
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Abstract— Disintermediated Active Communication
(DAC) is a new paradigm of communication in which a
sending thread actively engages a receiving thread when
sending it a message via shared memory. DAC is different
than existing approaches that use passive communication
through shared-memory—based on intermittently
checking for messages—or that use preemptive
communication but must rely on intermediaries such as
the operating system or dedicated interrupt channels.

An implementation of DAC builds on existing cache
coherency support and exploits light-weight user-level
interrupts. Inter-thread communication occurs via
monitored memory locations where the receiver thread
responds to invalidations of monitored addresses with a
light-weight user-level software-defined handler. Address
monitoring is supported by Cache Line User-bits, or
CLUbits. CLUbits reside in the cache next to the
coherence state, are private per thread, and maintain user-
defined per-cache-line state. A light weight software
library can demultiplex asynchronous notifications and
handle exceptional cases.

In DAC-based programs threads coordinate with one
another by explicit signaling and implicit resource
monitoring. With the simple and direct communication
primitives of DAC, multi-threaded workloads synchronize
at a finer granularity and more efficiently utilize the
hardware of upcoming multi-core designs.
This paper introduces DAC, presents several signaling

models for DAC-based programs, and describes a simple
memory-based framework that supports DAC by
leveraging existing cache-coherency models. Our
framework is general enough to support uses beyond DAC.

I. DAC CONCEPT

With increased hardware concurrency, efficient use of

thread level parallel (TLP) computation is necessary for

achieving high performance. Whereas in instruction level
parallel (ILP) computation the processor microarchitecture

educes data or control dependences for efficient scheduling, in

TLP the burden for efficient conveyance of dependences falls
on software. This burden consists of both relaying the changes

of state from one thread to another efficiently, and in

recognizing and reacting to them quickly. Coming years will
see the maturing of new languages (such as CHAPEL [1]) to

achieve easy and abstract expression of concurrencies and

data-flows at flexible granularities and to automate the
composition of parallel execution on a range of hardware.

This places us at the threshold of an exciting opportunity:

creating the hardware and runtime enhancements that provide
seamless continuity between the data/control flows of

* Anne Bracy is also a student at the University of Pennsylvania.
Manuscript submitted: 23 Aug. 2006. Manuscript accepted: 23 Oct.

2006. Final manuscript received: 1 Nov. 2006.

dynamically scheduled single processor pipelines and the

event flows in thread parallel computation. Dependences

between thread level computations made explicit by the
programmer or elicited by the language could be handled by

timely propagation of nudges between such computations, and

the management of scheduling handled transparently to the
programmer. To actuate such event-coupled parallel thread

execution, inter-thread communication needs to be flexible,

instruction granular, and reactive.
Efficient fine-grained communication is achieved today in a

model such as MPI [5] through a message channel: the sender

of communication places a message in the channel, while the
receiver polls the channel at some regular or irregular interval.

The channel can be implemented as an efficient shared

memory structure enabling communication that is both
flexible and fine grained. However, it lacks reactivity: the

receiver must choose how frequently to poll and what to do

while waiting for a message to arrive.
For the sender of a message to cause the receiver to react

quickly, a baseline mechanism that can be employed today is

to force a hardware exception at the receiver, using a
mechanism such as the inter-processor interrupt (IPI), so that

the receiver’s control can be switched from whatever it was

doing, to a message receiving handler. The overhead for such
an approach is not trivial, ranging from a thousand cycles to

tens of thousands of cycles, depending upon the complexity of

the operating system-mediated interrupt delivery. Special
purpose hardware can reduce the need for such operating

system intervention, such that a signal sent from one processor

to another can cause the receiver to enter a very lightweight
exception handler preemptively. The DAC (Disintermediated

Active Communication) approach proposed in this paper

incorporates this method in the abstract. However, instead of
implementing new inter-processor signaling hardware, DAC

builds upon signaling already provided for cache coherence,

and thereby unifies the act of storing to a memory location
with that of active messaging via the same location.

DAC uses active, memory-based store signaling.

Conceptually, a receiver thread asks the processor to monitor
some memory variable on its behalf, while the thread performs

computation. The processor notifies the thread when the

monitored variable is the target of a store by automatically
invoking a designated application space software handler –

although the thread has the option to receive such notifications

through passive polling of status as well. The monitor-notify
interaction in DAC can be intra-thread or inter-thread, or inter-

process via shared memory.

II. ABSTRACT APPLICATION OF DAC

One idiomatic use of the monitor-notify approach of DAC
is for a thread to designate a special memory location it agrees

Disintermediated Active Communication
Anne Bracy*, Kshitij Doshi, Quinn Jacobson,

Intel Corporation

IEEE Computer Architecture Letters Vol. 5, 2006

Posted to IEEE & CSDL on 11/09/2006
DOI 10.1109/L-CA.2006.15 1556-6056/06/$20.00 © 2006 Published by the IEEE Computer Society

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

to monitor, and advertise this location to all other threads. This

memory location can be called the thread’s doorbell. The
thread then does its assigned work, until some other thread

gets its attention by storing into the doorbell location. How a

particular thread responds to its doorbell is defined entirely by
the application programmer. Threads can use doorbells to

distribute, coordinate and synchronize parallel computations

among each other. They can proactively ask each other to
produce or consume data, resources, and conditions.

Fundamentally, DAC enables the push-based model of

delivering notifications instead of the traditional pull-based
model in which receivers check whether an event has

transpired.* Instead of requiring all threads of computation to

repeatedly check for a rare but critical condition, one thread
can monitor the condition and when it develops, and alert all

others through their doorbells. Liberated from having to poll, a

thread can pick up a large grain of work and proceed to
complete it in a streamlined manner, safe in the knowledge

that it will be preempted quickly if a critical event arises.

Conditions that require global or barrier synchronization for
brief periods of time (e.g., a new mapping appears in the

program address space) can be easily accommodated by

storing into everyone’s doorbells with fanned broadcasts.
A thread that announces a doorbell for itself effectively

uses the DAC mechanism to check continually if anyone

stores into the doorbell, even as the thread continues to do
some other work. We call this behavior virtual polling by the

thread. Virtual polling is not limited to explicitly advertised

doorbells; it arises whenever a thread uses DAC to perform
observation in the background while proceeding with work in

the foreground. A powerful use of virtual polling is in waiting

for releases of contended locks. For example a thread that fails
to acquire a user level lock [2] can monitor the lock variable’s

memory address for a store. Until it is notified of the store, it

can pursue other work, engage in speculative computation in
absence of the lock, enter itself into a power saving state, or

pre-fetch data it might need elsewhere. Although a thread has

the option to do any of these even without virtual polling,
virtual polling allows the aggregation of such “foreground

work” so that it can be transacted flexibly in the shadow of a

lock miss whose duration is difficult to predict. More
generally, virtual polling can be used to maximize the duty

cycle of any critical resource by ensuring that the contenders

for the resource acquire that resource as early as possible, but
without busy-waiting for the resource. A user-level software

library can be used to wrap the DAC mechanism and provide a

simple consistent interface. The library can keep a log of all
memory locations being monitored and their previous value.

In response to resource constraints the library can

transparently revert to physical polling at an appropriate
fidelity, exploiting the user-level interrupt mechanism as a

timer. In response to disruptive events, such as a context

switch, the library can poll all the monitored memory
locations and reactivate hardware monitoring. The library can

* Operating system supported condition variables or events provide
a push-based communication model to programmers, but the overhead
of these features limits their usefulness for fine-grain thread
coordination.

also be used to demultiplex notification so that a program can

have specific handlers invoked in response to specific
variables or even specific values. This means that through

successive generations of DAC capable hardware, the exact

capacity of the DAC mechanism in a single generation does
not dictate the structuring of software meant to benefit from

the availability of the monitor-notify mechanism.

III. DAC FRAMEWORK

The architecture that supports DAC contains three main
components: a small extension to the architectural state of the

local cache lines, a user-level control transfer mechanism, and

three new instructions that enable software to manipulate and
observe the new state in the cache.

A. Cache Line User bits (CLUbits)

Our DAC framework is shown in Figure 1. We start with a

simple CMP design where each core has a single hardware
thread context and a private data cache. Lower level caches

may be shared between cores. Cache coherency is maintained

on a per cache line basis, with a MESI protocol.
Central to the architecture is the addition of a set of Cache

Line User bits, or CLUbits, to augment the cache line state in

the memory hierarchy. The concept of adding extra state bits
to cache lines for specific purposes has been proposed in

numerous prior works. For example, a Speculative Versioning

Cache (SVC) [3] contains a speculative load bit, which is set
by particular types of load instructions and triggers actions if

another thread invalidates the line. Like many TLS proposals

[8], our work derives from this concept. Unlike SVC and its
derivatives, our framework distills the concept of added cache

state down to a general building block for multiple usages.

From the program’s point of view, each cache line has a
few CLUbits that can be read, written, and interpreted

exclusively by the program. We arbitrarily assume four

CLUbits residing next to the tag and coherency state
information for each cache line (see Figure 1). The meaning of

each of the 4 different flavors of CLUbits is defined by the

program. For example, whereas one CLUbit might be used to
monitor a particular resource, another CLUbit can be used to

receive “stop-the-world” signals from other threads. The

program is responsible for determining not only what each
CLUbit flavor means, but also which cache lines’ CLUbits

should be set or tested.

CLUbits can be supported through any layer of the cache
hierarchy. Without loss of generality, we consider only the

first-level data cache. When a cache line enters the first-level

cache, CLUbits for that line are set to the default value 0.
CLUbits are cleared when a cache line is invalidated or

evicted, and at a context switch.

The CLUbits can be easily extended to different cache
organizations. If CLUbits are supported in a shared cache,

which would include the first-level cache in the case of SMT,

there must either be a set of CLUbits for each hardware thread
sharing the cache or an ownership field (the latter saves bits

but limits the ability for multiple threads to monitor the same

address). For SMT, or any other case of shared caches, writes
from another hardware thread sharing a cache must appear like

IEEE Computer Architecture Letters Vol. 5, 2006

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

an invalidate to a thread monitoring an address. In a write

update protocol, the update clears the CLUbits.

B. User-Level Control Transfer Mechanism

The next component of our framework is a user-level

asynchronous control transfer mechanism similar to the

YIELD-CONDITIONAL [9]. Like YIELD-CONDITONAL, a
special instruction allows software to register both its interest

in a class of events and the beginning address of its own

handler. If a registered event occurs, the mechanism triggers,
transferring control of the program to the user-supplied

handler procedure. The architectural state for the trigger

response mapping is saved and restored by the OS across
thread context switches. Handlers are defined by the

application and execute at the application’s privilege level.

Because handlers are activated as asynchronous function calls,
they must save and restore the state of any registers they

touch.

When software registers its interest in monitoring an
address, it must also indicate the CLUbit flavor. For each

flavor the software can specify the handler it wishes to be

asynchronously invoked. A single handler can be used for all
flavors or different handlers can be used. If more than one

handler is used the priority for invocation is programmable.

Figure 1 shows a limited view of one possible state of the
control-transfer mechanism. The software has registered its

interest in the second of 4 CLUbit flavors and has specified

the address 0xA as the handler address. Should any monitored
lines of this flavor be invalidated or evicted from the cache,

control will transfer to this handler in response.

C. ISA Extensions for CLUbit Manipulation

Three new instructions are added to the existing ISA to
provide software an interface for CLUbit management. To

begin monitoring, software can set a CLUbit via the

ld_set_CLUbit instruction. In addition to the destination
register, this instruction takes the following arguments: (1) the

address on which it performs a normal load, (2) the CLUbit

flavor, and (3) the value to which the CLUbit should be set.
For example, ld_set_CLUbit([addr], 0100, 1) loads the value
at address [addr], and sets the second flavor CLUbit to 1. The
result of executing this instruction is shown in Figure 1.
When a cache line has at least one CLUbit set, the line is

being monitored. Setting a CLUbit tells the processor “watch

this location for me.” The program decides how many cache
lines to monitor and can discriminate between different usage

models by using different CLUbit flavors.

Whenever the coherency state of a line in the local cache of
a core changes to INVALID, the core checks to see whether
this line has any CLUbits currently set and whether this flavor

has a handler registered to it. If this is the case, the handler
will be asynchronously invoked.

A program may choose not to register a handler for a
particular flavor but instead check the value of a CLUbit
directly. This is supported by the ld_check_CLUbit
instruction. This instruction is identical to ld_set_CLUbit
but rather than setting a particular CLUbit, it checks its
value. The value of the CLUbit can be placed in an
appropriate location based on the ISA, such as recording

the value in a flag register.

Fig. 1. Microarchitecture Supporting DAC. CMP design with
private data cache and MESI cache coherence protocol. Cache Line
User bits (CLUbits) extend the state of each cache line by 4 bits.

With the added ability to check the value of a CLUbit, our

framework becomes a generalization of many instruction

instrumentation techniques. CLUbits can serve as the filter bits
used to avoid read barriers in hardware accelerated STM [6].

Informing memory operations [4] are memory instructions

followed by a software check for a cache miss. CLUbits could
implement these operations, but can trigger notifications for

software-specified events far beyond cache misses. CLUbits

could also be used to control memory accesses much like
Blizzard-S’s software-managed fine-grain access control [7].

Finally, CLUbits would be useful in implementing debuggers

such as iWatcher [10], which uses tag bits in L1 and L2
caches, and triggers program specified monitoring functions

upon detection of access. Although our framework supports

these uses, they are not discussed further because they are
beyond the scope DAC and therefore this paper.

When monitoring is no longer required, the software

invokes the instruction clear_CLUES to cease all monitoring
on a particular flavor of CLUbit. This instruction takes just

one argument: the mask of the CLUbit flavors it should clear.

For example, clear_CLUES(1010) flash clears all CLUbits
in the first and third flavors of all cache lines.

IV. EXAMPLES

We show two examples of DAC use.

K-Compare Single-Swap (KCSS). KCSS is a powerful
atomic primitive used to compare k variables to their expected

values and set a final variable to a new value if all match.

Pseudocode might look something like this:
atomic (if ((a1 == a2)&&(b1 == b2)&& … (k1 == k2))

{ temp = x1; x1 = x2; x2 = temp; })

KCSS can be used to perform safe non-blocking updates to

structures. When modifying a linked list pointer, for example,
all neighboring pointers must remain unchanged, else

elements can be orphaned. Previously proposed KCSS

implementations either require prohibitively many load-lock

IEEE Computer Architecture Letters Vol. 5, 2006

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

instructions or weaken semantics. DAC makes a complete and

efficient KCSS implementation possible, as sketched below:
kcss(…) {

#define dacld(addr) ld_set_CLUbit(&addr,1000,1)

if ((tmp = dacld(a1) !=a2) goto fail;
if ((tmp = dacld(b1) !=b2) goto fail;
…
if ((tmp = dacld(k1) !=k2) goto fail;
swap (x1, x2);

fail: clear_CLUES;

}

kcss_dac_handler(): { clear_CLUES; ... }

If any of the comparisons fail, this version of KCSS does
not perform the swap; but it achieves atomicity without

enforcing a costly barrier. Because the locations of a1…k1 are
monitored by DAC, any change to their value will cause a
preemptive yield to the kcss_dac_handler, which simply clears

the current monitoring and terminates the swap. The example

also shows the benefit of multiple CLUbit flavors (attribute
bits): KCSS registers and uses or clears one series of monitor

bits (1000 in this example) while other DAC uses are

operative in the background.
Message queuing. Message queuing is a common form of

communication between threads. The receiver frequently

checks a channel for messages. Unless communication is at
regular and predictable intervals, the receiver will often check

for messages when there are none pending or receive new

messages a while after they were ready. With DAC, pairs of
threads use doorbells to notify receivers of message delivery.

We compare three possible message queuing techniques:

spin-wait, DAC doorbells, and IPI wakeups. The scenario is as
follows: four threads on a CMP sit in a logical ring

configuration. A token is passed between the threads in a

round-robin fashion for some number of rounds. Upon
acquiring the lock, each thread increments a counter and

passes the token to the next thread.

The spin-wait case is as follows:
while (locked_counter < NUM_ROUNDS) {

if (permission[my_id] != 0) {

permission[my_id] = 0;

locked_counter++;

permission[next_id] = 1; } }

Threads repeatedly check a permission variable and
proceed when it has been set. Threads quickly recognize

permission, but spend all their wait time performing the check.

The DAC doorbell case is as follows:
value = ld_set_CLUbit(&doorbell[my_id], 1);

while (locked_counter < NUM_ROUNDS)

// do whatever I like

Invalidation_handler () {

if (!(value =ld_set_CLUbit(&doorbell[my_id]))

return; // false alarm (maybe eviction?)

doorbell[my_id] = 0;

locked_counter++;

doorbell[next_id]) = 1;

}

Rather than explicitly checking to see whether permission

is granted, a thread simply sets the CLUbit on its doorbell and
registers its interest in that flavor’s invalidations (not shown).

When the doorbell is rung (written to) by another thread, the

original thread’s local copy is invalidated, and its

Invalidation_handler is invoked. This suffers the penalty of
flushing the pipeline to invoke the user-level asynchronous

control transfer mechanism. The thread then recognizes that it

has been given permission to increment the counter, does so,
and rings the doorbell of the next thread.

Our DAC framework is modeled by a cycle-based

simulator of a modern x86 multi-core processor, roughly
based on Intel’s Core Duo, with a 4-way issue processor core

and a 64 entry ROB. There are 32KB level one instruction and

data caches. All test cases fit in the level two cache. The level
one and two data caches have a 3- and 16-cycle load-to-use

latency respectively. We compile with gcc version 3.3.2 (i686-

pc-linux-gnu) with -O2 optimization.
We ran this scenario for one thousand rounds and measured

the average per-hop cycle latency for communication. The

average per-hop latency was 199 cycles for the spin-wait case
and 383 cycles for the DAC case. DAC has higher overhead

than the basic spin-wait mechanism because DAC invokes a

handler, which has more instructions than a simple while loop.
This overhead, however, is less than twice the overhead of the

spin-wait implementation. The final technique (OS-supported

IPI communication) achieves the same functionality by going
through the OS and invoking IPIs between cores. We estimate

the cost to be on the order of 10,000 cycles.

Although the spin-wait mechanism has less overhead, DAC
enables a thread to respond to lock availability as it

accomplishes useful work. With DAC, a thread never needs to

check to see whether the lock is ready; it responds consistently
independently of the work it is doing in the background. This

allows a DAC-based program to be more responsive to the

availability of permissions.

REFERENCES

[1] D. Callahan, B. C. Chamberlain, H.P. Zima, The Cascade High
Productivity Language, 9th Intl. Workshop on High-Level
Parallel Programming Models and Supportive Environments
(HIPS) April 2004.

[2] H. Franke, R. Russel, and M. Kirkwood. Fuss, futexes, and
furwocks: Fast user level locking in Linux. Ottawa Linux
Symposium, 2002.

[3] S. Gopal, T. N. Vijaykumar, J. E. Smith, G. S. Sohi. Speculative
Versioning Cache, In HPCA 1998.

[4] M. Horowitz, M. Martonosi, T. C. Mowry, M.D. Smith.
Informing Memory Operations: Providing Memory Performance
Feedback in Modern Processors. In ISCA 1996.

[5] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard, Intl. Journal of Supercomputer Application,
8(3/4). 1994.

[6] B. Saha, A. Adl-Tabatabai, Q. Jacobson. Architectural Support
for Software Transactional Memory. In ISCA 2006.

[7] I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R.
Larus, D. A. Wood. Fine-grain Access Control for Distributed
Shared Memory. In ASPLOS 1994.

[8] J. Steffan and T. Mowry. The Potential for Using Thread-Level
Data Speculation to Facilitate Automatic Parallelization. In
HPCA 1998.

[9] P. Wang, J. Collins, H. Wang, D. Kim, B. Greene, K. Chan, A.
Yunus, T. Sych, S. Moore, and J. Shen. Helper Threads via
Virtual Multithreading On An Experimental Itanium 2
Processor-based Platform. In ASPLOS 2004.

[10] P. Zhou, F. Qin, W. Liu, Y. Zhou, J. Torrellas. iWatcher:
Efficient Architectural Support For Software Debugging. In
ISCA 2004.

IEEE Computer Architecture Letters Vol. 5, 2006

