections.

4.1 Issue #1: Discovering the Physical Address
of a Translation’s PTE

We start by describing the concept behind discover-
ing the PTE associated with a translation, followed by a
description of how to determine the physical address of
the PTE in practice.
Concept. The issue of associating a translation with its
PTE’s physical address assumes there is a one-to-one
association between translations and PTEs. This
assumption is straightforward in systems with flat page
tables, but less obvious for systems using hierarchical
page tables.

For architectures that implement hierarchical page
tables, a translation is defined by a combination of mul-
tiple PTEs in the hierarchy. Figure 4 illustrates the trans-
lation, on an IA32 system, from virtual page VP1 to
physical page PP1, starting from the root of the page
table (i.e., CR3 register) and traversing the intermediate
PTEs (i.e., PDPE and PDE). Conceptually, for these
architectures, translation coherence should be enforced
when a modification is made to any of the PTEs on
which the translation depends. Nevertheless, we can
4

exploit the hierarchical structure of the page tables to
relax this constraint to a single-PTE dependency by
requiring that any change to a PTE propagates to a
change of the last-level PTE. Consider the case of a
modification to an intermediary PTE. PTE modifications
can be divided into changes to mappings and changes to
the metadata bits. In the case of mapping changes, the
previous memory range the PTE was mapping to must
be invalidated. Moreover, for security reasons, the pages
included in this space must be cleared, such that when-
ever this memory space is reused, it does not contain any
previous information. With respect to the metadata bits,
any unsafe changes (i.e., to the permission bits) must be
propagated down to the last-level PTE. In both cases, we
can identify when translation coherence is required by
determining when changes are made to the last-level
PTE that the translation depends on.

Therefore, independent of the structure of the page
tables, a translation is identifiable through the last-level
PTE address.
Implementation. How the last-level PTE’s physical
address is identified depends on whether the architecture
assumes hardware or software management of TLB fills
and evictions. Designs with hardware-managed TLBs
rely on dedicated hardware (“page table walker”) that
walks iteratively through the page table levels in case of
a TLB miss. The number of iterative steps in a walk
depends on the architecture (i.e., structure of the page
tables) and the values stored at each level’s PTE. As a
consequence, the walker knows when it is accessing the
last-level PTE and can provide its physical address to
the TLB.

For architectures with software managed TLB
fills/evictions, UNITD requires software support for
notifying the hardware as to the last-level PTE associ-
ated with a translation. The software can easily identify
the PTE since the software follows the same algorithm
as the hardware walker. Once the PTE address is found,
it can be written to a dedicated memory address, such

that the hardware associates it with the translation that
will be inserted in the TLB. An alternative solution for
systems with software-managed TLBs is for the soft-
ware to explicitly insert this physical address in the TLB
through a dedicated instruction. Because our evaluation
targets an x86 system with hardware management of
TLB fills/evictions, in the rest of the paper we assume a
system with hardware-managed TLBs, but UNITD is
equally applicable to systems with software-managed
TLBs.

4.2 Issue #2: Augmenting the TLBs to Enable
Access Using a PTE’s Physical Address
Concept. To perform coherence lookups in the TLBs,
UNITD needs to be able to (a) access the TLBs with
physical addresses and (b) invalidate the translations
associated with the PTEs that reside at those physical
addresses, if any. Assuming the one-to-one correspon-
dence between translations and PTEs discussed in
Section 4.1, a TLB translation moves to Invalid when-
ever the PTE defining the translation is modified.
Implementation. To record the physical addresses of
PTEs associated with the translations cached by the
TLB, we associate with each TLB an additional hard-
ware structure. We refer to this structure that intermedi-
ates between TLBs and the coherence protocol as the
Page Table Entry CAM (PCAM). The PCAM has the
same number of entries as the TLB, and it is fully-asso-
ciative because the location of a PTE within a set-asso-
ciative TLB is determined by the TLB insertion
algorithm (and not determined by the PTE’s physical
address). Figure 5 shows how the PCAM is integrated
into the system, with interfaces to the TLB inser-
tion/eviction mechanism (for inserting/evicting the cor-
responding PCAM entries), the coherence controller
(for receiving coherence invalidations), and the core (for
a coherence issue discussed in Section 5.2). The PCAM
is off the critical path of a memory access; it is not
accessed during regular TLB lookups for obtaining
translations.

rd

nd

st

Figure 4. 3-level page table walk on IA32. UNITD
associates PTE1 with the VP1->PP1 translation

Coherence
Controller

TLB PCAM

Page Table
Walker /

OS

L1/L2
CachesVP PTE addressPP Valid

Add entry

Flush entry

Insert (translation, PTE address)
Invalidate lookup

Invalidate lookup
(Store only)

Load/Store

Invalidate
hit

Core

Figure 5. PCAM integration with core and
coherence controller
5

The PCAM is logically a content addressable mem-
ory and could be implemented with a physical CAM.
For small PCAMs, a physical CAM implementation is
practical. However, for PCAMs with large numbers of
entries (e.g., for use with a 512-entry 2nd-level TLB), a
physical CAM may be impractical due to area and
power constraints. In such situations, the PCAM could
be implemented with a hardware data structure that uses
pointers to connect TLB entries to PCAM entries. Such
a structure would be similar to the indirect index cache
[18], for example. Henceforth, we assume a physical
CAM implementation, without loss of generality.

Maintaining coherence on physical addresses of
PTEs requires book-keeping at a fine granularity (e.g.,
double-word for a 32-bit architecture). In order to inte-
grate TLB coherence with the existing cache coherence
protocol with minimal microarchitectural changes, we
relax the correspondence of the translations to the mem-
ory block containing the PTE, rather than the PTE itself.
Maintaining translation granularity at a coarser grain
(i.e., cache block, rather than PTE) trades a small per-
formance penalty for ease of integration. Because multi-
ple PTEs can be placed in the same cache block, the
PCAM can hold multiple copies of the same datum. For
simplicity, throughout the rest of the paper we refer to
PCAM entries simply as PTE addresses.

Figure 6 shows the two operations associated with
the PCAM: (a) inserting an entry into the PCAM and (b)
performing a coherence invalidation at the PCAM. PTE
addresses are added in the PCAM simultaneously with
the insertion of their corresponding translations in the
TLB. Because the PCAM has the same structure as the
TLB, a PTE address is inserted in the PCAM at the
same index as its corresponding translation in the TLB

(physical address 12 in Figure 6a). Note that there can
be multiple PCAM entries with the same physical
address, as in Figure 6a; this situation occurs when mul-
tiple cached translations correspond to PTEs residing in
the same cache block.

PCAM entries are removed as a result of the
replacement of the corresponding translation in the TLB
or due to an incoming coherence request for read-write
access. If a coherence request hits in the PCAM, the
Valid bit for the corresponding TLB entry is cleared. If
multiple TLB translations have the same PTE block
address, a PCAM lookup on this block address results in
the identification of all associated TLB entries. Figure
6b illustrates a coherence invalidation of physical
address 12 that hits in two PCAM entries.

5. Platform-Specific Issues, Implementation
Issues, and Optimizations

In this section, we analyze several implementation
issues, including: UNITD’s integration with speculative
execution in superscalar cores (Section 5.1), UNITD’s
handling of translations that are currently in both the
TLB and data cache of a given core (Section 5.2), how
UNITD is compatible with a wide range of system mod-
els and features (Section 5.3), and a method of reducing
the number of TLB coherence lookups (Section 5.4).

5.1 Interactions with Speculative Execution
UNITD must take into account the particularities of

the core, especially for superscalar cores. Many cores
speculatively execute a load as soon as the load’s
address is known. In a multithreaded or multicore envi-
ronment, it is possible for another thread to write to this
address between when the load speculatively executes
and when it becomes ready to commit. In an architecture

Figure 6. PCAM operations

TLB PCAM TLB PCAM

VP PP Valid phys addr Insert translation
VP1→PP9 which is at
PhysAddr 12

VP PP Valid phys addr

VP3 PP1 1 12 VP3 PP1 1 12

VP2 PP6 1 134 VP2 PP6 1 134

VP6 PP0 0 30 VP1 PP9 1 12

VP5 PP4 0 76 VP5 PP4 0 76

(a) Inserting an entry into the PCAM when an entry is inserted into the TLB

TLB PCAM TLB PCAM

VP PP Valid phys addr Process coherence
invalidation for
PhysAddr 12

VP PP Valid phys addr

VP3 PP1 1 12 VP3 PP1 0 12

VP2 PP6 1 134 VP2 PP6 1 134

VP1 PP9 1 12 VP1 PP9 0 12

VP5 PP4 0 76 VP5 PP4 0 76

(b) Processing a coherence invalidation for a physical address (two PTEs are at that block address)
6

that enforces sequential consistency, these situations
require that the load (and its consumers) be squashed.1

To detect these mis-speculations, cores adopt one of two
solutions [17]: either snoop coherence requests that
invalidate the load’s address or replay the load at com-
mit time and compare the replayed value to the original.

With UNITD, an analogous situation for transla-
tions is now possible. A load can read a translation from
the TLB before it is ready to commit. Between when the
load reads the translation and is ready to commit, the
translation could be invalidated by a hardware coher-
ence event. This analogous situation has analogous solu-
tions: either snoop coherence requests that invalidate the
load’s translation or replay the load’s TLB access at
commit time. Either solution is more efficient than the
case for systems without UNITD; in such systems, an
invalidation of a translation causes an interrupt and a
flush of the entire pipeline.

5.2 Handling PTEs in Data Cache and TLB
UNITD must consider the interactions between

TLBs and the core when a page table walk results in a
hit on a block present in the Modified state in the local
core’s data cache. We present two viable solutions to
this situation.
Solution #1. Because the page table walk results in the
TLB having this block Shared, we can maintain the
coherence invariant of “single writer or multiple read-
ers” (SWMR) by having the block in the core’s data
cache transition from Modified to Shared. The drawback
to this solution is that, because the page table walker
uses the core’s regular load/store ports to insert requests
into the memory system, the cache controller must dis-
tinguish between memory accesses of the same type
(e.g., loads) originating from the core’s pipeline. For
example, a regular (non-page-table-walk) load leaves
the data cache block in the Modified state, whereas a
page-table-walk load transitions the data cache block to
Shared.
Solution #2. Because Solution #1 requires changing the
coherence controller, we instead adopt an alternative
solution that does not affect the cache coherence proto-
col. If a page table walk results in a hit on a block in the
Modified state in the data cache, we leave the block in
the Modified state in the data cache, while inserting the
block in the Shared state in the TLB. Despite the appar-
ent violation of the SWMR invariant, UNITD can
ensure that the TLB always contains coherent data by
probing the TLB on stores by the local core.2 This situa-
tion is the only case in which UNITD allows a combina-

tion of seemingly incompatible coherence states.
Because processors already provide mechanisms for
self-snoops on stores for supporting self-modifying
code [21], UNITD can take advantage of existing
resources, which is why we have chosen Solution #2
over Solution #1.

5.3 UNITD’s Non-Impact on the System
UNITD is compatible with a wide range of system

models, and we now discuss some system features that
might appear to be affected by UNITD.
5.3.1 Cache Coherence Protocol

We have studied UNITD in the context of systems
with both MOSI snooping and directory coherence pro-
tocols. UNITD has no impact on either snooping or
directory protocols, and it can accommodate a MOESI
protocol without changing the coherence protocol.
Snooping. By adopting the self-snooping solution pre-
viously mentioned in Section 5.2, no change is required
to the cache protocol for a snooping system.
Directory. It might appear that adding TLBs as possible
sharers of blocks would require a minor change to the
directory protocol in order to maintain an accurate list of
block sharers at the directory. However, this issue has
already been solved for coherent instruction caches. If a
core relinquishes ownership of a block in its data cache
due to an eviction and the block is also present in its
instruction cache or TLB, it sets a bit in the writeback
request such that the directory does not remove the core
from the block’s list of sharers.
MOESI Protocols. UNITD also applies to protocols
with an Exclusive state (i.e., MOESI protocol) without
modifying the protocol. For MOESI protocols, the
TLBs must be integrated into the coherence protocol to
determine if a requestor can obtain a block in the Exclu-
sive state. Once again, the TLB behaves like a coherent
instruction cache; it is probed in parallel with the cores’
caches and contributes to the reply sent to the requestor.
5.3.2 Memory Consistency Model

UNITD is applicable to any memory consistency
model. Because UNITD’s TLB lookups are performed
in parallel with cache snoops, remote TLB invalidations
can be guaranteed through the mechanisms provided by
the microarchitecture to enforce global visibility of a
memory access, given the consistency model.
5.3.3 Virtual Address Synonyms

UNITD is not affected by synonyms (virtual
address aliases) because it operates on PTEs that define
unique translations of virtual addresses to physical
addresses. Each synonym is defined by a different PTE,
and changing/removing a translation has no impact on
other translations in the synonym set.

1. We consider a sequentially consistent system in this paper.

2. In Section 5.4, we discuss how to minimize the number of TLB
snoops for this purpose.
7

5.3.4 Superpages
Superpages rely on “coalescing neighboring PTEs

into superpage mappings if they are compatible” [35].
The continuity of PTEs in physical addresses makes
TLB snooping on superpages trivial with simple UNITD
extensions (e.g., the PCAM can include the number of
PTEs defining the superpage to determine if a snoop hits
on any of them).
5.3.5 Virtual Machines

Virtualization does not affect UNITD. UNITD
operates on PTEs using physical addresses, and not
machine addresses. A PTE change will affect only the
host for which the PTE defines a translation. If multiple
VMs access a shared physical page, they will access it
using their own physical PTEs, as assigned by the host
OS. In fact, we expect UNITD performance benefits to
increase on virtualized systems because the TLB shoot-
down cost (which is eliminated by UNITD) increases
due to host-guest communication for setting up the pro-
cedure.

5.4 Reducing TLB Coherence Lookups
Because UNITD integrates TLBs into the coher-

ence protocol, UNITD requires TLB coherence lookups
(i.e., in the PCAM) for local stores and external coher-
ence requests for ownership. The overwhelming major-
ity of these lookups result in TLB misses, since PTE
addresses represent a small, specific subset of the mem-
ory space. To avoid wasting power on unnecessary TLB
coherence lookups, UNITD can easily filter out these
requests by using one of the previously proposed solu-
tions for snoop filters [28].

6. Experimental Evaluation
In this section we evaluate UNITD’s performance

improvement over systems relying on TLB shootdowns.
We also evaluate our filtering of TLB coherence look-
ups, as well as UNITD’s hardware cost.

6.1 Methodology
We use Virtutech Simics [25] to simulate an x86

multicore processor. For the memory system timing
simulations we use GEMS [27]. We extend the infra-
structure to accurately model page table walks and TLB
accesses. We do not model the time to deliver interrupts,
an approximation that aids systems with shootdowns but
not UNITD. The parameters of our simulated system are
given in Table 1. The baseline OS consists of a Fedora
Core 5 distribution with a 2.6.15 SMP kernel. For the
UNITD systems, we use the same kernel version recom-
piled without TLB shootdown procedures. We report
results averaged across twenty simulated executions,
with each simulation having a randomly perturbed main
memory latency as described by Alameldeen et al. [2].

6.2 Benchmarks
Ideally we would like to test UNITD on a set of real

applications that exhibit a wide range of TLB shoot-
down activity. Unfortunately, we are bound to the con-
straints imposed by running the applications on a
simulator, and not the real hardware, and therefore the
real time that we can simulate is greatly decreased. With
the exception of the wordcount benchmark from the
Phoenix suite [31], we are unaware of existing bench-
marks that exercise TLB shootdown mechanisms.1 As a
consequence, we created a set of microbenchmarks that
spend various fractions of their runtime in TLB shoot-
down routines triggered by one of two OS operations:
copy-on-write (COW) and page unmapping.

The microbenchmarks are modeled after the map
phase of the wordcount benchmark. They consist of one
or multiple threads parsing a 50 MB memory-mapped
file and either performing stores to the mapped pages
(this triggers the kernel’s COW policy if the file is
mmapped with corresponding flags set) or unmapping
pages. The pairing of how many threads can trigger
shootdowns (one or more shootdown initiators) with the
two types of operations (COW/unmap) leads to a total of
four types of microbenchmarks as shown in Table 2. For
the benchmarks with multiple shootdown initiators, we
divide the workload evenly across the threads. This
yields a runtime between 150 million and 1.5 billion
cycles per thread.

The frequency of COW/unmap operations is
parameterizable and allows us to test UNITD’s effi-

1. Few benchmarks are designed to use TLB shootdowns. Rather,
most benchmarks are designed to stress cores and caches.

Table 1. Target System Parameters

Parameter Value

cores 2,4,8, 16 in-order scalar cores

L1D/L1I 128KB, 4-way, 64B block, 1-cycle hit

L2 cache 4MB, 4-way, 64B block, 6-cycle hit

memory 4GB, 160-cycle hit

TLBs 1 I-TLB and 1 D-TLB per core; all 4-way set-
assoc.; 64 entries for 4K pages and 64 entries
for 2/4MB pages

coherence MOSI snooping and directory protocols

network broadcast tree (snooping); 2D mesh (directory)

Table 2. Microbenchmarks

single initiator multiple initiators

COW single_cow multiple_cow

unmap single_unmap multiple_unmap
8

ciency across a range of TLB shootdowns counts. We
use the shootdown count as our parameter rather than
the time spent in shootdowns because the latter varies
with the number of cores in the system, as shown in Sec-
tion 3. In our experiments, we vary the number of shoot-
downs between 0 and 12000. Varying the number of
TLB shootdowns reveals the benefits of UNITD as well
as creating a correspondence between the possible bene-
fits and the original time spent in shootdowns.

In addition to these microbenchmarks, we study
UNITD’s performance on applications that exhibit no
shootdowns, including swaptions from the Parsec suite
[5] and pca, string-match, and wordcount (with a much
smaller input file than the one used in Figure 3, due to
simulator limitations, leading to a negligible number of
shootdowns) from the Phoenix suite [31]. We perform
these experiments to confirm that UNITD does not
degrade common-case performance.

6.3 Performance
In all performance experiments, we compare

UNITD to two systems. The first comparison is a base-
line system that relies on TLB shootdowns. All results
are normalized with respect to the baseline system with
the same number of cores. For each benchmark, the x-
axis shows both the number of shootdowns present in
the baseline execution and the number of cores. The sec-
ond comparison is to a system with ideal (zero-latency)
translation invalidations. This ideal-invalidation system
uses the same modified OS as UNITD (i.e., with no TLB
shootdown support) and verifies that a translation is
coherent whenever it is accessed in the TLB. The valida-
tion is done in the background and has no performance
impact. If the cached translation is found to be incoher-
ent, it is invalidated and reacquired; the re-acquisition of
the translation is not ideal (i.e., it has non-zero latency).
Single_unmap. Figure 7 shows UNITD’s performance
on a directory system on the single_unmap benchmark1

as a function of the number of shootdowns and number
of cores. There are three main conclusions. First,
UNITD is efficient in ensuring translation coherence, as
it performs as well as the system with ideal TLB invali-
dations. In a few cases, UNITD even outperforms the
ideal case although the performance gain is a statisti-
cally insignificant artifact of the invalidation of transla-
tions in the TLB, which aids the set-associative TLBs.
In the ideal case, the invalidation occurs if the invalid
translation is accessed. Second, UNITD speedups
increase with the number of TLB shootdowns and with
the number of cores. If the shootdown count is large, the

performance benefits scale accordingly, up to 68%
speedup for the 16 cores configuration. In addition, even
for the same number of shootdowns, UNITD’s improve-
ments increase with the increasing number of cores. For
4000 shootdowns, UNITD speedup increases from 3%
for 2 cores to 9% for 16 cores. The difference increases
for 12000 shootdowns, from 25% for 2 cores to 68% for
16 cores. Therefore, we expect UNITD to be particu-
larly beneficial for many-core systems. Third, as
expected, UNITD has no impact on performance in the
absence of TLB shootdowns.
Multiple_unmap. Figure 8 shows the performance
when there are multiple threads unmapping the pages
for directory systems. UNITD once again matches the
performance of the system with ideal TLB invalidations.
Moreover, UNITD proves beneficial even for a small
number of TLB shootdowns. For just 1000 shootdowns,
UNITD yields a speedup of more than 5% for 8 cores.
Compared to single_unmap, UNITD’s speedups are
generally lower, particularly for greater numbers of
shootdowns and cores. The reason for this phenomenon
is contention among the multiple initiators for locks. We
observe small speedup/slowdowns for the executions

1. Due to space constraints, we discuss the results for the snooping
system, but we omit graphing the results, which are qualitatively simi-
lar to those for the directory system.

single_unmap - Directory protocol

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

0 1k 4k 8k 12k

Shootdown count

S
p

ee
d

u
p

UNITD
ideal TLB invalidations

multiple_unmap - Directory protocol

0.95

1.00

1.05

1.10

1.15

1.20

2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

0 1k 4k 8k 12k

Shootdown count

S
p

ee
d

u
p

UNITD
ideal TLB invalidations

Figure 7. single_unmap benchmark. UNITD
speedup over baseline system for directory

Figure 8. multiple_unmap benchmark. UNITD
speedup over baseline system for directory
9

with zero shootdowns. These are artifacts caused by the
differences between the baseline kernel and our modi-
fied kernel, as evidenced by UNITD’s trends also being
exhibited by the system with ideal TLB invalidations.
Single_cow1. TLB shootdown is a smaller percentage
of runtime for COW (due to long-latency copy opera-
tions) than unmap, and therefore there is less opportu-
nity for UNITD to improve performance. Nevertheless,
UNITD performs as well as the system with ideal invali-
dations.
Multiple_cow. The application behavior changes with
multiple threads executing the COW operations. Perfor-
mance is affected by the time the worker thread spends
in TLB shootdown initiation, as in single_cow, but, for
multiple_cow, performance is also influenced by the
time to service TLB shootdown interrupts triggered by
other threads. The interrupt servicing routine has a sig-
nificant impact on performance that increases with the
number of cores as shown in Section 3. For
multiple_cow, performance is greatly affected by TLB
shootdowns, especially for 16 cores. In this case,
UNITD outperforms the base case by up to 20% for the
snooping protocol.
Real Benchmarks. For applications that perform no
TLB shootdowns when run on the baseline system, we
expect UNITD to have negligible performance impact.
UNITD’s only performance impact occurs in situations
when there are stores to PTEs that invalidate TLB
entries. All of the applications, including wordcount
(because of its smaller input size), spend a negligible
amount of time in TLB shootdowns (less than 0.01% of
total execution time). The results are as expected: for
these applications, UNITD performs as well as the base-
line, with small, statistically insignificant variations.

Understanding UNITD’s Performance Benefit. To
better understand the performance benefits of UNITD,
Figure 9 shows a comparison, for the single_unmap
benchmark, between UNITD’s runtime and the time
spent triggering the TLB shootdowns routines in the
baseline system. UNITD’s runtime is shorter than the
baseline’s runtime by a number of cycles that is greater
than the cycles spent by the baseline in TLB shoot-
downs. As mentioned in Section 3, the latency associ-
ated with the TLB shootdowns on the baseline
x86/Linux system is increased by the full flush of the
TLBs during certain shootdowns, because full flushes
lead to subsequent page table walks. UNITD avoids this
extra penalty, thus resulting in a runtime reduction
greater than the number of TLB shootdown cycles.

6.4 TLB Coherence Lookup Filtering
Despite UNITD’s performance transparency,

UNITD’s TLB coherence lookups result in wasted
PCAM power, as most lookups miss in the PCAM. As
described in Section 5.4, a large fraction of these look-
ups can be avoided by using a simple filter. We evaluate
the efficiency of this solution by implementing a small
include-Jetty filter [28]. The filter consists of 2 blocks of
16 entries each, indexed by bits 19-16 and 15-12 of the
physical address. We use bits 19-12 for filtering in order
to isolate the pages that contain PTEs and that are likely
to not be accessed by the applications. Using the upper
address bits will result in increased filter accuracy, but
will also increase the size of the filter. Even with this
simple filter, we can filter around 90% of the coherence
lookups for most systems, as Figure 10 shows.

6.5 Hardware and Power Costs
The hardware and power costs associated with

UNITD are represented by the PCAM and depend on its
implementation. Conceptually, the PCAM can be
viewed as a dual-tag extension of the TLB. Thus, for a
32-bit system with 64-byte cache blocks, the PCAM 1. Due to space constraints, we discuss results for the COW

microbenchmark but omit graphing the results.

single_unmap - Directory protocol

-5000000

0

5000000

10000000

15000000

20000000

25000000

30000000

2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

0 500 1k 4k 8k 12k

Shootdown count

C
yc

le
s

UNITD saved cycles

TLB shootdown initiator cycles

Figure 9. Runtime cycles eliminated by UNITD
for single_unmap with directory protocol.

Filtered TLB coherence lookups

0

20

40

60

80

100

2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

swaptions pca string_match wordcount

Benchmarks

P
er

ce
n

ta
g

e
o

f
lo

o
ku

p
s

(%
)

Figure 10. Percentage of TLB coherence lookups
filtered with a simple Jetty filter
10

tags require 26 bits compared to the 20 bits of the TLB
tags (for 4-Kbyte pages). For a 64-bit system, the
PCAM tags increase to 38 bits due to the 44-bit physical
addresses. The hardware and power costs for a PCAM
with a small number of entries (e.g., 64 or fewer) are
comparable to those for a core’s store queue with the
same number of entries. For a PCAM with a large num-
ber of entries, a physical CAM may exceed desired area
and power budgets; in this case, one could use an alter-
nate, lower-cost implementation for a logical CAM, as
mentioned in Section 4.2.

Independent of the implementation, accesses to the
TLB for TLB coherence purposes (rather than accesses
for translation lookups) are off the critical path of a
memory access. Therefore, the PCAM implementation
can be clocked at a lower frequency than the rest of the
core or can be implemented as a 2-level structure with
pipelined accesses. For example, if the first level con-
sists of bits 19-12 of the physical address, most lookups
can be filtered after the first level as shown by our Jetty
filter experiment.

7. Related Work
Section 2.1 described the software TLB shootdown

routine as the most common technique of maintaining
TLB coherence. Previous research has focused on three
areas: speeding up the shootdown procedure by provid-
ing dedicated hardware support, reducing the number of
processors involved in the shootdown, and proposing
alternative solutions for maintaining TLB coherence.
Hardware support for shootdowns. Shootdown’s
complexity and latency penalty can be reduced by using
mechanisms other than inter-processor interrupts.
Among current commercial architectures, both Power-
ISA and Intel IA64 support microarchitectural mecha-
nisms for global TLB invalidations. These hardware
designs are still architecturally visible and thus provide
less flexibility than UNITD.
Reducing the number of shared translations. Several
OS implementations have indirectly reduced the impact
of TLB shootdowns on application performance, by
reducing the number of shared translations. Tornado
[16] and K42 [3] introduce the concept of clustered
objects that are associated with each thread, thus reduc-
ing the contention of the kernel managed resources.
Corey [7] follows the same concept by giving applica-
tions the power to decide which PTEs will be processor-
private and thus eliminate shootdowns for these PTEs.
Alternative TLB coherence mechanisms. Teller has
proposed several hardware-based mechanisms for han-
dling TLB coherence [37], but they restrict the system
model in significant ways, such as prohibiting the copy-
on-write policy. Wood et al. [39] proposed a different
approach to handling translations, by using virtual

caches without a memory-based TLB. Translations are
cached in the data cache and thus translation coherence
is maintained by the cache coherence protocol. A draw-
back of this approach is that it requires special handling
of the status and protection bits that must be replicated
at each data block [40]. The design also complicates the
handling of virtual memory based optimizations such as
concurrent garbage collection or copy-on-write [4].

8. Conclusions
We believe the time has come to adopt hardware

support for address translation coherence. We propose
UNITD, a unified hardware coherence protocol that
incorporates address translation coherence together with
cache coherence. UNITD eliminates the performance
costs associated with translation coherence as currently
implemented through TLB shootdown software rou-
tines. We demonstrate that, on systems with 16 cores,
UNITD can achieve speedups of up to 68% for bench-
marks that make frequent changes to the page tables. We
expect the benefits yielded by UNITD to be even greater
for many-core systems. Finally, we demonstrate that
UNITD has no adverse performance impact for other
applications, while incurring a small hardware cost.

Acknowledgments
This work has been supported in part by the Semi-

conductor Research Corporation under contract 2009-
HJ-1881 and the National Science Foundation under
grant CCR-0444516. We thank Milo Martin for his
helpful feedback on this work.

References
[1] A. Agarwal et al. The MIT Alewife Machine:

Architecture and Performance. In Proc. of the 22nd
Annual Int’l Symposium on Computer Architecture, June
1995.

[2] A. R. Alameldeen et al. Evaluating Non-deterministic
Multi-threaded Commercial Workloads. In Proc. of the
Fifth Workshop on Computer Architecture Evaluation
Using Commercial Workloads, Feb. 2002.

[3] J. Appavoo et al. Experience Distributing Objects in an
SMMP OS. ACM Trans. Computer Systems, 25(3), 2007.

[4] A. W. Appel and K. Li. Virtual Memory Primitives for
User Programs. SIGPLAN Notices, 26(4), 1991.

[5] C. Bienia et al. The PARSEC Benchmark Suite:
Characterization and Architectural Implications. In Proc.
of the International Conference on Parallel Architectures
and Compilation Techniques, Oct. 2008.

[6] D. L. Black et al. Translation Lookaside Buffer
Consistency: A Software Approach. In Proc. Third Int’l
Conference on Architectural Support for Programming
Languages and Operating Systems, Apr. 1989.

[7] S. Boyd-Wickizer et al. Corey: An Operating System for
Many Cores. In Proc. of the 8th USENIX Symposium on
11

Operating Systems Design and Implementation, Dec.
2008.

[8] M. Cekleov and M. Dubois. Virtual-Address Caches Part
1: Problems and Solutions in Uniprocessors. IEEE Micro,
17(5):64–71, Sept. 1997.

[9] M. Cekleov and M. Dubois. Virtual-Address Caches, Part
2: Multiprocessor Issues. IEEE Micro, 17(6), Nov. 1997.

[10] K. Chakraborty, P. M. Wells, and G. S. Sohi.
Computation Spreading: Employing Hardware Migration
to Specialize CMP Cores On-the-Fly. In Proc. of the
Twelfth International Conference on Architectural
Support for Programming Languages and Operating
Systems, Oct. 2006.

[11] M.-S. Chang and K. Koh. Lazy TLB Consistency for
Large-Scale Multiprocessors. In Proc. of the 2nd Aizu
International Symposium on Parallel Algorithms /
Architecture Synthesis, Mar. 1997.

[12] P. Cheng and G. E. Blelloch. A Parallel, Real-time
Garbage Collector. ACM SIGPLAN Notices, 36(5), May
2001.

[13] J. Chung et al. Tradeoffs in Transactional Memory
Virtualization. In Proc. of the Twelfth International
Conference on Architectural Support for Programming
Languages and Operating Systems, Oct. 2006.

[14] D. Dhurjati and V. Adve. Efficiently Detecting All
Dangling Pointer Uses in Production Servers. In Proc. of
the International Conference on Dependable Systems and
Networks, June 2006.

[15] A. Erlichson, N. Nuckolls, G. Chesson, and J. Hennessy.
SoftFLASH: Analyzing the Performance of Clustered
Distributed Virtual Shared Memory. SIGOPS Operating
Systems Review, 30(5), 1996.

[16] B. Gamsa, O. Krieger, and M. Stumm. Tornado:
Maximizing Locality and Concurrency in a Shared
Memory Multiprocessor Operating System. In Proc. of
the 3rd Symposium on Operating Systems Design and
Implementation, 1999.

[17] K. Gharachorloo, A. Gupta, and J. Hennessy. Two
Techniques to Enhance the Performance of Memory
Consistency Models. In Proc. of the International
Conference on Parallel Processing, volume I, Aug. 1991.

[18] E. G. Hallnor and S. K. Reinhardt. A Fully Associative
Software-Managed Cache Design. In Proc. of the 27th
Annual International Symposium on Computer
Architecture, June 2000.

[19] S. Heo, K. Barr, and K. Asanovic. Reducing Power
Density Through Activity Migration. In Proc. of the 2003
Int’l Symp. on Low Power Electronics and Design, 2003.

[20] M. D. Hill et al. Cooperative Shared Memory: Software
and Hardware for Scalable Multiprocessor. ACM Trans.
on Computer Systems, 11(4), Nov. 1993.

[21] Intel Corporation. Intel Processor Identification and the
CPUID Instruction, Mar. 2009.

[22] R. Kumar et al. Single-ISA Heterogeneous Multi-Core
Architectures: The Potential for Processor Power
Reduction. In Proc. of the 36th Annual International
Symposium on Microarchitecture, Dec. 2003.

[23] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA
Highly Scalable Server. In Proc. of the 24th Annual Int’l

Symposium on Computer Architecture, June 1997.
[24] J. Levon et al. Oprofile. http://oprofile.sourceforge.net.
[25] P. S. Magnusson et al. Simics: A Full System Simulation

Platform. IEEE Computer, 35(2), Feb. 2002.
[26] K. Magoutis. Memory Management Support for Multi-

Programmed Remote Direct Memory Access (RDMA)
Systems. In Proc. of the IEEE International Conference
on Cluster Computing, Sept. 2005.

[27] M. M. Martin et al. Multifacet’s General Execution-
driven Multiprocessor Simulator (GEMS) Toolset.
Computer Architecture News, 33(4), Sept. 2005.

[28] A. Moshovos, G. Memik, A. Choudhary, and B. Falsafi.
JETTY: Filtering Snoops for Reduced Energy
Consumption in SMP Servers. In Proc. of the Seventh
IEEE Symposium on High-Performance Computer
Architecture, Jan. 2001.

[29] U. G. Nawathe et al. Implementation of an 8-Core, 64-
Thread, Power-Efficient SPARC Server on a Chip. IEEE
Journal of Solid-State Circuits, 43(1), 2008.

[30] X. Qiu and M. Dubois. Options for Dynamic Address
Translation in COMAs. In Proc. of the 25th Annual
International Symposium on Computer Architecture, June
1998.

[31] C. Ranger et al. Evaluating MapReduce for Multi-core
and Multiprocessor Systems. In Proc. of the Twelfth
International Symposium on High-Performance
Computer Architecture, Feb. 2007.

[32] S. K. Reinhardt, J. R. Larus, and D. A. Wood. Tempest
and Typhoon: User-Level Shared Memory. In Proc. of the
21st Annual International Symposium on Computer
Architecture, Apr. 1994.

[33] B. Rosenburg. Low-synchronization Translation
Lookaside Buffer Consistency in Large-scale Shared-
memory Multiprocessors. In Proc. of the Twelfth ACM
Symposium on Operating Systems Principles, 1989.

[34] R. Stets et al. Cashmere-2L: Software Coherent Shared
Memory on a Clustered Remote-Write Network. In Proc.
of the 16th ACM Symposium on Operating Systems
Principles, 1997.

[35] M. Talluri and M. D. Hill. Surpassing the TLB
Performance of Superpages With Less Operating System
Support. In Proc. of the Sixth International Conference on
Architectural Support for Programming Languages and
Operating Systems, Oct. 1994.

[36] P. J. Teller. Translation-Lookaside Buffer Consistency.
IEEE Computer, 23(6), June 1990.

[37] P. J. Teller, R. Kenner, and M. Snir. TLB Consistency on
Highly-Parallel Shared-Memory Multiprocessors. In
Proc. of the Twenty-First Annual Hawaii International
Conference on Architecture Track, 1988.

[38] A. Wolfe. AMD’s Quad-Core Barcelona Bug Revealed.
InformationWeek, December 11 2007.

[39] D. A. Wood et al. An In-Cache Address Translation
Mechanism. In Proc. of the 13th Annual International
Symposium on Computer Architecture, June 1986.

[40] D. A. Wood and R. H. Katz. Supporting Reference and
Dirty Bits in SPUR’s Virtual Address Cache. In Proc. of
the 16th Annual International Symposium on Computer
Architecture, May 1989.
12

	Abstract
	1. Introduction
	2. Address Translation
	2.1 Address Translation Coherence
	2.2 TLB Shootdown
	Figure 1. TLB shootdown routines for initiator and victim processors
	TLB position
	Shootdown algorithm

	3. Performance Impact of TLB Coherence
	Figure 2. Per-shootdown latency
	Figure 3. Shootdown performance overhead on Phoenix benchmarks

	4. UNITD Coherence
	4.1 Issue #1: Discovering the Physical Address of a Translation’s PTE
	Concept
	Figure 4. 3-level page table walk on IA32. UNITD associates PTE1 with the VP1->PP1 translation

	Implementation

	4.2 Issue #2: Augmenting the TLBs to Enable Access Using a PTE’s Physical Address
	Concept
	Implementation
	Figure 5. PCAM integration with core and coherence controller
	Figure 6. PCAM operations

	5. Platform-Specific Issues, Implementation Issues, and Optimizations
	5.1 Interactions with Speculative Execution
	5.2 Handling PTEs in Data Cache and TLB
	Solution #1
	Solution #2

	5.3 UNITD’s Non-Impact on the System
	5.3.1 Cache Coherence Protocol
	Snooping
	Directory
	MOESI Protocols

	5.3.2 Memory Consistency Model
	5.3.3 Virtual Address Synonyms
	5.3.4 Superpages
	5.3.5 Virtual Machines

	5.4 Reducing TLB Coherence Lookups

	6. Experimental Evaluation
	6.1 Methodology
	Table 1. Target System Parameters

	6.2 Benchmarks
	Table 2. Microbenchmarks

	6.3 Performance
	Figure 7. single_unmap benchmark. UNITD speedup over baseline system for directory
	Figure 8. multiple_unmap benchmark. UNITD speedup over baseline system for directory
	Single_unmap
	Multiple_unmap
	Single_cow
	Multiple_cow
	Real Benchmarks
	Figure 9. Runtime cycles eliminated by UNITD for single_unmap with directory protocol.

	Understanding UNITD’s Performance Benefit

	6.4 TLB Coherence Lookup Filtering
	Figure 10. Percentage of TLB coherence lookups filtered with a simple Jetty filter

	6.5 Hardware and Power Costs

	7. Related Work
	Hardware support for shootdowns
	Reducing the number of shared translations
	Alternative TLB coherence mechanisms

	8. Conclusions
	Acknowledgments
	References

	UNified Instruction/Translation/Data (UNITD) Coherence: One Protocol to Rule Them All

