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Abstract

We propose UNITD, a unified hardware coherence 
framework that integrates translation coherence into the 
existing cache coherence protocol. In UNITD coherence 
protocols, the TLBs participate in the cache coherence 
protocol just like the instruction and data caches, with-
out requiring any changes to the existing coherence pro-
tocol. UNITD eliminates the need for the software TLB 
shootdown routine, a procedure known to be perfor-
mance costly and non-scalable. We evaluate snooping 
and directory UNITD coherence protocols on multicore 
processors with 2-16 cores, and we demonstrate that 
UNITD reduces the performance penalty associated 
with TLB coherence to almost zero. 

1.  Introduction
Shared memory multiprocessors, including multi-

core processors, have many caches, and these caches 
must be kept coherent. For caches that hold instructions 
or data, coherence is almost invariably maintained with 
an all-hardware cache coherence protocol. Hardware 
controllers at the caches coordinate amongst them-
selves—using snooping or directories—to ensure that 
instructions and data are kept coherent, and this coher-
ence is not software-visible. However, for caches that 
hold address translations (i.e., translation lookaside 
buffers), coherence is almost always maintained by an 
OS-managed software coherence protocol. Even for 
architectures with hardware control of TLB fills and 
evictions, when an event occurs that affects the coher-
ence of TLB entries (e.g., eviction of a page of virtual 
memory), the OS ensures translation coherence through 
a software routine called TLB shootdown [6]. 

This dichotomy between using hardware for cache 
coherence1 and software for TLB coherence inspires 
two questions. First, why is cache coherence performed 
in hardware? Second, why is TLB coherence performed 

in software? Our answers to these questions lead us to 
conclude that the time is right to move TLB coherence 
into hardware.

We begin by exploring why cache coherence is per-
formed in hardware, and we discover two primary rea-
sons: performance and microarchitectural decoupling. 
Performance-wise, hardware is far faster than software, 
and for coherence this performance advantage grows as 
a function of the number of caches. Although using soft-
ware for local activities (e.g., TLB fills and replace-
ments) might have acceptable performance, even some 
architectures that have traditionally relied on software 
for such operations (e.g., SPARC) are now transitioning 
to hardware support for increased performance [29]. In 
contrast, activities with global coordination are pain-
fully slow when performed in software. For example, 
Laudon [23] mentions that for a page migration on the 
SGI Origin multiprocessor, the software routine for TLB 
shootdown is three times more time-consuming than the 
actual page move. The second reason for performing 
cache coherence in hardware is to create a high-level 
architecture that can support a variety of microarchitec-
tures. A less hardware-constrained OS can easily 
accommodate heterogeneous cores as it does not have to 
be aware of each core’s particularities [22]. Further-
more, hardware coherence enables migrating execution 
state between cores for performance, thermal, or reli-
ability purposes [10, 19] without software knowledge. 

Given that hardware seems to be an appropriate 
choice for cache coherence, why has TLB coherence 
remained architecturally visible and under the control of 
software? We believe that one reason architects have not 
explored hardware TLB coherence is that they already 
have a well-established mechanism that is not too costly 
for systems with a small number of processors. For pre-
vious multiprocessor systems, Black [6] explains that 
“the low overhead of maintaining TLB consistency in 
software on current machines may not justify a com-
plete hardware implementation.” As we show in Section 
3, this conclusion is likely to change for future many-
core chips.1.  We will use “cache coherence” as shorthand for referring to coher-

ence for instruction and data caches. 
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In this paper, we argue that the time has come for 
hardware TLB coherence. Hardware TLB coherence 
provides three primary benefits. First, it drastically 
reduces the performance impact of TLB coherence. This 
performance benefit is worthwhile on its own, but it also 
lowers the threshold for adopting features that incur a 
significant amount of TLB coherence activity, includ-
ing: hardware transactional memory (e.g., XTM [13]), 
user-level memory management for debugging [14], and 
concurrent garbage collection [12]. Second, hardware 
TLB coherence provides a cleaner interface between the 
architecture and the OS, which could help to reduce the 
likelihood of bugs at this interface, such as the recent 
TLB coherence bug in the AMD Barcelona chip [38]. 
Third, by decoupling translation coherence from the OS, 
hardware TLB coherence can be used to support designs 
that use TLBs in non-processor components such as net-
work cards or processing elements [26, 32]. 

We propose UNified Instruction/Translation/Data 
(UNITD) Coherence, a hardware coherence framework 
that integrates translation coherence into the existing 
cache coherence protocol. At a high level, the TLBs par-
ticipate in the cache coherence protocol just like instruc-
tion and data caches. UNITD eliminates the need for the 
software TLB shootdown routine, a procedure known to 
be performance costly [15, 23, 34]. UNITD is more gen-
eral than the only prior work in hardware TLB coher-
ence [37], which required specific assumptions about 
allowable translation caching (e.g., copy-on-write is dis-
allowed). We evaluate snooping and directory UNITD 
coherence protocols on multicore processors with 2-16 
cores using Simics [25]. We show that UNITD reduces 
the performance penalty associated with TLB coherence 
to almost zero, performing nearly identically to a system 
with zero-latency TLB invalidations. 

This paper is organized as follows. Section 2
describes the problem of TLB coherence and how TLB 
shootdown works. Section 3 explores the performance 
impact of TLB shootdowns. Section 4 describes 
UNITD, our proposed mechanism for maintaining trans-
lation coherence. In Section 5, we discuss implementa-
tion issues, including platform-specific issues and 
optimizations. We experimentally evaluate UNITD in 
Section 6. We discuss related work in Section 7 and con-
clude in Section 8. 

2.  Address Translation
Address translation is a level of indirection that reg-

ulates a thread’s access to physical memory given a vir-
tual address. Architectures facilitate this indirection by 
supporting a set of software managed structures called 
page tables. Each page table entry (PTE) contains a 
mapping from a virtual memory sub-space to a physical 
memory sub-space, as well as additional bits represent-

ing metadata associated with the mapping (e.g., protec-
tion or status bits). 

Because accessing a translation can be on the criti-
cal path of a memory access, copies of the translations 
are cached in TLBs. Changes to the PTEs result in trans-
lations being modified or invalidated in the page tables, 
and coherence must be maintained between the cached 
copies of the translations and the page table defined 
translations. 

2.1  Address Translation Coherence
Maintaining coherence between the TLBs and the 

page tables has historically been named “TLB consis-
tency” [37], but in this paper we will refer to it as “TLB 
coherence,” due to its much closer analogy to cache 
coherence than to memory consistency.

One important difference between cache coherence 
and TLB coherence is that some architectures do not 
require maintaining TLB coherence for each datum (i.e., 
TLBs may contain different values). These architectures 
require TLB coherence only for unsafe changes [36] 
made to address translations. Unsafe changes include 
mapping modifications, decreasing the page privileges 
(e.g., from read-write to read-only) or marking the trans-
lation as invalid. The remaining possible changes (e.g., 
increasing page privileges, updating the accessed/dirty 
bits) are considered to be safe and do not require TLB 
coherence. Consider one core that has a translation 
marked as read-only in the TLB, while another core 
updates the translation in the page table to be read-write. 
This translation update does not have to be immediately 
visible to the first core. Instead, the first core's TLB can 
be lazily updated when the core attempts to execute a 
store instruction; an access violation will occur and the 
page fault handler can load the updated translation.

2.2  TLB Shootdown
TLB shootdown [6, 11, 33] is a software routine for 

enforcing TLB coherence using inter-processor inter-
rupts. TLB shootdown is the most common technique 
for maintaining TLB coherence; we defer a discussion 
of alternative techniques to Section 7. Because manag-
ing the virtual memory system is the responsibility of 
privileged software, TLB shootdowns are invisible to 
the user application, although shootdowns directly 
impact the user application’s performance. This perfor-
mance impact depends on several factors, including the 
position of the TLB in the memory hierarchy, the shoot-
down algorithm used, and the number of processors 
affected by the shootdown (victim processors). We dis-
cuss the first two factors in this section, and we analyze 
the impact of the number of victim processors on the 
TLB shootdown cost in Section 3. 
TLB position. TLBs can be placed at different levels 
between the core and the memory [30]. Most microar-
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chitectures implement per-core TLBs associated with 
virtually-indexed physically-tagged caches. These 
designs pose scalability problems for many-core sys-
tems, because the performance penalty for the shoot-
down initiator increases with the number of victim 
processors. Because this solution is most common, 
throughout the paper we also assume per-core TLBs 
unless otherwise mentioned. Another option is to posi-
tion the TLB at the memory [37], such that a translation 
occurs only when a memory access is required. This 
design might appear attractive for many-core chips, 
since TLB coherence must be ensured only at memory 
controllers, whereas cache coherence is ensured using 
virtual addresses. However, virtual caches suffer from 
the well-known problem of virtual synonyms [8, 9]. 
Shootdown algorithm. The TLB shootdown procedure 
can be implemented using various algorithms that trade 
complexity for performance. Teller’s study [36] is an 
excellent description of various shootdown algorithms. 
In this paper, we assume the TLB shootdown procedure 
implemented in Linux kernel 2.6.15 and described in 
Figure 1. The shootdown is triggered by one processor 
(i.e., initiator) that programs an inter-processor interrupt 
to determine all other processors sharing the same 
address space (i.e., victims) to invalidate the transla-

tion(s). The procedure leverages Rosenburg’s observa-
tion that a shootdown victim can resume its activity as 
soon as it has acknowledged the shootdown (i.e., has 
removed itself from the shootdown list) [33]. The algo-
rithm thus reduces the time spent by victims in the 
shootdown interrupt. 

3.  Performance Impact of TLB Coherence
In this section, we analyze the penalty associated 

with TLB shootdown routines and its impact on the per-
formance of real applications. We perform these experi-
ments on a real (not simulated) 32-Xeon processor 
system with 64GB RAM running Suse Enterprise Linux 
Server Edition 10 (kernel 2.6.15). We study systems 
with fewer cores by disabling cores in the system. 

Figure 2 shows the latency of a single TLB shoot-
down for both the initiator and victims as a function of 
the number of processors involved in the shootdown. We 
measured the latency by reading the timestamp counter 
at the beginning and end of the shootdown. As described 
in Section 2, the latency of a shootdown is application-
independent and depends on microarchitectural charac-
teristics, the number of processors involved, and the OS. 
Figure 2 shows that the latency of a shootdown 
increases roughly linearly with the number of proces-

Initiator Victim

•disable pre-emption and acquire page table lock

•construct list of victim processors

•construct list of translation(s) to invalidate

•flush translation(s) in local TLB

• if (victim list not empty), send interrupts to victims

• service interrupt & get list of translations to invalidate

•while (victim list not empty) {wait} • invalidate translation(s) from TLB

•acknowledge interrupt & remove self from victim list

• release page table lock and enable pre-emption

Figure 1. TLB shootdown routines for initiator and victim processors
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sors involved. This latency does not capture the side 
effects of TLB shootdowns such as the TLB invalida-
tions that result in extra cycles spent in repopulating the 
TLB with translations after the shootdown. This addi-
tional cost depends on the thread’s memory footprint, as 
well as the position of the corresponding cache blocks in 
the memory hierarchy. For an Intel64 architecture, fill-
ing a translation in the TLB requires two L1 cache 
accesses in the best-case scenario; the worst-case sce-
nario requires four main memory accesses. On 
x86/Linux platforms, this additional cost is sometimes 
increased by the fact that, during shootdowns triggered 
by certain events, the OS forces both the initiator and 
the victims to flush their entire TLBs rather than invali-
date individual translations. 

Our second experiment analyzes the impact of TLB 
shootdowns on real applications. For this study we 
chose three benchmarks from the Phoenix suite [31] that 
cover a wide range in terms of the number of TLB 
shootdowns incurred within a given amount of applica-
tion code. We use Oprofile [24] to estimate the percent 
of total runtime (i.e., fraction of Oprofile’s samples) 
spent by the applications in TLB shootdowns. Figure 3
shows the increased runtime associated with the TLB 
shootdowns, which becomes significant for applications 
that use the routine more often (e.g., wordcount). 

These experiments allow us to make two important 
observations. First, as the number of cores increases, 
maintaining TLB coherence is likely to have an increas-
ingly significant impact on performance if it is enforced 
through the current TLB shootdown routine. To alleviate 
this performance impact, architects need to either 
change the way pages are shared across threads or 
change the mechanism for maintaining TLB coherence. 
The solution that we propose in this paper is the latter, 
by maintaining TLB coherence in hardware. The second 
observation supported by Figure 3 is that there can be 
large variations in the usage patterns of TLB shoot-
downs across applications. As such, we will evaluate 
UNITD across a wide range of shootdown frequencies. 

4.  UNITD Coherence
In this section we present UNITD, a framework for 

unifying TLB coherence with cache coherence in one 
hardware protocol. At a high level, UNITD integrates 
the TLBs into the existing cache coherence protocol that 
uses a subset of the typical MOSI coherence states. 
TLBs are simply additional caches that participate in the 
coherence protocol like coherent, read-only instruction 
caches. UNITD has no impact on the cache coherence 
protocol and thus does not increase its complexity.

With respect to the coherence protocol, TLB entries 
are read-only—translations are never modified in the 
TLBs themselves—and thus only two coherence states 

are possible: Shared (read-only) and Invalid. Because 
there are only two possible states, UNITD uses the 
existing Valid bit to maintain an entry’s coherence state. 
When a translation is inserted into a TLB, it is marked 
as Shared. The cached translation can be accessed by the 
local core as long as it is in the Shared state. The transla-
tion remains in this state until the TLB receives a coher-
ence message invalidating the translation. The 
translation is then Invalid and thus subsequent memory 
accesses depending on it will miss in the TLB and reac-
quire the translation from the memory system.

Despite the similarities between TLBs and instruc-
tion and data caches, there is one key difference between 
caches and TLBs: cache coherence is based on physical 
addresses of blocks, but a translation cached in a TLB is 
not directly addressable by the physical addresses on 
which it resides (i.e., the physical address of the PTE 
defining the translation, not to be confused with the 
physical address to which the translation maps a virtual 
address). For the TLBs to participate in the coherence 
protocol, UNITD must be able to perform coherence 
lookups in the TLB based on the physical addresses of 
PTEs. To overcome this key difference between TLBs 
and caches, we must address two issues:
•Issue #1: For each translation in a TLB, UNITD 

must discover the physical address of the PTE asso-
ciated with that translation. 
•Issue #2: UNITD must augment the TLBs such that 

they can be accessed with a physical address. 
We discuss UNITD’s solutions to these two issues 

in the following two subsections. 

4.1  Issue #1: Discovering the Physical Address 
of a Translation’s PTE

We start by describing the concept behind discover-
ing the PTE associated with a translation, followed by a 
description of how to determine the physical address of 
the PTE in practice. 
Concept. The issue of associating a translation with its 
PTE’s physical address assumes there is a one-to-one 
association between translations and PTEs. This 
assumption is straightforward in systems with flat page 
tables, but less obvious for systems using hierarchical 
page tables.

For architectures that implement hierarchical page 
tables, a translation is defined by a combination of mul-
tiple PTEs in the hierarchy. Figure 4 illustrates the trans-
lation, on an IA32 system, from virtual page VP1 to 
physical page PP1, starting from the root of the page 
table (i.e., CR3 register) and traversing the intermediate 
PTEs (i.e., PDPE and PDE). Conceptually, for these 
architectures, translation coherence should be enforced 
when a modification is made to any of the PTEs on 
which the translation depends. Nevertheless, we can 
4



exploit the hierarchical structure of the page tables to 
relax this constraint to a single-PTE dependency by 
requiring that any change to a PTE propagates to a 
change of the last-level PTE. Consider the case of a 
modification to an intermediary PTE. PTE modifications 
can be divided into changes to mappings and changes to 
the metadata bits. In the case of mapping changes, the 
previous memory range the PTE was mapping to must 
be invalidated. Moreover, for security reasons, the pages 
included in this space must be cleared, such that when-
ever this memory space is reused, it does not contain any 
previous information. With respect to the metadata bits, 
any unsafe changes (i.e., to the permission bits) must be 
propagated down to the last-level PTE. In both cases, we 
can identify when translation coherence is required by 
determining when changes are made to the last-level 
PTE that the translation depends on.

Therefore, independent of the structure of the page 
tables, a translation is identifiable through the last-level 
PTE address. 
Implementation. How the last-level PTE’s physical 
address is identified depends on whether the architecture 
assumes hardware or software management of TLB fills 
and evictions. Designs with hardware-managed TLBs 
rely on dedicated hardware (“page table walker”) that 
walks iteratively through the page table levels in case of 
a TLB miss. The number of iterative steps in a walk 
depends on the architecture (i.e., structure of the page 
tables) and the values stored at each level’s PTE. As a 
consequence, the walker knows when it is accessing the 
last-level PTE and can provide its physical address to 
the TLB. 

For architectures with software managed TLB 
fills/evictions, UNITD requires software support for 
notifying the hardware as to the last-level PTE associ-
ated with a translation. The software can easily identify 
the PTE since the software follows the same algorithm 
as the hardware walker. Once the PTE address is found, 
it can be written to a dedicated memory address, such 

that the hardware associates it with the translation that 
will be inserted in the TLB. An alternative solution for 
systems with software-managed TLBs is for the soft-
ware to explicitly insert this physical address in the TLB 
through a dedicated instruction. Because our evaluation 
targets an x86 system with hardware management of 
TLB fills/evictions, in the rest of the paper we assume a 
system with hardware-managed TLBs, but UNITD is 
equally applicable to systems with software-managed 
TLBs.

4.2  Issue #2: Augmenting the TLBs to Enable 
Access Using a PTE’s Physical Address
Concept. To perform coherence lookups in the TLBs, 
UNITD needs to be able to (a) access the TLBs with 
physical addresses and (b) invalidate the translations 
associated with the PTEs that reside at those physical 
addresses, if any. Assuming the one-to-one correspon-
dence between translations and PTEs discussed in 
Section 4.1, a TLB translation moves to Invalid when-
ever the PTE defining the translation is modified. 
Implementation. To record the physical addresses of 
PTEs associated with the translations cached by the 
TLB, we associate with each TLB an additional hard-
ware structure. We refer to this structure that intermedi-
ates between TLBs and the coherence protocol as the 
Page Table Entry CAM (PCAM). The PCAM has the 
same number of entries as the TLB, and it is fully-asso-
ciative because the location of a PTE within a set-asso-
ciative TLB is determined by the TLB insertion 
algorithm (and not determined by the PTE’s physical 
address). Figure 5 shows how the PCAM is integrated 
into the system, with interfaces to the TLB inser-
tion/eviction mechanism (for inserting/evicting the cor-
responding PCAM entries), the coherence controller 
(for receiving coherence invalidations), and the core (for 
a coherence issue discussed in Section 5.2). The PCAM 
is off the critical path of a memory access; it is not 
accessed during regular TLB lookups for obtaining 
translations.

rd

nd

st

Figure 4. 3-level page table walk on IA32. UNITD 
associates PTE1 with the VP1->PP1 translation
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Figure 5. PCAM integration with core and 
coherence controller
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The PCAM is logically a content addressable mem-
ory and could be implemented with a physical CAM. 
For small PCAMs, a physical CAM implementation is 
practical. However, for PCAMs with large numbers of 
entries (e.g., for use with a 512-entry 2nd-level TLB), a 
physical CAM may be impractical due to area and 
power constraints. In such situations, the PCAM could 
be implemented with a hardware data structure that uses 
pointers to connect TLB entries to PCAM entries. Such 
a structure would be similar to the indirect index cache 
[18], for example. Henceforth, we assume a physical 
CAM implementation, without loss of generality. 

Maintaining coherence on physical addresses of 
PTEs requires book-keeping at a fine granularity (e.g., 
double-word for a 32-bit architecture). In order to inte-
grate TLB coherence with the existing cache coherence 
protocol with minimal microarchitectural changes, we 
relax the correspondence of the translations to the mem-
ory block containing the PTE, rather than the PTE itself. 
Maintaining translation granularity at a coarser grain 
(i.e., cache block, rather than PTE) trades a small per-
formance penalty for ease of integration. Because multi-
ple PTEs can be placed in the same cache block, the 
PCAM can hold multiple copies of the same datum. For 
simplicity, throughout the rest of the paper we refer to 
PCAM entries simply as PTE addresses. 

Figure 6 shows the two operations associated with 
the PCAM: (a) inserting an entry into the PCAM and (b) 
performing a coherence invalidation at the PCAM. PTE 
addresses are added in the PCAM simultaneously with 
the insertion of their corresponding translations in the 
TLB. Because the PCAM has the same structure as the 
TLB, a PTE address is inserted in the PCAM at the 
same index as its corresponding translation in the TLB 

(physical address 12 in Figure 6a). Note that there can 
be multiple PCAM entries with the same physical 
address, as in Figure 6a; this situation occurs when mul-
tiple cached translations correspond to PTEs residing in 
the same cache block. 

PCAM entries are removed as a result of the 
replacement of the corresponding translation in the TLB 
or due to an incoming coherence request for read-write 
access. If a coherence request hits in the PCAM, the 
Valid bit for the corresponding TLB entry is cleared. If 
multiple TLB translations have the same PTE block 
address, a PCAM lookup on this block address results in 
the identification of all associated TLB entries. Figure 
6b illustrates a coherence invalidation of physical 
address 12 that hits in two PCAM entries. 

5.  Platform-Specific Issues, Implementation 
Issues, and Optimizations

In this section, we analyze several implementation 
issues, including: UNITD’s integration with speculative 
execution in superscalar cores (Section 5.1), UNITD’s 
handling of translations that are currently in both the 
TLB and data cache of a given core (Section 5.2), how 
UNITD is compatible with a wide range of system mod-
els and features (Section 5.3), and a method of reducing 
the number of TLB coherence lookups (Section 5.4).

5.1  Interactions with Speculative Execution
UNITD must take into account the particularities of 

the core, especially for superscalar cores. Many cores 
speculatively execute a load as soon as the load’s 
address is known. In a multithreaded or multicore envi-
ronment, it is possible for another thread to write to this 
address between when the load speculatively executes 
and when it becomes ready to commit. In an architecture 

Figure 6. PCAM operations

TLB PCAM TLB PCAM

VP PP Valid phys addr Insert translation  
VP1→PP9 which is at 
PhysAddr 12

VP PP Valid phys addr

VP3 PP1 1 12 VP3 PP1 1 12

VP2 PP6 1 134 VP2 PP6 1 134

VP6 PP0 0 30 VP1 PP9 1 12

VP5 PP4 0 76 VP5 PP4 0 76

(a) Inserting an entry into the PCAM when an entry is inserted into the TLB

TLB PCAM TLB PCAM

VP PP Valid phys addr Process coherence 
invalidation for  
PhysAddr 12

VP PP Valid phys addr

VP3 PP1 1 12 VP3 PP1 0 12

VP2 PP6 1 134 VP2 PP6 1 134

VP1 PP9 1 12 VP1 PP9 0 12

VP5 PP4 0 76 VP5 PP4 0 76

(b) Processing a coherence invalidation for a physical address (two PTEs are at that block address)
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that enforces sequential consistency, these situations 
require that the load (and its consumers) be squashed.1

To detect these mis-speculations, cores adopt one of two 
solutions [17]: either snoop coherence requests that 
invalidate the load’s address or replay the load at com-
mit time and compare the replayed value to the original. 

With UNITD, an analogous situation for transla-
tions is now possible. A load can read a translation from 
the TLB before it is ready to commit. Between when the 
load reads the translation and is ready to commit, the 
translation could be invalidated by a hardware coher-
ence event. This analogous situation has analogous solu-
tions: either snoop coherence requests that invalidate the 
load’s translation or replay the load’s TLB access at 
commit time. Either solution is more efficient than the 
case for systems without UNITD; in such systems, an 
invalidation of a translation causes an interrupt and a 
flush of the entire pipeline.

5.2  Handling PTEs in Data Cache and TLB
UNITD must consider the interactions between 

TLBs and the core when a page table walk results in a 
hit on a block present in the Modified state in the local 
core’s data cache. We present two viable solutions to 
this situation. 
Solution #1. Because the page table walk results in the 
TLB having this block Shared, we can maintain the 
coherence invariant of “single writer or multiple read-
ers” (SWMR) by having the block in the core’s data 
cache transition from Modified to Shared. The drawback 
to this solution is that, because the page table walker 
uses the core’s regular load/store ports to insert requests 
into the memory system, the cache controller must dis-
tinguish between memory accesses of the same type 
(e.g., loads) originating from the core’s pipeline. For 
example, a regular (non-page-table-walk) load leaves 
the data cache block in the Modified state, whereas a 
page-table-walk load transitions the data cache block to 
Shared. 
Solution #2. Because Solution #1 requires changing the 
coherence controller, we instead adopt an alternative 
solution that does not affect the cache coherence proto-
col. If a page table walk results in a hit on a block in the 
Modified state in the data cache, we leave the block in 
the Modified state in the data cache, while inserting the 
block in the Shared state in the TLB. Despite the appar-
ent violation of the SWMR invariant, UNITD can 
ensure that the TLB always contains coherent data by 
probing the TLB on stores by the local core.2 This situa-
tion is the only case in which UNITD allows a combina-

tion of seemingly incompatible coherence states. 
Because processors already provide mechanisms for 
self-snoops on stores for supporting self-modifying 
code [21], UNITD can take advantage of existing 
resources, which is why we have chosen Solution #2 
over Solution #1.

5.3  UNITD’s Non-Impact on the System
UNITD is compatible with a wide range of system 

models, and we now discuss some system features that 
might appear to be affected by UNITD. 
5.3.1  Cache Coherence Protocol

We have studied UNITD in the context of systems 
with both MOSI snooping and directory coherence pro-
tocols. UNITD has no impact on either snooping or 
directory protocols, and it can accommodate a MOESI 
protocol without changing the coherence protocol.
Snooping. By adopting the self-snooping solution pre-
viously mentioned in Section 5.2, no change is required 
to the cache protocol for a snooping system. 
Directory. It might appear that adding TLBs as possible 
sharers of blocks would require a minor change to the 
directory protocol in order to maintain an accurate list of 
block sharers at the directory. However, this issue has 
already been solved for coherent instruction caches. If a 
core relinquishes ownership of a block in its data cache 
due to an eviction and the block is also present in its 
instruction cache or TLB, it sets a bit in the writeback 
request such that the directory does not remove the core 
from the block’s list of sharers. 
MOESI Protocols. UNITD also applies to protocols 
with an Exclusive state (i.e., MOESI protocol) without 
modifying the protocol. For MOESI protocols, the 
TLBs must be integrated into the coherence protocol to 
determine if a requestor can obtain a block in the Exclu-
sive state. Once again, the TLB behaves like a coherent 
instruction cache; it is probed in parallel with the cores’ 
caches and contributes to the reply sent to the requestor.
5.3.2  Memory Consistency Model

UNITD is applicable to any memory consistency 
model. Because UNITD’s TLB lookups are performed 
in parallel with cache snoops, remote TLB invalidations 
can be guaranteed through the mechanisms provided by 
the microarchitecture to enforce global visibility of a 
memory access, given the consistency model.
5.3.3  Virtual Address Synonyms

UNITD is not affected by synonyms (virtual 
address aliases) because it operates on PTEs that define 
unique translations of virtual addresses to physical 
addresses. Each synonym is defined by a different PTE, 
and changing/removing a translation has no impact on 
other translations in the synonym set.

1.  We consider a sequentially consistent system in this paper. 

2.  In Section 5.4, we discuss how to minimize the number of TLB 
snoops for this purpose.
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5.3.4  Superpages
Superpages rely on “coalescing neighboring PTEs 

into superpage mappings if they are compatible” [35]. 
The continuity of PTEs in physical addresses makes 
TLB snooping on superpages trivial with simple UNITD 
extensions (e.g., the PCAM can include the number of 
PTEs defining the superpage to determine if a snoop hits 
on any of them).
5.3.5  Virtual Machines

Virtualization does not affect UNITD. UNITD 
operates on PTEs using physical addresses, and not 
machine addresses. A PTE change will affect only the 
host for which the PTE defines a translation. If multiple 
VMs access a shared physical page, they will access it 
using their own physical PTEs, as assigned by the host 
OS. In fact, we expect UNITD performance benefits to 
increase on virtualized systems because the TLB shoot-
down cost (which is eliminated by UNITD) increases 
due to host-guest communication for setting up the pro-
cedure.

5.4  Reducing TLB Coherence Lookups
Because UNITD integrates TLBs into the coher-

ence protocol, UNITD requires TLB coherence lookups 
(i.e., in the PCAM) for local stores and external coher-
ence requests for ownership. The overwhelming major-
ity of these lookups result in TLB misses, since PTE 
addresses represent a small, specific subset of the mem-
ory space. To avoid wasting power on unnecessary TLB 
coherence lookups, UNITD can easily filter out these 
requests by using one of the previously proposed solu-
tions for snoop filters [28]. 

6.  Experimental Evaluation
In this section we evaluate UNITD’s performance 

improvement over systems relying on TLB shootdowns. 
We also evaluate our filtering of TLB coherence look-
ups, as well as UNITD’s hardware cost.

6.1  Methodology
We use Virtutech Simics [25] to simulate an x86 

multicore processor. For the memory system timing 
simulations we use GEMS [27]. We extend the infra-
structure to accurately model page table walks and TLB 
accesses. We do not model the time to deliver interrupts, 
an approximation that aids systems with shootdowns but 
not UNITD. The parameters of our simulated system are 
given in Table 1. The baseline OS consists of a Fedora 
Core 5 distribution with a 2.6.15 SMP kernel. For the 
UNITD systems, we use the same kernel version recom-
piled without TLB shootdown procedures. We report 
results averaged across twenty simulated executions, 
with each simulation having a randomly perturbed main 
memory latency as described by Alameldeen et al. [2].

6.2  Benchmarks
Ideally we would like to test UNITD on a set of real 

applications that exhibit a wide range of TLB shoot-
down activity. Unfortunately, we are bound to the con-
straints imposed by running the applications on a 
simulator, and not the real hardware, and therefore the 
real time that we can simulate is greatly decreased. With 
the exception of the wordcount benchmark from the 
Phoenix suite [31], we are unaware of existing bench-
marks that exercise TLB shootdown mechanisms.1 As a 
consequence, we created a set of microbenchmarks that 
spend various fractions of their runtime in TLB shoot-
down routines triggered by one of two OS operations: 
copy-on-write (COW) and page unmapping.

The microbenchmarks are modeled after the map 
phase of the wordcount benchmark. They consist of one 
or multiple threads parsing a 50 MB memory-mapped 
file and either performing stores to the mapped pages 
(this triggers the kernel’s COW policy if the file is 
mmapped with corresponding flags set) or unmapping 
pages. The pairing of how many threads can trigger 
shootdowns (one or more shootdown initiators) with the 
two types of operations (COW/unmap) leads to a total of 
four types of microbenchmarks as shown in Table 2. For 
the benchmarks with multiple shootdown initiators, we 
divide the workload evenly across the threads. This 
yields a runtime between 150 million and 1.5 billion 
cycles per thread.

The frequency of COW/unmap operations is 
parameterizable and allows us to test UNITD’s effi-

1.  Few benchmarks are designed to use TLB shootdowns. Rather, 
most benchmarks are designed to stress cores and caches.

Table 1. Target System Parameters

Parameter Value

cores 2,4,8, 16 in-order scalar cores

L1D/L1I 128KB, 4-way, 64B block, 1-cycle hit

L2 cache 4MB, 4-way, 64B block, 6-cycle hit

memory 4GB, 160-cycle hit

TLBs 1 I-TLB and 1 D-TLB per core; all 4-way set-
assoc.; 64 entries for 4K pages and 64 entries 
for 2/4MB pages

coherence MOSI snooping and directory protocols

network broadcast tree (snooping); 2D mesh (directory)

Table 2. Microbenchmarks 

single initiator multiple initiators

COW single_cow multiple_cow

unmap single_unmap multiple_unmap
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ciency across a range of TLB shootdowns counts. We 
use the shootdown count as our parameter rather than 
the time spent in shootdowns because the latter varies 
with the number of cores in the system, as shown in Sec-
tion 3. In our experiments, we vary the number of shoot-
downs between 0 and 12000. Varying the number of 
TLB shootdowns reveals the benefits of UNITD as well 
as creating a correspondence between the possible bene-
fits and the original time spent in shootdowns. 

In addition to these microbenchmarks, we study 
UNITD’s performance on applications that exhibit no 
shootdowns, including swaptions from the Parsec suite 
[5] and pca, string-match, and wordcount (with a much 
smaller input file than the one used in Figure 3, due to 
simulator limitations, leading to a negligible number of 
shootdowns) from the Phoenix suite [31]. We perform 
these experiments to confirm that UNITD does not 
degrade common-case performance. 

6.3  Performance 
In all performance experiments, we compare 

UNITD to two systems. The first comparison is a base-
line system that relies on TLB shootdowns. All results 
are normalized with respect to the baseline system with 
the same number of cores. For each benchmark, the x-
axis shows both the number of shootdowns present in 
the baseline execution and the number of cores. The sec-
ond comparison is to a system with ideal (zero-latency) 
translation invalidations. This ideal-invalidation system 
uses the same modified OS as UNITD (i.e., with no TLB 
shootdown support) and verifies that a translation is 
coherent whenever it is accessed in the TLB. The valida-
tion is done in the background and has no performance 
impact. If the cached translation is found to be incoher-
ent, it is invalidated and reacquired; the re-acquisition of 
the translation is not ideal (i.e., it has non-zero latency).
Single_unmap. Figure 7 shows UNITD’s performance 
on a directory system on the single_unmap benchmark1

as a function of the number of shootdowns and number 
of cores. There are three main conclusions. First, 
UNITD is efficient in ensuring translation coherence, as 
it performs as well as the system with ideal TLB invali-
dations. In a few cases, UNITD even outperforms the 
ideal case although the performance gain is a statisti-
cally insignificant artifact of the invalidation of transla-
tions in the TLB, which aids the set-associative TLBs. 
In the ideal case, the invalidation occurs if the invalid 
translation is accessed. Second, UNITD speedups 
increase with the number of TLB shootdowns and with 
the number of cores. If the shootdown count is large, the 

performance benefits scale accordingly, up to 68% 
speedup for the 16 cores configuration. In addition, even 
for the same number of shootdowns, UNITD’s improve-
ments increase with the increasing number of cores. For 
4000 shootdowns, UNITD speedup increases from 3% 
for 2 cores to 9% for 16 cores. The difference increases 
for 12000 shootdowns, from 25% for 2 cores to 68% for 
16 cores. Therefore, we expect UNITD to be particu-
larly beneficial for many-core systems. Third, as 
expected, UNITD has no impact on performance in the 
absence of TLB shootdowns. 
Multiple_unmap. Figure 8 shows the performance 
when there are multiple threads unmapping the pages 
for directory systems. UNITD once again matches the 
performance of the system with ideal TLB invalidations. 
Moreover, UNITD proves beneficial even for a small 
number of TLB shootdowns. For just 1000 shootdowns, 
UNITD yields a speedup of more than 5% for 8 cores. 
Compared to single_unmap, UNITD’s speedups are 
generally lower, particularly for greater numbers of 
shootdowns and cores. The reason for this phenomenon 
is contention among the multiple initiators for locks. We 
observe small speedup/slowdowns for the executions 

1.  Due to space constraints, we discuss the results for the snooping 
system, but we omit graphing the results, which are qualitatively simi-
lar to those for the directory system.
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Figure 7. single_unmap benchmark. UNITD 
speedup over baseline system for directory

Figure 8. multiple_unmap benchmark. UNITD 
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with zero shootdowns. These are artifacts caused by the 
differences between the baseline kernel and our modi-
fied kernel, as evidenced by UNITD’s trends also being 
exhibited by the system with ideal TLB invalidations. 
Single_cow1. TLB shootdown is a smaller percentage 
of runtime for COW (due to long-latency copy opera-
tions) than unmap, and therefore there is less opportu-
nity for UNITD to improve performance. Nevertheless, 
UNITD performs as well as the system with ideal invali-
dations.
Multiple_cow. The application behavior changes with 
multiple threads executing the COW operations. Perfor-
mance is affected by the time the worker thread spends 
in TLB shootdown initiation, as in single_cow, but, for 
multiple_cow, performance is also influenced by the 
time to service TLB shootdown interrupts triggered by 
other threads. The interrupt servicing routine has a sig-
nificant impact on performance that increases with the 
number of cores as shown in Section 3. For 
multiple_cow, performance is greatly affected by TLB 
shootdowns, especially for 16 cores. In this case, 
UNITD outperforms the base case by up to 20% for the 
snooping protocol. 
Real Benchmarks. For applications that perform no 
TLB shootdowns when run on the baseline system, we 
expect UNITD to have negligible performance impact. 
UNITD’s only performance impact occurs in situations 
when there are stores to PTEs that invalidate TLB 
entries. All of the applications, including wordcount 
(because of its smaller input size), spend a negligible 
amount of time in TLB shootdowns (less than 0.01% of 
total execution time). The results are as expected: for 
these applications, UNITD performs as well as the base-
line, with small, statistically insignificant variations.

Understanding UNITD’s Performance Benefit. To 
better understand the performance benefits of UNITD, 
Figure 9 shows a comparison, for the single_unmap 
benchmark, between UNITD’s runtime and the time 
spent triggering the TLB shootdowns routines in the 
baseline system. UNITD’s runtime is shorter than the 
baseline’s runtime by a number of cycles that is greater 
than the cycles spent by the baseline in TLB shoot-
downs. As mentioned in Section 3, the latency associ-
ated with the TLB shootdowns on the baseline 
x86/Linux system is increased by the full flush of the 
TLBs during certain shootdowns, because full flushes 
lead to subsequent page table walks. UNITD avoids this 
extra penalty, thus resulting in a runtime reduction 
greater than the number of TLB shootdown cycles.

6.4  TLB Coherence Lookup Filtering
Despite UNITD’s performance transparency, 

UNITD’s TLB coherence lookups result in wasted 
PCAM power, as most lookups miss in the PCAM. As 
described in Section 5.4, a large fraction of these look-
ups can be avoided by using a simple filter. We evaluate 
the efficiency of this solution by implementing a small 
include-Jetty filter [28]. The filter consists of 2 blocks of 
16 entries each, indexed by bits 19-16 and 15-12 of the 
physical address. We use bits 19-12 for filtering in order 
to isolate the pages that contain PTEs and that are likely 
to not be accessed by the applications. Using the upper 
address bits will result in increased filter accuracy, but 
will also increase the size of the filter. Even with this 
simple filter, we can filter around 90% of the coherence 
lookups for most systems, as Figure 10 shows.

6.5  Hardware and Power Costs
The hardware and power costs associated with 

UNITD are represented by the PCAM and depend on its 
implementation. Conceptually, the PCAM can be 
viewed as a dual-tag extension of the TLB. Thus, for a 
32-bit system with 64-byte cache blocks, the PCAM 1.  Due to space constraints, we discuss results for the COW 

microbenchmark but omit graphing the results. 
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tags require 26 bits compared to the 20 bits of the TLB 
tags (for 4-Kbyte pages). For a 64-bit system, the 
PCAM tags increase to 38 bits due to the 44-bit physical 
addresses. The hardware and power costs for a PCAM 
with a small number of entries (e.g., 64 or fewer) are 
comparable to those for a core’s store queue with the 
same number of entries. For a PCAM with a large num-
ber of entries, a physical CAM may exceed desired area 
and power budgets; in this case, one could use an alter-
nate, lower-cost implementation for a logical CAM, as 
mentioned in Section 4.2.

Independent of the implementation, accesses to the 
TLB for TLB coherence purposes (rather than accesses 
for translation lookups) are off the critical path of a 
memory access. Therefore, the PCAM implementation 
can be clocked at a lower frequency than the rest of the 
core or can be implemented as a 2-level structure with 
pipelined accesses. For example, if the first level con-
sists of bits 19-12 of the physical address, most lookups 
can be filtered after the first level as shown by our Jetty 
filter experiment.

7.  Related Work
Section 2.1 described the software TLB shootdown 

routine as the most common technique of maintaining 
TLB coherence. Previous research has focused on three 
areas: speeding up the shootdown procedure by provid-
ing dedicated hardware support, reducing the number of 
processors involved in the shootdown, and proposing 
alternative solutions for maintaining TLB coherence.
Hardware support for shootdowns. Shootdown’s 
complexity and latency penalty can be reduced by using 
mechanisms other than inter-processor interrupts. 
Among current commercial architectures, both Power-
ISA and Intel IA64 support microarchitectural mecha-
nisms for global TLB invalidations. These hardware 
designs are still architecturally visible and thus provide 
less flexibility than UNITD.
Reducing the number of shared translations. Several 
OS implementations have indirectly reduced the impact 
of TLB shootdowns on application performance, by 
reducing the number of shared translations. Tornado 
[16] and K42 [3] introduce the concept of clustered 
objects that are associated with each thread, thus reduc-
ing the contention of the kernel managed resources. 
Corey [7] follows the same concept by giving applica-
tions the power to decide which PTEs will be processor-
private and thus eliminate shootdowns for these PTEs.
Alternative TLB coherence mechanisms. Teller has 
proposed several hardware-based mechanisms for han-
dling TLB coherence [37], but they restrict the system 
model in significant ways, such as prohibiting the copy-
on-write policy. Wood et al. [39] proposed a different 
approach to handling translations, by using virtual 

caches without a memory-based TLB. Translations are 
cached in the data cache and thus translation coherence 
is maintained by the cache coherence protocol. A draw-
back of this approach is that it requires special handling 
of the status and protection bits that must be replicated 
at each data block [40]. The design also complicates the 
handling of virtual memory based optimizations such as 
concurrent garbage collection or copy-on-write [4].

8.  Conclusions
We believe the time has come to adopt hardware 

support for address translation coherence. We propose 
UNITD, a unified hardware coherence protocol that 
incorporates address translation coherence together with 
cache coherence. UNITD eliminates the performance 
costs associated with translation coherence as currently 
implemented through TLB shootdown software rou-
tines. We demonstrate that, on systems with 16 cores, 
UNITD can achieve speedups of up to 68% for bench-
marks that make frequent changes to the page tables. We 
expect the benefits yielded by UNITD to be even greater 
for many-core systems. Finally, we demonstrate that 
UNITD has no adverse performance impact for other 
applications, while incurring a small hardware cost.
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