
MINI-GRAPH PROCESSING

Anne Weinberger Bracy

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2008

Amir Roth
Supervisor of Dissertation

Rajeev Alur
Graduate Group Chairperson

COPYRIGHT

Anne Weinberger Bracy

2008

Acknowledgements

“It was the best of times, it was the worst of times, it was the age of

wisdom, it was the age of foolishness, it was the epoch of belief, it was

the epoch of incredulity, it was the season of Light, it was the season of

Darkness, it was the spring of hope, it was the winter of despair, we had

everything before us, we had nothing before us....” – Charles Dickens

Enough of the worst! Let me reflect only on the best. My graduate career led me

to the best of all possible friends, professors, and colleagues. My mind is sharper,

my life richer, and my heart fuller thanks to the years I spent at Penn, learning,

living, and loving more than any stretch of time prior to graduate school.

I thank Amir Roth, whose passion for teaching and computer architecture con-

verted me from a forced pupil in a required class to an inspired, budding researcher

with a thirst for more knowledge and an empowering feeling that anything is possible

in hardware. You have been a father and a friend. Thank you for setting the bar

high and then helping me reach it.

I thank my committee chair, Milo Martin, for always having an open door and

wise council. I also thank the members of my committee (past and present)—E

Christopher Lewis, David Albonesi, Andre DeHon, and Insup Lee—for your exper-

tise, advice, and encouragement.

My academic siblings—Vlad Petric, Tingting Sha, and Drew Hilton—have been

the truest of friends. They are the ying to my yang, my one and only Mei Mei,

and my knight in shining armor, respectively. My office mates—Marc Corliss, Colin

iii

Blundell, Prashant Prahlad, Joe Devietti, and Arun Raghavan—have been a source

of strength and hilarity throughout my years at Penn. I will never forget the many

late nights, early mornings, happy hours, and the wide variety of humor we shared in

the most colorful, chaotic, and decked out office in Levine. J. Adam Butts generously

made his degree of use framework available to me, for which I am very grateful.

I met many dear friends in graduate school: Ryan McDonald, Ameesh Makadia,

Andrew McGregor, Tania Patsialou, Nick Montfort, Boulos Harb, Sid Suri, John

Blitzer, Margaret DeLap, Aaron Evans, Katie Candland, and Jennifer Plummer.

Christie Avraamides was hands down the best roommate I could ever have hoped

for in my graduate school experience. Thanks for always reminding me to put jobs

on the cluster before we went out at night. Patrick Coffman, Matt Ginzton, and

Gabriel Adauto kept the Bay Area home fires burning for me. Erica Robles, Ethan

Schuchman, and Hanna Wallach saved me hundreds of hours and thousands of dollars

in therapy.

I am grateful to many people at Penn. Mike Felker has been a source of care

and an administrative lifesaver from day one. Rita Powell nurtured the women in

the department in countless ways and was always my personal cheerleader. Ben-

jamin Pierce is a friend whose art and friendship I appreciated both in Levine and

throughout Philadelphia. Dan Widyono kept our clusters up and running.

I thank my colleagues at the Microarchitectural Research Lab at Intel (past and

present)—Hong Wang, Quinn Jacobson, John Shen, Drew Alduino, Joe Schutz, and

Shekhar Borkar—for showing me the light at the end of the tunnel. Thanks also for

the great confidence you had in me so early in my career.

Thanks to my family—Mom, Dad, Layne, Amy, Seth, Becca, Kevin, Andrew,

Akiko, and Andy—for reminding me of the things that truly matter most. Mom and

Dad, I could not have made it this far without your unconditional love and support.

Thanks to the Weinberger clan—Anna Maria, Sabine, Lorenz, Fabian, Katharina,

Bastian, and Suzanne—for encouraging me all these years. I am honored to have

iv

become a Weinberger in the middle of my graduate career.

A special thanks to my little Timo Quilliam Weinberger (my Mini-Graf?) for

putting up with my dissertating for your entire thus-far mini-existence.

Finally, and most importantly, I thank my companion, husband, and best friend,

Kilian Quirin Weinberger. You cheered me on; you cheered me up. You believed in

me. In you I have found love, peace, laughter, and excitement for what lies ahead.

v

ABSTRACT

MINI-GRAPH PROCESSING

Anne Weinberger Bracy

Amir Roth

For years, single-thread performance was the most dominant force driving proces-

sor development. In recent years, however, the poor scaling of single-thread super-

scalar performance and power concerns coupled with the ever-increasing number of

transistors available on chip has changed the focus from single-thread performance

to thread-level parallelism running on multi-core designs. The trend is for these

cores to be narrower with smaller windows. This dissertation addresses the question

of how to maintain—and, ideally, improve—single-thread performance under such

constraints.

Mini-graph processing is a form of instruction fusion — the grouping of multiple

operations into a single processing unit — that increases the instruction-per-cycle

(IPC) throughput of dynamically scheduled superscalar processors in an efficient way.

Mini-graphs are compiler-identified aggregates of multiple instructions that look and

behave like singleton instructions at every pipeline stage, except for execute — there

the constituent operations are retrieved and performed serially micro-code style. A

mini-graph processor exploits instruction fusion to increase the efficiency of pipeline

stages and structures that perform instruction book-keeping.

This dissertation describes a mini-graph architecture and evaluates it using cycle-

level simulation. A superscalar processor enhanced with mini-graphs can match the

performance otherwise achieved with a wider, deeper superscalar processor. Experi-

ments show that across four benchmark suites, the addition of mini-graph processing

allows a dynamically scheduled 3-wide superscalar processor to match the IPC of a

4-wide superscalar machine.

vi

Contents

Acknowledgements iii

1 Introduction 1

1.1 Efficient Uniprocessors . 2

1.2 Instruction Fusion . 3

1.3 Mini-Graph Processing . 8

1.3.1 Maximizing Coverage . 9

1.3.2 Maximizing Amplification . 12

1.3.3 Supporting Limited Latency Reduction 15

1.3.4 Minimizing Design Impact . 16

1.3.5 Providing Robust Performance 16

1.4 Results Summary . 18

1.5 Contributions . 21

2 Mini-Graph Architecture 24

2.1 Mini-Graph Criteria . 30

2.2 Mini-Graph Encoding . 41

2.3 Mini-Graph Execution . 48

2.3.1 ALU Pipelines . 48

2.3.2 Interlock-collapsing ALU Pipelines 56

2.3.3 Execution on multiple functional units 60

vii

2.4 Mini-Graph Scheduling . 66

2.4.1 Reserving Result Busses and Register Write Ports 66

2.4.2 Reserving Functional Units 67

2.4.3 Coordinating Memory Instructions 69

2.5 Mini-Graph Pre-Processing . 70

2.6 Managing the Mini-Graph Table . 73

2.7 ISA Issues . 76

2.8 Architectural Issues . 80

2.9 Summary . 81

3 Mini-Graph Selection 83

3.1 Basic Coverage Maximizing Selection 85

3.1.1 Mini-Graph Identification . 85

3.1.2 Greedy Selection Algorithm 87

3.1.3 Template Sharing . 90

3.1.4 Backtracking to Include Larger Templates 94

3.1.5 Exhaustive Selection . 98

3.2 Introduction to Serialization . 105

3.2.1 Basic Coverage Maximizing Selection 105

3.2.2 What is Serialization? . 108

3.3 Structural Selection Algorithms . 110

3.3.1 StructNone . 112

3.3.2 StructBounded . 115

3.4 Slack-Based Selection Algorithms . 121

3.4.1 SlackProfile . 123

3.4.2 SlackDynamic . 137

3.4.3 Analysis: Comparison with Exhaustive Search 144

3.5 Related Work on Aggregate Selection Schemes 149

3.5.1 Treatment of Serialization . 149

viii

3.5.2 Applicability to other Aggregate Schemes 150

3.6 Summary . 151

4 Performance Analysis 152

4.1 Benchmark Suites . 152

4.2 Performance Contribution Analysis 158

4.3 In-Order Performance Analysis . 172

4.4 Exploiting Instruction Cache Amplification 180

4.4.1 Instruction Cache Amplification for SPEC 182

4.4.2 Instruction Cache Amplification for MCM 182

4.5 MGT Configuration and Area Analysis 184

5 Related Work 192

5.1 Fusion Techniques . 192

5.2 Non-Fusion Techniques . 200

6 Conclusions 206

ix

List of Tables

2.1 Possible Mini-Graph 32-Bit Instruction Formats 31

2.2 Coverage Achieved with 1- and 2-Instruction Handles 33

2.3 Coverage Achieved with Possible Mini-Graph Instruction Formats . . 34

2.4 Coverage Rates . 37

2.5 Input Connectivity Statistics . 54

2.6 ALU Instruction Distribution . 54

2.7 Coverage Variation and Shift Operations 55

3.1 Coverage Summaries: Greedy vs. Exhaustive 99

3.2 Coverage Summaries: Greedy vs. Integer Programming 103

4.1 Functional Properties of Benchmarks, Part 1 154

4.2 Functional Properties of Benchmarks, Part 2 155

4.3 Microarchitectural Properties of Benchmarks, Part 1 156

4.4 Microarchitectural Properties of Benchmarks, Part 2 157

x

List of Figures

1.1 Instruction Processing . 3

1.2 Representation of Micro-op and Macro Fusion 6

1.3 Timing of Micro-op and Macro Fusion 6

1.4 Representing Mini-Graphs . 10

1.5 Creating an Annotated, Outlined Binary 12

1.6 3-input, 3-stage ALU Pipeline . 13

1.7 Mini-Graph Fusion. 15

1.8 Serialization Effects in Mini-Graphs 17

1.9 Simulation Configuration . 18

1.10 Mini-Graph Coverage and Performance 20

2.1 Architectural Changes . 25

2.2 Mini-Graph Table and ALU Pipeline 28

2.3 Increasing Inputs vs. Increasing Outputs 34

2.4 7- and 5-Bank Mini-Graph Patterns 39

2.5 Basics of Annotated Outlining . 42

2.6 Annotated, Outlined Execution on Mini-Graph Processor 42

2.7 Correcting branch offsets . 46

2.8 3-Stage ALU Pipeline . 49

2.9 Programming the ALU Pipeline . 50

2.10 The ALU Pipeline in Action. 51

2.11 Inter-Stage Connectivity within the ALU Pipeline 53

xi

2.12 Support for Latency Reduction . 57

2.13 Internal and External Value Communication 61

2.14 External Value Coordination . 63

2.15 External and Internal Value Coordination 65

2.16 Pseudo-Code for Creating a Mini-Graph Template 71

2.17 Template Compilation Example . 72

3.1 Mini-Graph Identification. 86

3.2 Static instructions and their mini-graphs 88

3.3 Greedy selection algorithm . 89

3.4 Static instructions and their mini-graph templates 91

3.5 Greedy selection with template sharing 92

3.6 Greedy selection with template sharing and backtracking 95

3.7 Variations of Greedy Algorithm . 97

3.8 Individual Benchmarks: Greedy vs. Exhaustive Search 100

3.9 Individual Benchmarks: Greedy vs. Integer Programming 103

3.10 Amplifying vs. Increasing Resources 106

3.11 Serialization Effects in Mini-Graphs 109

3.12 Basic Selection vs. Structural Pruning Selection 111

3.13 Ignoring vs. Forbidding Serialization 113

3.14 Bounded vs. Unbounded Serialization 116

3.15 Serialization Bounded by Various Cycles 117

3.16 StructBounded Performance . 119

3.17 StructBounded Coverage . 120

3.18 Structural vs. Slack-Based Pruning Selection 122

3.19 SlackProfile . 125

3.20 Calculating Issue and Ready Times 128

3.21 Local vs. Global Slack . 129

3.22 Incorporating Local vs. Global Slack into Selection 130

xii

3.23 Comparison of SlackProfile with other models. 131

3.24 Isolating Components of SlackProfile 133

3.25 SlackProfile Robustness: Microarchitecture Sensitivity (Performance). . 135

3.26 SlackProfile Robustness: Microarchitecture Sensitivity (Breakdowns). . 136

3.27 SlackProfile Robustness: Program Input Sensitivity. 137

3.28 Dynamic Serialization Scenarios . 138

3.29 Static vs. Dynamic Pruning Techniques 140

3.30 Comparison of all Models . 141

3.31 Isolating Components of SlackDynamic 143

3.32 Exhaustive Limit Study . 146

3.33 Summary of Limit Study . 147

4.1 Lone Contributors of Mini-Graph Performance 161

4.2 Isolating Components of Mini-Graph Performance Contributions . . . 163

4.3 Analyzing the “No Benefit” Mini-Graph Processor. 165

4.4 “No Benefit” Mini-graph Overhead 169

4.5 Mini-graph performance in out-of-order and in-order contexts 173

4.6 Lone Contributors of In-Order Mini-Graph Performance 174

4.7 Isolating Components of In-Order Mini-Graph Performance 175

4.8 Local Out-of-Order Execution Effect of Mini-graphs 177

4.9 Instruction Cache Behavior Differences 181

4.10 Mini-Graph Performance with Various Instruction Cache Sizes, SPEC 183

4.11 Mini-Graph Performance with Various Instruction Cache Sizes, MCM 185

4.12 MGT Coverage vs. Size in KB . 187

4.13 Pareto-Optimal MGT Sizes for 2-, 3-, and 4-stage ALU Pipelines . . . 188

4.14 Pareto-Optimal Mini-Graph Performance 189

xiii

Chapter 1

Introduction

Mini-graph processing is a form of instruction fusion — the grouping of multiple

operations into a single processing unit — that increases the instruction-per-cycle

(IPC) throughput of dynamically scheduled superscalar processors in an efficient

way [12, 14]. A mini-graph is an atomic multi-instruction aggregate with the in-

terface of a RISC singleton instruction that is processed as a single instruction at

every pipeline stage, except for execute — there the constituent operations are re-

trieved and performed serially micro-code style. A software tool statically identifies

mini-graphs and encodes them in the program binary on a per-application basis.

Mini-graph processing improves IPC by amplifying the capacities and bandwidths

of structures and stages that perform instruction bookkeeping and inter-operation

register communication.

This dissertation describes a mini-graph architecture and evaluates it using cycle-

level simulation. Experiments show that across four benchmark suites, the addition

of mini-graph processing allows a dynamically scheduled 3-wide superscalar processor

to match the IPC of a 4-wide superscalar machine.

1

1.1 Efficient Uniprocessors

For years, single-thread performance was the most dominant force driving processor

development. Performance was pursued through a combination of increasing clock

frequencies and higher IPC throughput via wider, superscalar issue and more deeply

speculative out-of-order execution.

In recent years, however, this approach has curtailed for two reasons. First, con-

cerns about power have slowed the push for ever increasing frequencies. Second, IPC

improving techniques such as pipeline and instruction window scaling have dimin-

ishing returns on investment. Not only is the marginal benefit of an additional issue

slot, for example, sub-linear in terms of IPC, but it also diminishes; the nth slot is less

utilized than the n− 1th. At the same time, the cost in terms of area, power, and de-

lay is super-linear; the nth slot costs more than the n− 1th slot, because it raises the

cost of the existing slots by requiring communication and coordination with them.

The marginal benefit of an additional window entry is similarly sub-linear. As a con-

sequence, many aspects of processor design are becoming less aggressive. Pipelines

hit maximum depth with the Pentium 4 and subsequent designs have fewer pipeline

stages. Some superscalar designs have been scaled to 5- and 6-wide [37, 46, 50, 93],

but 4-wide appears to be the superscalar sweet-spot [106].

In response to the poor scaling of single-thread superscalar performance and the

ever-increasing number of transistors available on chip, industry has decreed that

future performance scaling will come from thread-level parallelism running on multi-

core designs. This approach places a premium on the area and power efficiency

of individual cores. The trend, therefore, is towards narrower cores with smaller

windows; but doing so lowers single-thread performance, a side-effect industry cannot

afford. The question then remains, how to maintain—and, ideally, improve—single-

thread performance under such constraints.

2

1.2 Instruction Fusion

Single thread performance is measured as the execution time of particular program:

program latency =
dynamic instruction count

IPC × clock frequency

where IPC is the average number of instructions processed per cycle, and clock

frequency is measured in cycles per second. Traditional approaches to performance

improvement either increase clock frequency or throughput (IPC). This dissertation

leverages instruction fusion, an alternative approach to performance improvement

that focuses instead on the third component of the above equation: dynamic in-

struction count.

B

C

0 1 2 3 4 5 6 7

S R W C

S W C

Fetch

Decode

rename/Alloc

Schedule

register Read

register Write

Commit, free

(c) A, B, and C in the Pipeline

R X

S R W C

X1 X2 X3

X

A

C

B

(a) Dataflow Graph of 3 abstract instructions

A

A

D

D

F

F

ADF

8 9 10

B: 3-cycle load

A: 1-cycle integer operation

C: 1-cycyle integer operation

A

+
eXecute

interface coordination operation execution

(b) Components of Instruction Processing

C waits for A & B C gets A's output from

register file, C's output

from bypass

B's completion

broadcast, C can be

scheduled

All outputs written

to register file for

future consumers

Figure 1.1: Instruction Processing: Interface Coordination + Operation Execution

Instruction = Interface + Operation. To reduce the dynamic instruction

count, instruction fusion exploits the distinction between two aspects of instruction

processing: operation execution and interface coordination. Consider the instruction

“add r1, r2 → r3.” Semantically, this instruction requires that an addition oper-

ation takes place. But processing this instruction is not just a matter of addition; it

also concerns the instruction’s inputs and outputs. Figure 1.1a shows the dataflow

3

graph of three abstract instructions, A, B, and C. Figure 1.1b lists the pipeline stages

required to process these instructions, separating the interface coordination (left)

from the actual execution (right). Figure 1.1c shows these three instructions as they

travel down the pipeline. At the execute stage (shaded), the instructions’ actual

operations are executed. Before and after executing the operations, a processor per-

forms book-keeping and inter-operation communication steps. The operation is only

a small component of the dynamic processing of an instruction; book-keeping and

communication steps dominate with respect to cycles, pipeline stages, and on-chip

resource usage.

Instruction fusion and resource amplification. The faithful execution of a

program requires that the semantics specified by the operations in a binary not be

changed. Interface coordination, however, is left to the processor’s discretion. It is

these coordinating steps that are combined in instruction fusion. Instruction fusion

groups multiple operations into a single processing unit for select pipeline stages.

During these stages, book-keeping and communication steps are performed on the

aggregate rather than the individual operations.

Instruction fusion decreases the number of book-keeping and communication

steps required per operation. The operation count is unaltered, but the number

of interface-coordinating steps is decreased. Instruction fusion does not suffer from

the diminishing performance returns on resource investment associated with wider-

issue, larger-instruction window superscalar processors. Instruction fusion does not

increase the physical complexity (latency, area, power) of on-chip structures; on the

contrary, it amplifies resources, and allows superscalar structures to be made sim-

pler. Reducing the number of book-keeping steps required to execute a program

amplifies the capacities and bandwidths of those resources dedicated to instruction

book-keeping. Bandwidth amplification allows younger instructions to enter a partic-

ular stage earlier. For example, amplifying issue bandwidth allows some instructions

to potentially issue sooner. Capacity amplification of a given structure potentially

4

allows younger instructions to enter the structure sooner. For example, amplifying

the register file allows instructions that might previously have stalled waiting for a

free register to be renamed earlier.

The benefit of instruction fusion is proportional to its dynamic coverage, the

percent of dynamic instructions embedded into aggregates. Coverage measures the

resource amplification introduced by instruction fusion. A program with 30% dy-

namic coverage, for example, has approximately 30% fewer instructions at those

pipeline stages for which fusion takes place. Coverage is defined by the following

equation:

dynamic coverage =
∑

∀mini−graphs

,
frequency(mini-graph)× (size(mini-graph)− 1)

program’s dynamic instruction count

where size is the length of the mini-graph in number of instructions, and frequency

is the number of times each mini-graph is encountered throughout the execution of

a program. Each time a 4-instruction mini-graph is encountered, for example, one

instruction is processed where once there were 4 instructions; three instructions are

internal to the mini-graph. Coverage rates directly translate to a commensurate

reduction in the number of instructions needing book-keeping resources at those

pipeline stages for which fusion takes place, be that fetch, rename, schedule, or

commit, as well as a reduction in the number of values needing to be written to

physical registers and the number of instructions requiring instruction and issue

queue entries.

Micro-op and macro fusion. Two complementary instruction fusion tech-

niques found in modern processors are micro-op and macro fusion. As real-world

examples of instruction fusion, micro-op and macro fusion provide this dissertation

with a useful backdrop for introducing and explaining mini-graph processing.

Micro-op fusion was introduced in Intel’s Pentium M [38, 51], which fuses

load/execute and store-address/store-data micro-op pairs into expanded micro-ops.

Examples of each of these pairs are shown in Figure 1.2a-b. Load/execute and store

instructions are x86/macro instructions. Instead of decoding the macro instruction

5

(a) load/op Micro-

op Fusion

(b) store-addr/

store-data Micro

Op Fusion

st-addr in1 in2

st-data in3 —

—

—

load in1 in2

op temp in3

temp

out op in1 in2 in3load out

in1 in2 in3store —

(c) test/JMP

Macro Fusion

test in1 —

JMP temp addr

temp

— in1 addr —T/JMP —

fused,

expanded micro-ops:

original micro-ops:

original macro insns:

Figure 1.2: Representation of Micro-op and Macro Fusion.

into two micro-ops (shown on the left), micro-op fusion decodes them into a single,

expanded micro-op (shown on the right). The expanded micro-op is a superset of

its original micro-op constituents.

(a) Micro-op Fusion of 2 dependent Micro Instructions

0 1 2 3 4 5 6 7

F S R X W C

S R X W C

Fetch

Decode

rename/Alloc

Schedule

register Read

eXecute

register Write

Commit, free

8

D

(b) Macro Fusion of 2 dependent Macro Instructions

0 1 2 3 4 5 6 7

S R X

X

8

D

Original Execution Schedule
Macro

Instruction

Micro

Instruction

Fusion

Active

Fused Execution Schedule

F

0 1 2 3 4 5 6 7

F S R X W C

S R X W C

8

D

0 1 2 3 4 5 6 7 8

Original Execution Schedule Fused Execution Schedule

FA

F D A

A

single macro instruction decodes

into 2 micro instructions

A

decoder produces

fused pair

S

scheduled

separately (from

single RS)

WR

F

2 macro instructions decode into

2 micro instructions

2 macro instructions sent to 1

decoder producing fused pair

pair executed

in 1 cycle

C

A

A S R X W CD

Figure 1.3: Timing of Micro-op and Macro Fusion.

An example of micro-op fusion in the pipeline is shown in Figure 1.3a. On the

left is the execution schedule of the original dependent micro-ops. On the right is

the execution schedule under micro-op fusion. Micro-op fusion decodes the macro

instruction into a single micro-op, which occupies a single reorder buffer (ROB) and

6

issue queue entry. The ROB and the issue queue are amplified as a consequence.

Micro-op fusion also reduces the number of micro-ops that are renamed and commit-

ted. Finally, by reducing the number of x86 instructions that decode into multiple

micro-ops—such instructions decode on the lone complex decoder—micro-op fusion

also amplifies the decode bandwidth. The constituents of the fused micro-op are still

scheduled separately—one directed to the load unit, the other to a simple ALU—and

therefore do not amplify issue or execution bandwidth [38].

Macro fusion was introduced in Intel’s Core processor [72, 102]. Macro fusion

fuses test or compare instructions to conditional branches. An example of the original

micro-ops and the fused, expanded micro-op is shown in Figure 1.2c. An example of

macro fusion in the pipeline is shown in Figure 1.3b. Whereas micro-op fusion fuses

micro-ops after the decode stage, macro fusion fuses x86 macro instructions prior to

the decode stage. Macro fusion further extends the benefit of fusion to execution

latency reduction; as shown in the execution schedule, the fused instructions are

executed in a single cycle on a modified branch unit. Because they are executed on

a single functional unit, they are also issued atomically, unlike fused micro-ops.

Intel estimates that micro-op fusion reduces the number of micro-ops handled

by the out-of-order logic by more than 10% [38]. In other words, it has 10% cov-

erage. This assumes, however, that store instructions are already split in two. For

those ISAs that do not make this assumption—like the Alpha ISA used to measure

the coverage of mini-graphs—micro-op fusion would result in less coverage. Some

estimates show that adding macro fusion to micro-op fusion increases coverage to

just over 15%. The typical performance improvement offered by micro-op fusion

for integer benchmarks is approximately 5%. Performance estimates for macro fu-

sion have not yet been made publicly available at the time of this dissertation, but

would likely create a total improvement between 7% and 10%. Although relatively

simple to implement and moderately effective at reducing bookkeeping costs in the

processor, both techniques are limited. First, neither of them offer fusion benefits

7

that extend to the entire pipeline. Second, both forms of fusion apply to only two

specific instruction pairings (load-and-execute and store-address-and-store-data for

micro-op fusion, test/compare-branch for macro fusion).

1.3 Mini-Graph Processing

Mini-graph processing is an aggressive instruction fusion technique [12, 14]. In the

context of micro-op and macro fusion, mini-graph processing can be thought of as a

logical extension to both techniques.

Mini-graph processing is aggressive with respect to amplification, which it max-

imizes in two respects. First, it extends the benefits of fusion to more instruction

combinations than the few pairing options available in micro-op and macro fusion.

Second, it expands the scope of instruction fusion, extending its benefits to more

pipeline stages and structures. At the same time, mini-graph processing remains

conservative with respect to the changes it requires to the pipeline and ISA. The

operating system need only be aware of mini-graph processing in order to disable

it—a debugging aid, but not a necessity for correctness (see Section 2.2).

Moderate coverage rates provide incremental IPC improvements to the extent

that amplified resources are performance limiters. With sufficiently high coverage

rates, however, mini-graph processing can serve as a replacement for superscalar

width and window size. To give a concrete example, if mini-graphs can achieve cov-

erage/amplification rates of 33%, then a conventional 4-wide dynamically scheduled

superscalar machine with a 128 entry reorder buffer and a 64 entry issue queue can

be replaced with a 3-wide superscalar with a 96 entry reorder buffer and 48 entry

issue queue plus mini-graph support. This goal is accomplished in the following five

steps.

8

1.3.1 Maximizing Coverage

Micro-op and macro fusion both focus on fusing pre-defined operation pairs. Mini-

graph processing supports fusion of larger instruction aggregates (called mini-graphs)

and also application-specific fusion. These capabilities require three pieces of inno-

vation. The first is the separation of the mini-graph interface from the mini-graph

operations. The second is an on-chip structure, the Mini-Graph Table, that stores

the internal definition of each mini-graph’s operations. The third is an encoding

mechanism, called annotated outlining, whereby mini-graphs can be encoded into a

binary and subsequently used to program the Mini-Graph Table at runtime.

Instruction = Handle + Template. Mini-graphs are manipulated at two

levels: the handle and the template. The interface is represented by a handle, a

quasi-instruction that the mini-graph processor manipulates while the mini-graph

travels down the pipeline. The mini-graph handle has three components: an opcode,

register specifiers, and an immediate field. Mini-graphs use a reserved opcode mg,

which can be any opcode (or several opcodes) that would be interpreted as a nop by

a non-mini-graph processor. The handle is meaningful only to a mini-graph enabled

processor.

The handle specifies three register inputs and an output. The four register names

explicit in a handle are the mini-graph’s interface registers which define its external

dependences. These register names (or their renamed versions) are needed at renam-

ing, scheduling, register read, register write, retirement, and mis-speculation recov-

ery; stages where only the handle is available, not the complete mini-graph. Finally,

the handle has an immediate field, the MGID, that links the handle to its internal defi-

nition. The MGID connects the mini-graph interface to its definition, specifying which

mini-graph template should be invoked at execute. In this respect, it is similar to

the parameterizable instruction used to exploit hardware-programmable functional

units on a PRISC machine [83]. Using the MGID rather than, say, the address of the

handle, allows two different, static locations of code to invoke the same mini-graph

9

template.

The template encodes the mini-graphs’s internal definition. A mini-graph tem-

plate specifies the exact constituent operations (opcodes and immediates) as well as

the internal register dataflow of the mini-graph. Each template is assigned a unique

identifier which is stored in the handle’s MGID field. Because the template specifies

internal register dataflow without using actual register names, a single template can

be used to specify mini-graphs in multiple static locations in the code.

mg 12 r1 r2 r3 !r4
F A S R X WX CX

handle handle

template

(d) Representations

In the Pipeline

interface
lives in the I$

operations
live in the MGT

12:

(a) Original

Representation

add r1, r2 !r1

addi r1, 4 !r1

cmplt r1,r3 !r4

(b) Mini-Graph Handle

in#: external inputs

mg[]: internal inputs

ID field links handle to

template add in0, in1

addi 4, mg[0]

cmplt mg[1], in2

(c) Mini-Graph Template

load 4(r6) !r7

add r8, r7 !r9

mg 16 r6 r8 — !r9

op ID in0 in1 in2 out

16:load 4, in0

add in1, mg[0]
Fetch - rename/Alloc -

Schedule - register Read -
eXecute - register Write -

Commit, free

Figure 1.4: Representing Mini-Graphs: Handles and Templates.

Mini-graph representation example. Figure 1.4a shows two instruction se-

quences. Figure 1.4b shows the handle that summarizes each sequence. The MGID, 12

and 16, indexes the corresponding definitions of the mini-graphs. Figure 1.4c shows

the template for each mini-graph. Note, this figure is logical; the organization and

contents of the actual structure that holds templates are described later. External

input registers are denoted with a combination of in and their index in the handle

(0,1,2) while interior values are denoted using mg[] indexed with the mini-graph in-

struction that creates them. For example, the third mini-graph constituent of mg12,

cmplt r1, r3, → r4 is represented as cmplt mg[1], in2 where in2 is interface

input register r3 and mg[1] is output of the second mini-graph instruction. Interior

values such as mg[1] are provably transient by static analysis and do not need to be

stored in registers at runtime.

10

Finally, Figure 1.4d illustrates which representations are used at which pipeline

stages. Whereas the interface is needed throughout the pipeline, the mini-graph def-

inition is needed only at the schedule and execution stages. At schedule, a summary

of mini-graph resource needs (not shown) directs resource reservations required to

schedule the handle; at execution, the template drives constituent execution.

The Mini-Graph Table (MGT). Mini-graphs exploit the most common op-

erational idioms found for each program. Fused pairs supported by micro-op fusion

(e.g., load-and-execute) require permanent changes to the decoder and scheduler and

are therefore conservatively general so as to have utility across all possible programs.

Mini-graphs, on the other hand, can be defined for a single program. The enabling

mechanism for this flexibility is the MGT.

The MGT factors fused execution information out of the decoder and issue queue

and into a separate structure. This means that the decoder is modified only to

recognize the class of instructions known as mini-graphs. Furthermore, this allows

a conventional issue queue and conventional scheduler to drive the execution of

arbitrary aggregates.

The MGT holds all the template definitions for every mini-graph handle occurring

in a particular program binary. During execution, a mini-graph processor invokes the

MGT to drive a cycle-by-cycle execution of the constituent operations, micro-code

style. The handle has an immediate field called the MGID, which is serves as the index

into the MGT. Using an MGID field to index into the MGT enables multiple dynamic

locations of semantically identical instruction sequences to use a single MGT entry.

The MGT is implemented as a cache. MGT size is not part of the architected state of

a mini-graph processor, but informing the software tool that prepares the mini-graph

binary with the MGT size can improve performance (see Section 2.6).

Annotated outlining. Annotated outlining is a novel encoding scheme used

to transform a standard binary into a mini-graph binary. The process is shown in

Figure 1.5. First, the instructions that form the body of the mini-graph are made

11

contiguous and prepended with the mini-graph handle. This extended sequence is

then “outlined” from the code (as opposed to “inlined”) using a pair of jumps (Figure

1.5b). As shown in Figure 1.5c, the instruction cache fill path recognizes the handle

and places it in the instruction cache. The mini-graph constituent operations are pre-

processed into template form and diverted to the MGT at the index corresponding

to the handle’s MGID.

(c) Instruction Cache and Mini-Graph Table (MGT)(a) Original
Binary

(b) Annotated, Outlined
Binary

12:

constituents processed
into template form,

sent to MGT

A

B

C

D

E

A

B

C

D

E

mg12

J1

J2

F

F

B C F

A' D' E'

mg12 handle
sent to I$

I$

MGT

Figure 1.5: Creating an Annotated, Outlined Binary

1.3.2 Maximizing Amplification

Mini-graph processing not only increases coverage to arbitrary combinations of in-

structions, but it also extends the benefits of amplification to new pipeline stages and

structures. Micro-op and macro fusion amplify decode, rename, and commit band-

width, and issue queue and reorder buffer capacity. Because their target processors

perform architectural register and ROB-style renaming, amplifying ROB capacity

has the same effect that amplifying register file capacity has on a processor that

performs physical register renaming. Mini-graphs extend bandwidth amplification

to fetch, register read/write, and integer execution and capacity amplification to the

instruction cache. Doing this requires three pieces of innovation.

Amplifying instruction cache capacity and fetch bandwidth. Instruction

12

cache capacity and fetch bandwidth amplification is one of many benefits of anno-

tated outlining. This benefit comes as the simple consequence of representing an

entire mini-graph as a single instruction (the handle) in the instruction cache.

Amplifying the register file. Without static analysis to guarantee the tran-

sience of values, micro-op and macro fusion can target instruction pairs that have at

most one register output. Consecutive load and op x86 macro instructions cannot

be fused because they could have more than one output; load and op instructions

from the same macro instruction can only have a single output because the value

passed from the load to the op is deemed transient by the compiler and therefore

never assigned to a register. Hence, the number of values written and communicated

globally does not change as a result of micro-op fusion. Mini-graph processing tar-

gets instruction groups whose constituents may produce multiple values, so long as

all but one of these values are statically, provably transient—existing only within the

mini-graph. Value communication is orchestrated by the MGT using bypasses and

latches without actual registers, amplifying register file capacity and register read

and write bandwidth. Transience is determined through static liveness analysis,

and—to guarantee transience—mini-graphs are atomic.

cycle 1

r1

r2

r3

r4

original

instructions

4

"r3"

addi subadd

add r1,r2!r1 addi r3,4!r3 cmplt r1,r3!r4

control and immediates from entry #12 of MGT

"r1"

mg 12 r1, r2, r3 !r4
executing

mini-graph #12:

cycle 2 cycle 3

Figure 1.6: 3-input, 3-stage ALU Pipeline

13

Amplifying execution with ALU Pipelines. Mini-graph processors fur-

ther exploit mini-graph interior value transience by executing chains of integer con-

stituents on a new, multi-cycle functional unit called an ALU Pipeline: a single-entry,

single-exit chain of ALUs. An ALU pipeline is essentially a multi-cycle functional

unit (like a multiplier). Figure 1.6 shows a 3-input, 3-stage ALU pipeline executing

the previously shown mg12. In the case of mg12, the inputs arrive at the beginning

of cycle 1 and the output is ready at the end of cycle 3. At each cycle, each ALU

receives the requisite immediates and control signals from the MGT. Transient val-

ues are propagated via the forward-only operand network between ALUs and do

not access the register file. The execution of multiple mini-graphs may be pipelined

across this new functional unit.

ALU Pipelines play a critical amplification role. Because execute is the only

pipeline stage that manipulates constituents rather than handles, it is the only

pipeline stage whose bandwidth is not naturally amplified by fusion. ALU Pipelines

prevent execution from becoming a new bandwidth bottleneck by adding integer

ALU execution bandwidth (which is relatively inexpensive) without commensurate

increases in global bypass, register file, and scheduling bandwidths (which are more

expensive). Because singleton instructions can also execute on ALU pipelines with

no performance penalty, a mini-graph processor simply replaces some of its ALUs

with ALU pipelines.

Putting it all together. Figure 1.7a-b shows the execution schedules of micro-

op and macro fusion (unchanged from Figure 1.3). Figure 1.7c shows the same for

mini-graph processing. Unlike the micro-op and macro fusion, mini-graphs are fused

for the entire pipeline: from fetch to commit, excepting execute. Processing mini-

graphs as handles at almost all stages maximizes amplification while minimizing the

number of changes required to the pipeline; only the instruction cache fill, schedule,

and execute stages are made mini-graph aware.

14

(c) Mini-Graph Fusion of 2 dependent RISC Instructions

0 1 2 3 4 5 6 7

F S R X W C

S R X W C

8

D

0 1 2 3 4 5 6 7

X

X

8

A

AF D

execution is only stage

where constituents manifest

S RDF

W C

A

(a) Micro-op Fusion of 2 dependent Micro Instructions

0 1 2 3 4 5 6 7

F S R X W C

S R X W C

Fetch

Decode

rename/Alloc

Schedule

register Read

eXecute

register Write

Commit, free

8

D

(b) Macro Fusion of 2 dependent Macro Instructions

0 1 2 3 4 5 6 7

S R X

X

8

D

Original Execution Schedule

Macro

Instruction

Micro/RISC

Instruction

Fusion

Active

Fused Execution Schedule

F

0 1 2 3 4 5 6 7

F S R X W C

S R X W C

8

D

0 1 2 3 4 5 6 7 8

FA

F D A

A

A S WR

F

C

A

A S R X W CD

Figure 1.7: Mini-Graph Fusion.

1.3.3 Supporting Limited Latency Reduction

There are actually two approaches to instruction fusion. Mini-graphs are an

amplification-oriented form of fusion; they focus on amortizing interface coordi-

nation. Most forms of fusion are actually latency-oriented, focusing on reducing

the execution latency of common operation chains (or more generally graphs).

Latency-oriented fusion can actually shorten the height of a program’s dataflow

graph.

Mini-graphs can incorporate the benefits of execution latency reduction by sup-

porting the pair-wise collapsing of ALU pipeline stages. To illustrate, if two ALU

pipeline stages could execute in a single cycle, cycles 5 and 6 of Figure 1.7 would

collapse into a single cycle, as was achieved for macro fusion in Figure 1.3b. Fur-

thermore, mini-graph processing can apply latency reduction to arbitrary pairs of

arithmetic/logical operations, not just the test/compare-branch pairs of macro fu-

sion.

15

1.3.4 Minimizing Design Impact

Although aggressive with respect to amplification, mini-graph processing is designed

to be conservative in terms of hardware and software design changes. To minimize

pipeline modifications, mini-graphs are constrained to have the interfaces of RISC

singleton instructions. These constraints are detected statically by a software tool

that identifies legal mini-graphs. Most importantly, mini-graphs are constrained to

be atomic, have at most three register inputs and one register output, and to perform

at most one memory operation. This last constraint preserves instruction-granularity

handling of memory operations, including memory related exception handling. Ex-

isting mechanisms like branch prediction, memory disambiguation, and load-store

forwarding remain unchanged in the presence of mini-graphs; mechanisms that use

instruction PC (e.g., branch prediction) can use handle PC instead. Annotated

outlining makes a minor ISA extension that requires only one or two new opcodes;

annotated outlining naturally supports functional compatibility across different mini-

graph and non-mini-graph processors. Because the binary contains the original in-

struction sequences, these can be retrieved to aid in debugging or to handle rare and

difficult exceptions. Mini-graphs do not need to be explicitly virtualized and require

OS support only if disabling mini-graphs is desired.

1.3.5 Providing Robust Performance

Fused micro-ops occupy a single issue queue slot, but they issue separately. Mini-

graph constituents, on the other hand, are issued atomically. The benefit is obvious.

Whereas micro-op fusion amplifies only the issue queue, mini-graph processing ampli-

fies both the issue queue and issue bandwidth. There is, however, a cost. Requiring

mini-graph constituents to issue atomically creates the possibility of serialization, the

introduction of new program dependences. Because a mini-graph cannot issue until

all of its external inputs are ready, data dependences exist between all producers of

mini-graph inputs and the first operation in the mini-graph.

16

(b) Fused Load-Op Execution Schedule

Schedule

register Read

eXecute

register Write

Commit, free

0 1 2 3 4 5 6 7

S R W

S W CR X

S R W C

X1 X2 X3

X

execution schedule unchanged

(c) Load-Op Mini-Graph Execution Schedule

0 1 2 3 4 5 6 7

S R

W C

S R W C

X1

X

execution schedule delayed 1 cycle

8

X

X3ld

op

A

ld

op

A

X2

fused load-op issue

independently

fused load-op issue

atomically, after A completes

A

op

ld

(a) Dataflow Graph

of 3 instructions

Figure 1.8: Serialization Effects in Mini-Graphs

Figure 1.8 shows an example with three instructions A, ld, and op, shown in

Figure 1.8a. Figure 1.8b shows the execution schedule of these three instructions,

with the load-op pair fused by micro-op fusion. Figure 1.8c shows the execution

schedule of the same three instructions, with the load-op pair as a mini-graph. (The

pipelines begin with the schedule stage for simplicity.) Whereas the micro-op pair

are scheduled independently, allowing the load to execute in parallel with instruction

A, the mini-graph is scheduled atomically, requiring the load to wait for instruction A

to complete before it can be executed. The result is a 1 cycle delay in the execution

schedule. The load waits for a value that it does not actually depend on; this delays

not only the load but also the op that follows it.

Small increases in execution latency caused by serialization can result in over-

all program slowdowns. This dissertation provides an extensive examination of the

problem of serialization and serialization-aware fusion in the context of mini-graphs.

Selecting mini-graphs aggressively (i.e., ignoring serialization) maximizes mini-graph

coverage but the associated performance loss for many programs outweighs the ben-

efits of amplification in the first place. Selecting mini-graphs conservatively (i.e.,

prohibiting serialization by static analysis) avoids performance loss but produces lit-

tle amplification. Most instances of serialization are benign (unmanifested or unim-

portant). This dissertation develops three serialization-aware selection schemes that

identify and reject mini-graphs with harmful serialization only.

17

1.4 Results Summary

Mini-graph processing is a low-cost, low-area, low-design-impact substitute for su-

perscalar width and window capacity. Current processors are converging upon the

4-wide issue core as a performance-efficiency design sweet-spot [106]. Given the goal

of designing low-power, low-area cores that still maintain high single-thread perfor-

mance, the question is whether the coverage offered by mini-graphs is sufficient to

achieve the performance of the 4-wide core with a mini-graph-enabled 3-wide core.

Answering this question requires a study of both the coverage and performance of

mini-graph processing. Specifically, a performance comparison is made between a

3-wide mini-graph processor and a 4-wide non-mini-graph processor. Figure 1.9 de-

tails both the 3-wide and 4-wide configurations, and the mini-graph support. Both

the 3-wide and the 4-wide configurations are tuned to the performance “knee” for

both issue queue entries (20 vs. 30) and physical registers (120 vs. 144).

Parameter Configuration

Memory System
32KB, 2-way/4-way associative 3-cycle access data/instruction caches. 64-entry, 4-way associative
instruction and data TLBs. 1MB, 4-way associative, 12-cycle access on-chip L2. Infinite, 200 cycle-
access main memory. 16B memory bus clocked at 1/4 core frequency.

Branch

Prediction

24Kb hybrid bimodal/gShare branch direction predictor, 2K-entry, 4-way associative BTB, 32-entry
RAS

Pipeline
16 stages: 1 predict, 3 instruction cache, 1 decode, 2 rename, 1 schedule, 2 register read, 1 execute,
1 register write, 3 replay, 1 commit

128-entry ROB, 64-entry load queue, 32-entry store queue. Loads are scheduled aggressively using
a Store Vulnerability Window. Memory ordering violations flush the pipeline. Cache miss replays are
modeled.

4-wide 4 int / 1fp / 2 load / 1 store144 pregs

Instruction

Window

fetch/issue/commit
width

Scheulder Issues per cycle:
(maximum)

register file
size

 Maximum 5 instructions, 7 cycles, 3 integer constituents, 1 load or store, 1 terminal control
instruction. Scheduler issues at most 2 mini-graphs per cycle, at most 1 integer mini-graph per cycle.

MGT SIZE: 512-entries, 7 banks. 2 3-stage ALU Pipelines replace standard ALUs.
Mini-Graphs

Processor Width

4-wide
3-wide 3-wide 3 int / 1fp / 2 load / 1 store120 pregs

30 entry

issue queue size

20 entry

Figure 1.9: Simulation Configuration for 3-wide and 4-wide processors.

Methodology. This dissertation studies mini-graphs in the context of user-

level code, the Alpha AXP ISA, and processors with unified physical register files

[36, 43, 110]. Mini-graph processing in the context of non-Alpha ISAs is discussed

18

in Section 2.7; mini-graphs in the context of alternative microarchitectures is dis-

cussed in Section 2.8. Mini-graph binaries were created from 78 Alpha binaries across

four benchmark suites: SPECint2000 (SPEC), MediaBench [60], CommBench [108],

and MiBench [42]. The original binaries were compiled for the Alpha EV6 using

the Digital OSF compiler with optimization flags -O3. All benchmarks were run

to completion: SPEC programs on their training inputs at 2% periodic sampling

with warm-up; all other benchmarks on their largest available inputs with no sam-

pling. Not all of these suites (e.g., MiBench) actually target dynamically scheduled

superscalar processors. They are included to show the applicability of mini-graphs

to different kinds of codes.

The timing simulation infrastructure uses the SimpleScalar 3.0 Alpha AXP in-

struction definition and system call modules to model a dynamically scheduled su-

perscalar processor. The simulator uses cycle level simulation to generate IPCs, but

does not explicitly account for circuit delay, frequency, or power. Performance re-

sults are quantitative insofar as the cycles required to execute each instruction are

faithfully modeled by each pipeline stage. The performance results do not, however,

account for possible frequency changes. Power and frequency results are strictly

qualitative; particular processor configurations are determined to consume more or

less power based on relative capacities and bandwidths of particular critical on-ship

structures.

This section presents results for both coverage and performance, as shown in

Figure 1.10. Much of the data in this dissertation is displayed using S-curve graphs.

Each line represents an experiment in which all programs are sorted from worst to

best; hashes mark each program. In the same graph, each experiment is sorted

independently so that the same horizontal point may correspond to different pro-

grams in different experiments. To illustrate, the large diamond in each graph shows

the results for the SPEC benchmark twolf. On a 4-wide processor, twolf sees a

19

10.6% performance improvement over a 3-wide processor. On a mini-graph proces-

sor, twolf has a 30% coverage rate and sees a 15.6% performance improvement over a

3-wide processor. S-curves effectively display trends and medians for large numbers

of benchmarks and prevent outliers from hiding in averages.

Mini-Graph Coverage

0

10

20

30

40

50

60

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

78 benchmarks, sorted worst to best

C
ov

er
ag

e
R

at
e

average 32.2% coverage

SPEC's twolf

Mini-Graph Performance
Relative to 3-wide Baseline

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

78 benchmarks, sorted worst to best

R
el

at
iv

e
IP

C

3-wide + mini-graphs (+20.1%)

4-wide (+ 15%)

3-wide

SPEC's twolf

Figure 1.10: Mini-Graph Coverage and Performance. Left: Coverage of mini-graphs
across 78 benchmarks. Right: Comparison of 3-wide mini-graph processor and 4-
wide processor. Relative to a 3-wide processor. Mini-graphs in this graph are chosen
using the best performing serialization-aware selection algorithm, SlackProfile (see
Chapter 3).

Coverage. Coverage varies based on the mini-graph definition (how many and

what kinds of instructions can be incorporated into mini-graphs). The graph on the

left of Figure 1.10 shows coverage rates for mini-graphs with as many as three integer

operations and at most five total constituents.

Coverage across 78 benchmarks is approximately 32%. Structures and pipeline

stages which process handles are effectively one third larger. This is achieved without

physically increasing capacity or bandwidths. The next graph compares the perfor-

mance of a mini-graph processor with a non-mini-graph processor that is physically

larger by this same (one-third) amount.

20

Performance. The performance effects of mini-graph processing can be ob-

served by comparing a less-provisioned (i.e., 3-wide) processor with mini-graph ca-

pabilities to a more-provisioned (i.e., 4-wide) processor without mini-graphs. This

comparison is shown in the graph on the right of Figure 1.10. Performance is relative

to a 3-wide, non-mini-graph baseline. The 3-wide mini-graph processor outperforms

the 4-wide non-mini-graph processor in almost every case; the former shows a 20%

performance improvement over a baseline 3-wide machine, the latter only a 15%

improvement.

The mini-graphs in this experiment are selected using the best performing

serialization-aware selection algorithm, SlackProfile, which is introduced in Chapter 3.

It is important to note that without this algorithm, the performance improvement

is both half that of the 4-wide machine and significantly less robust; approximately

25% of benchmarks would see a performance loss over the 3-wide baseline.

A 3-wide mini-graph processor not only matches the performance of a 4-wide

non-mini-graph processor, but it does so with smaller superscalar structures and

bandwidths. (These data do not assume latency reduction in the ALU Pipeline;

each operation executes in a full cycle.) The main hardware cost of mini-graph

processing is the MGT, whose capacity, bandwidth, and support for banking (as

explained in the next chapter) makes it inexpensive, relative to the cost of adding

entries and ports to existing structures (e.g., register file, issue queue) or increasing

the bandwidth of the entire processor by one-third. Mini-graph processing can, in

fact, act as a robust, less expensive replacement for some of the expensive book-

keeping machinery of a high-performance processor.

1.5 Contributions

This dissertation makes several contributions. Specifically, it:

• Introduces the concept of mini-graphs processing, a form of instruction fusion

21

that focuses on pipeline capacity and bandwidth amplification.

• Describes a novel microarchitecture for processing mini-graphs that requires

only small modifications over existing superscalar designs. The key components

of the implementation include the Mini-Graph Table, ALU Pipelines, and an

outlining-based ISA extension facility.

• Presents the first extensive discussion of the problem of serialization. In-

troduces both external and internal serialization as well as the conditions

under which each can affect performance. Develops and evaluates several

serialization-aware mini-graph pruning algorithms. Compares these algorithms

to each other as well as to naive and exhaustive methods.

• Presents a simulation-driven performance evaluation of the complete mini-

graph system, showing that the addition of mini-graph processing allows a

dynamically scheduled 3-wide superscalar processor to match the IPC of a

4-wide superscalar machine.

Previously published work on mini-graph processing include a 2004 publication

in the 37th International Symposium on Microarchitecture [12], a 2006 publication

in the 39th International Symposium on Microarchitecture [14], and a 2006 technical

report from the University of Pennsylvania [13]. The first publication introduces the

concept of mini-graph processing including the MGT and ALU Pipelines, discusses

the coverage across different possible mini-graph definitions, introduces the concept

of serialization, and shows initial performance benefits for various mini-graph proces-

sor configurations. The second publication briefly discusses the mini-graph encoding

scheme but focuses primarily on serialization. It introduces several pruning algo-

rithms designed to overcome the performance penalties caused by serialization. The

technical report best describes the outlining-based ISA extension facility used to

create a mini-graph binary; this encoding differs from the DISE-based encoding [26]

of the 2004 publication. These three publications correspond to Chapter 2, Chapter

22

3, and Section 2.2, respectively. That said, this dissertation—particulary Chapter

2—presents a more extensive discussion of mini-graph processing than is present in

any of the publications.

This dissertation is organized as follows. Chapter 2 describes the architecture and

microarchitecture of a mini-graph processor, detailing how mini-graphs are encoded

in a program binary and how they are processed as the program executes. Chapter

3 discusses how mini-graphs are identified statically and how they can be chosen

to maximize both resource amplification and performance. This section focuses on

minimizing performance penalties associated with serialization. Chapter 4 presents

a simulation-based timing evaluation of mini-graph processing. Chapters 5 and 6

discuss related works and conclusions, respectively.

23

Chapter 2

Mini-Graph Architecture

Mini-graph processing is a unique form of instruction fusion that targets bandwidth

and capacity amplification throughout the entire pipeline, from fetch to commit.

By performing certain actions once per aggregate instead of on a per-instruction

basis, structure bandwidth and capacity is allocated to other instructions, creating

an amplification effect. This wholesale amplification enables either improved IPC

throughput at a fixed resource point or, alternatively, fixed (or better) IPC with

fewer resources.

This dissertation studies mini-graphs in the context of user-level code written in

the Alpha ISA. The assumed microarchitecture is similar to an unclustered Alpha

21264, specifically one that implements register renaming using a unified physical

register file (as opposed to an architectural register file and a value-based ROB), that

has a unified scheduler for integer and memory operations and a separate scheduler

for floating-point operations.

Mini-graphs are designed to maximize amplification both from a dynamic in-

struction standpoint and from the standpoint of number of structures and pipeline

stages amplified. At the same time, they are designed to minimize impact on the

microarchitecture—specifically the number of structures that are made mini-graph

aware—the ISA, and the operating system. In other words, mini-graphs maximize

24

their amplification impact while minimizing their implementation costs.

This chapter begins with a brief overview of the structural changes required to

support mini-graph processing. Figure 2.1 depicts a high level diagram of a basic

out-of-order processor. The unshaded parts of the figure show the structures that

are unmodified in a mini-graph processor: the instruction and data caches, the

branch predictor, the floating-point units, as well as more complicated entities such

as the decoder, the load/store queue, register renaming, as well as the register and

memory schedulers. The shaded parts of the figure show the structures that are

added in order to support mini-graph processing: the Mini-Graph Table, the Mini-

Graph Pre-Processor, and ALU Pipelines. Structures outlined in bold (issue queue,

functional units) are modified from the basic processor in order to support mini-

graph processing. The bold lines show new or modified paths between the structures

themselves. Each shaded structure or bold line is labeled with the section number

in which this support is discussed.

I$

Section 2.6

Branch
Predictor

Scheduling

MGT

Execution
MGT

Integer Issue Queue

ROB

Integer
Functional

Units

ALU
Pipelines

Section 2.5

Sections 2.1, 2.7

Section 2.4.1

Section 2.2

Integer
Register

 File

D$

LSQ

I$ buffer

L2 Rename

mg pre-
processor
(MGPP)

Decoder

FP
Functional

Units

FP

Register

 File

FP Issue Queue

Figure 2.1: Architectural Changes

Mini-Graph Table (MGT). Mini-graph templates reside in an on-chip struc-

ture called the Mini-Graph Table (MGT). The MGT is an on-chip cache for mini-

graph templates—each entry holds the resource needs and definition of one mini-

graph template, indexed by MGID. Mini-graph templates are entered into the MGT

25

on a per-program basis; this allows each program to have its own unique set of

templates. Mini-graph templates do not need to be shared across applications.

The MGT is divided into two parts: the Scheduling MGT and the Execution

MGT, shown in Figure 2.2a. The Scheduling MGT (see Section 2.4) summarizes

the resource needs of each mini-graph template. Mini-graph scheduling informa-

tion is accessed at dispatch and then used by the scheduler to coordinate resource

reservations. For example, the Scheduling MGT informs the scheduler that the mini-

graph mg12 in Figure 2.2a has an execution latency of 3 cycles and therefore needs

a correspondingly delayed reservation of a writeback port.

The Execution MGT holds the per-constituent template information and drives

the cycle-by-cycle execution of the mini-graph’s constituent operations, micro-code

style. Each entry contains an opcode, an immediate, and a group of control bits.

The opcode and immediates are found in the original non-mini-graph constituents.

The control bits encode the dataflow of the mini-graphs, driving the input muxes to

functional units and the output muxes of the ALU Pipeline (explained next).

The Execution MGT is both banked and pipelined; n banks are required to

support a mini-graph with an execution latency of n cycles. Figure 2.2, for example,

shows and Execution MGT where n = 3. The first bank controls the execution

of the first mini-graph constituent during the first cycle of execution of the mini-

graph. If a mini-graph does not execute a new constituent at a particular cycle,

the corresponding bank’s entry remains unused. m read ports per bank support the

continuous pipelining of m mini-graphs per cycle. With this configuration, the MGT

is free of structural hazards. Assuming a 6-bit opcode, a 16-bit immediate, two 3-bit

mux controllers (for selecting inputs), 1 bit indicating an output, and remaining bits

to indicate which functional unit a constituent executes on, each MGT constituent

requires 32 bits, i.e., 4 bytes. A 512-entry MGT, then, requires 2KB per MGT bank.

A 7-bank MGT is 14KB.

26

The configuration of the MGT is one of the primary levers that trades mini-

graph coverage with mini-graph implementation costs. Adding entries to the MGT

either supports fewer MGT misses and improves performance or supports more mini-

graph templates and consequently increases coverage. Adding banks to the MGT

supports longer mini-graphs and consequently increases coverage. Adding more ports

to each bank supports the execution of more mini-graphs per cycle and consequently

increases mini-graph throughput. However, increasing the number of MGT entries,

banks, or ports all increases the cost of mini-graph processing by increasing the size

and power consumption of the MGT itself.

ALU Pipelines. Execution is the only pipeline stage not amplified by mini-

graph processing. To prevent execution from becoming a new bandwidth bottleneck,

a mini-graph processor replaces some of its ALUs with ALU Pipelines: single-entry,

single-exit chains of ALUs with forward-only interior operand networks (see Figure

2.2b). An ALU Pipeline is essentially a multi-cycle functional unit (like a multiplier)

on which integer mini-graphs execute. ALU Pipelines add ALU execution bandwidth

without requiring matching increases in register file and bypass bandwidths.

Like the MGT, the configuration of the ALU Pipeline is another lever used to

trade coverage with implementation costs. ALU Pipelines with more stages support

longer mini-graphs that achieve more coverage. Adding an ALU Pipeline stage incurs

the same area and power costs of adding a standard ALU, but none of the bypass

complexity of actually increasing the execution width of the processor. The ALU

Pipeline support also affects performance. Having multiple ALU Pipelines will not

improve coverage, but it will improve throughput. Finally, the cost of an interlock-

collapsing ALU Pipeline comes with the benefit of reducing the execution latency of

the mini-graph and potentially shortening the height of a program’s dataflow.

MGT and ALU Pipeline example. Figure 2.2 shows an MGT that supports

integer mini-graphs of up to three instructions long connected to its corresponding

ALU Pipeline (of 3 ALUs). The MGT is indexed by the MGID field of the mini-graph

27

Execution MGT

cycle 1 cycle 2 cycle 3

Scheduling MGT

3
(a) Mini-Graph Table (MGT)

(b) 3-stage ALU Pipeline
in0 (r1)

in1 (r2)

in2 (r3)

r4

add r1,r2,r1 addi r1,4,r1 cmplt r1,r3,r4

add in0,in1 addi 4, mg[0] cmplt mg[1],in2

Original Instructions

4

imm control imm control imm control

 cmplt- addi4 add-

mg[0]
"r1"

mg[1]
"r1"

index
= ID
= 12

addi cmpltadd

Template Form

Scheduling MGT:
accessed at dispatch
"execution latency = 3 cycles"

Execution MGT:
accessed at execute
drives ALU pipeline execution

multi-cycle, pipelined, functional unit
1 instruction executed per cycle

Figure 2.2: Mini-Graph Table and ALU Pipeline.

handle (in this case, 12). At dispatch, the Scheduling MGT is accessed to determine

the execution latency of the mini-graph; this information extends the scheduler itself

and is used in the next cycle. The Execution MGT contains the necessary immediate

inputs, opcodes, and input selectors (not shown) in order to drive the execution of

the mini-graph on the ALU Pipeline. For simplicity, the ALU Pipeline in Figure

2.2b shows only paths that are used by this particular mini-graph. Scheduling and

executing integer-memory mini-graphs is slightly more complex and is discussed in

Section 2.3.

Integer-memory mini-graphs. The final lever used to trade coverage and cost

is the mini-graph definition itself. This dissertation focuses on two types of mini-

graphs: integer mini-graphs, which contain only single-cycle ALU operations and

integer-memory mini-graphs which can also contain loads, stores, and control trans-

fers. Because they behave almost identically to standard multi-cycle instructions,

integer mini-graphs require little support. Unfortunately, they also have an aver-

age 14% coverage rate—not enough to compete with an additional superscalar slot.

28

Because they incorporate more types of instructions, integer-memory mini-graphs

achieve coverage rates of approximately 35%. This amplification benefit comes at

an implementation cost. Three-cycle loads make inefficient use of the MGT which

is banked by cycle, not instructions. Integer-memory mini-graphs also fundamen-

tally require coordination of multiple functional units; ALU Pipelines cannot easily

be extended to support memory or control instructions. This coordination impacts

both the scheduler and the bypass network, although careful design can minimize

this impact.

The mini-graphs supported in this dissertation is as follows. Integer mini-graphs

(or the integer constituents of an integer-memory mini-graph) are executed on 3-

stage ALU Pipelines. Integer-memory mini-graphs may contain up to three con-

secutive integer operations, a maximum of one loads or stores, and a single control

instruction—up to 7 cycles of execution. Load latency is assumed to be three cycles.

Two mini-graphs may issue per cycle, but only one of these may be an integer-

memory mini-graph.

This chapter reviews the basics of mini-graphs and mini-graph processing with

these design goals in mind. It describes all the necessary components of a mini-

graph architecture. Section 2.1 details mini-graph criteria. Section 2.2 explains

how mini-graphs, once identified in a program, are encoded in a program binary.

Section 2.3 introduces the microarchitectural support necessary to execute mini-

graphs. Section 2.4 describes mini-graph scheduling. Section 2.5 discusses the Mini-

Graph Pre-Processor whereas Section 2.6 provides further details about the MGT.

Additional attention is needed in order to select mini-graphs that guarantee robust

performance. Chapter 3 discusses selection for robustness and high performance.

29

2.1 Mini-Graph Criteria

Mini-graphs are aggregates with the external appearance of singleton RISC instruc-

tions. The RISC singleton interface makes mini-graphs appropriate for superscalar

processors which rely on simple book-keeping units to implement register renaming

and dynamic scheduling. Mini-graph handles are designed to look and behave as any

other singleton instruction and require as little special handling as possible.

Mini-graphs are first and foremost atomic – constituent operations are executed

on an all-or-none basis, and internal mini-graph state is unobservable by external in-

structions. Atomicity is the key to amplification; pipeline stages and superscalar

structures that manipulate instructions do so at a mini-graph (not constituent)

granularity. Atomicity also allows register communication that is “interior” to a

mini-graph to take place without actual registers. Provably transient values live

only in the bypass network. This amplifies both the capacity of the physical reg-

ister file as well as the bandwidths of all stages that manipulate either register

names (rename/register-allocate and commit/register-free) or values (register read

and write).

Atomicity constrains mini-graphs to reside within atomic instruction sequences

of a program. In this dissertation, atomicity is enforced by mining mini-graphs from

basic blocks. Mining mini-graphs from larger atomic code sequences, either stati-

cally (e.g., predicated hyperblocks or transactional code sequences within a software

rePLay framework [71]) or dynamically (e.g., from rePLay frames [78]) is possible

but is outside the scope of this dissertation

Beyond the fundamental constraint of atomicity, mini-graph criteria are largely

a set of tradeoffs—finding the sweet spot between the benefit of coverage and a

cost, such as ease of implementation. Mini-graphs are conservatively defined so as to

minimize the number of pipeline stages that are explicitly mini-graph aware, changes

to the ISA, and the involvement of the operating system.

This section explores the implementation costs and coverage benefits associated

30

with mini-graph criteria such as mini-graph instruction formats, maximum cycle

length, and which instruction types to include. The stricter the mini-graph criteria,

the fewer architectural changes are required to process mini-graphs, but the less cov-

erage these mini-graphs offer. Conversely, relaxing mini-graph constraints improves

coverage but also increases the cost of implementation.

Handle formats. Mini-graph handles can be represented in a program binary

using a common 32-bit instruction format—shared by Alpha, MIPS, and SPARC

instructions—that assumes opcodes require 6 bits and register specifiers require 5

bits each. The remaining n bits belong to the MGID which can express 2n mini-

graph templates. Three possible 32-bit formats are shown in Table 2.1. With 32

bits total, a mini-graph can have either 2 register inputs and 1 register output, 3

register inputs and 1 register output, or 2 register inputs and 2 register outputs. The

choice of formats is the first of many decisions that weighs coverage benefits with

implementation cost.

31 — 26 25 — 21 20 — 16 15 — 11 10 — 6 5 — 0 templates
A opcode input 1 input 2 output MGID 2048
B opcode input 1 input 2 input 3 output MGID 64
C opcode input 1 input 2 output 1 output 2 MGID 64

Table 2.1: Possible 32-bit Mini-Graph Instruction Formats. The size of the MGID
determines how many mini-graph templates are supported by a single, reserved mini-
graph opcode.

Although representing a handle in a standard 32-bit instruction format is the most

intuitive approach—and certainly the approach most in keeping with the “spirit” of

mini-graph processing—mini-graph handles are not fundamentally required to be

encoded in a program binary with a single instruction. (At least one other form of

instruction fusion, CCA graphs [23], are represented using multiple instructions.) As

long they can be coalesced into a single instruction representation once inside the

pipeline, an n-instruction representation of a handle is theoretically feasible.

The benefit of using more than 1 instruction to represent a mini-graph handle

31

is that more register specifiers and consequently more register input/output com-

binations become expressible. If each 32-bit instruction has room for three register

specifiers (as seen in Format A), mini-graphs with, say 3 or 4 register inputs and 1

or 2 register outputs, could easily be encoded.

The problem with representing a handle using more than one instruction is that

it sacrifices amplification of both instruction cache capacity and fetch bandwidth. A

two-instruction mini-graph represented by a two-instruction handle in the instruction

cache has removed no instructions at all (prior to decode) and consequently has no

amplified instruction cache capacity or fetch bandwidth. A three-instruction mini-

graph represented by two-instruction handle in the instruction cache has half the

coverage of one represented by a single instruction handle.

Table 2.2 compares the actual coverage achieved with 1- and 2-instruction handles

across the 78 benchmarks introduced in the methodology discussion of Section 1.4.

Although formats D-Fachieve more coverage than formats A-C, any 2-instruction han-

dle loses half to one-third of its fetch amplification. Although all other amplification

benefits remain unaffected, reduced fetch bandwidth amplification is particularly

critical. Unless the processor is designed to overfetch/overdecode [90], failing to

amplify fetch bandwidth effectively “pinches” an otherwise amplified pipeline. Pro-

visioning a processor to overfetch/overdecode is contrary to the goals of mini-graph

processing. Additionally, in the context of the specific goal of achieving the perfor-

mance of a 4-wide processor with a 3-wide mini-graph processor, increasing coverage

rates from 37% to 49% is not significant enough attempt to further simplify the

processor to, say, a 2-wide mini-graph processor. With this in mind, the mini-graphs

used in this dissertation use 1-instruction handles.

Register inputs and outputs. As shown in Table 2.1, there are a few ways

to divide the fields of a 32-bit instruction. With 1 opcode and 3 registers (format

A), there are 11 remaining bits for the MGID. This means that a single dedicated

mini-graph opcode can express 2048 mini-graph templates. With 1 opcode and 4

32

Format handle interface coverage
size registers

A 1 2-in, 1-out 32.3
B 1 3-in, 1-out 36.9
C 1 2-in, 2-out 42.2
D 2 4-in, 1-out 38.0
E 2 3-in, 2-out 48.1
F 2 4-in, 2-out 48.8

Table 2.2: Coverage Achieved with 1- and 2-Instruction Handles. These coverage
rates assume 7-cycle integer-memory mini-graphs.

registers (formats B or C), this leaves 6 remaining bits for the MGID which can express

64 mini-graph templates. The 4 register specifiers could be used for 3 register inputs

and 1 register output (format B) or 2 register inputs and 2 register outputs (format

C). With formats B or C, a mini-graph processor can support 64 more templates for

each free opcode it can dedicate as a mini-graph opcode. For example, 4 reserved

opcodes would support 256 templates. The choice of format weighs the difficulty

of implementing these instruction formats, the availability of free opcodes, and the

coverage gained by both more templates and a more relaxed definition of a mini-

graph.

Table 2.3 shows the coverage potential associated with the three aforementioned

instruction formats. (Coverage is shown for integer-memory mini-graphs supported

by an ALU Pipeline of length 3.) Format A is the most conservative format, and

offers 32% coverage. Format B allows an additional register input. This constraint

relaxation translates to coverage of about 37%. Format C allows an additional output.

This is the least constrained of all formats, enabling up to 42% coverage. Which

format to use depends on the whether the increased coverage of more relaxed formats

outweighs the cost of implementation.

Because Alpha instructions have two register inputs, Format A is already sup-

ported. Formats B and C, however require support for an additional register input

and register output, respectively. Increasing the number of register inputs or register

33

Format interface No. templates per Coverage achieved with t templates
registers mg opcode 64 128 256 512 1024 2048

A 2-in, 1-out 2048 27.8 30.2 31.6 32.1 32.3 32.3
B 3-in, 1-out 64 31.3 34.0 35.9 36.6 36.8 36.9
C 2-in, 2-out 64 34.7 38.3 40.8 41.8 42.1 42.2

Table 2.3: Coverage Achieved with Possible 32-bit Mini-Graph Instruction Formats.
For Formats B and C, 64, 128, 256, 512, 1024, and 2048 templates require 1, 2,
4, 8, 16, and 32 reserved mini-graph opcodes, respectively. Coverage for Format A
for fewer than 2048 templates is shown in the event that a smaller MGT is used
and fewer mini-graphs are selected accordingly. These coverage rates assume 7-cycle
integer-memory mini-graph as defined later in this section.

outputs of an instruction requires an additional register tag and match bus in the

issue queue as well as one or two additional register ports (read ports for an addi-

tional register input and write ports for an additional register output). These costs

are effectively less expensive because mini-graphs otherwise amplify issue queue and

register file capacity and bandwidth. In other words, the structures made larger

to support three register inputs are among those that can be made smaller on a

mini-graph processor in the first place.

(a)
2 Input, 1 Output

(b)
3 Input, 1 Output

(c)
2 Input, 2 Output

MG standard standard MG standard standard MG standard standard

Figure 2.3: Increasing Register Inputs vs. Increasing Register Outputs

An additional register input or register output increases the bypass complexity.

Figure 2.3 illustrates by considering the bypass network of 3 ALUs—1 of them sup-

porting a mini-graph interface, 2 of them supporting an Alpha interface (see Figure

2.3a). Increasing the number of register inputs to a mini-graph from 2 to 3 requires

one additional drop-point on every existing result bus, as shown in black in Figure

2.3b. An additional mini-graph register output requires an additional result bus, as

34

shown in black in Figure 2.3c. If 2 of the 3 ALUs supported mini-graph execution

(not shown), the total area would increase further. Changes to the issue queue,

register file, map table, and cross-check logic follow this general pattern; supporting

an additional mini-graph output increases the area, power, and delay of structures

more than supporting an additional mini-graph register input.

Allowing mini-graphs to have more than one register output would increase mini-

graph coverage from 37 to 42%, but would complicate register renaming and free list

management, increase the complexity of the bypass network, and require an ad-

ditional register file write port for each possible in-flight mini-graph. Because the

cost is greater than the cost of allowing an additional register input, format B rep-

resents the sweet spot of coverage and implementation ease. Mini-graphs are not

unique in identifying this sweet spot: Intel, too, chose to fuse micro-ops that would

collectively have three register inputs but just one register output. In the case of

mini-graphs, coverage is increased from 32% to 37%, and the only implementation

costs are ameliorated by the amplifying effects of mini-graphs. In order to sup-

port both 2-register-input and 3-register-input mini-graphs, formats A and B are the

instruction formats used hereafter. (Technically, two formats require at least two

reserved opcodes, but this dissertation will continue to refer to a generic reserved

opcode mg as a placeholder for all mini-graph opcodes.)

Operation types. This dissertation focuses on two types of mini-graphs: integer

mini-graphs, which contain only single-cycle ALU operations and integer-memory

mini-graphs which can also contain, stores, loads, and conditional branches. A

survey of the instructions used across the 78 benchmarks used in this dissertation

shows that approximately 55% of program instructions are eligible to participate in

integer mini-graphs.

Integer-memory mini-graphs expand the definition of mini-graphs to include oper-

ations beyond single-cycle ALU operations, namely loads, stores, and control instruc-

tions. (This discussion assumes that loads complete in three cycles, and stores and

35

control instructions in 1 cycle.) This expanded definition enables many more instruc-

tions to participate in mini-graphs. Control instructions are limited to conditional

jumps, which are the most common. Unconditional jumps are sometimes eliminated

from the instruction stream at decode; in such cases, placing these jumps in mini-

graphs does not amplify issue bandwidth because they already consume none. Long

latency operations (e.g., floating point operations and and divides) would greatly in-

crease the size of the MGT. Furthermore, amplifying execution bandwidth of floating

point operations would not be as simple as for integer operations. Finally, floating

point operations typically use a separate scheduler, and this dissertation assumes a

unified scheduler for all mini-graph constituents. The mini-graphs of this disserta-

tion focus on integer operations; the scope of changes are restricted to the associated

integer instruction formats, scheduler, function units, and register file.

The coverage increase associated with integer-memory mini-graphs comes at an

implementation cost. An integer-memory mini-graph processor makes forward reser-

vations of multiple functional units for a single mini-graph and coordinates the for-

warding and latching of transient values between these functional units; additionally,

the MGT drives execution on multiple functional units. Longer execution latency

requires more MGT banks.

Memory instruction limitation. Integer-memory mini-graphs may contain

a maximum of one memory operation per mini-graph. Many aspects of RISC

processing—memory disambiguation, load scheduling, ordering violation detection,

load/store queue resource allocation—assume that memory operations can be han-

dled individually. Not breaking that assumption minimizes changes to the micro-

architecture, including such complex and latency-sensitive pieces as the load and

store queues.

The one memory operation per mini-graph restriction — a practical limitation —

preserves the ability to handle memory operations at an instruction granularity. As

a consequence, common memory exceptions such as a TLB miss, a page fault, etc.

36

size of integer integer-memory
ALU Pipeline mini-graphs mini-graphs
2 instruction 10.5% 33.8%
3 instruction 12.9% 36.9%
4 instruction 14.0% 38.1%
5 instruction 14.3% 38.8%

Table 2.4: Coverage Rates for 3-register-input, 1-register-output mini-graphs (as
percentage of dynamic instructions) across 78 programs. Shown for integer and
integer-memory mini-graphs with ALU Pipelines of sizes 2, 3, 4, and 5 instructions
each. average (min, max)

can be associated with the mini-graph handle. Exception information is attached to

the handle, the entire mini-graph is flushed, the exception is handled, and the entire

mini-graph is replayed.

Execution latency. When calculating coverage, a mini-graph’s length is mea-

sured by the number of its constituents; when calculating implementation cost, how-

ever, a mini-graph’s length is measured by its execution latency. The execution

latency determines how far in advance the scheduler is required to reserve resources

such as writeback ports (see Section 2.4). Cycle count also determines the number

of columns in the MGT (see Section 2.3.3), one bank per cycle. For both integer

and integer-memory mini-graphs, the determining factor in execution latency is the

number of ALU operations supported in a mini-graph. This also determines the

required length of the ALU Pipelines (see Section 2.3.1).

Table 2.4 shows the maximal coverage rates for integer and integer-memory mini-

graphs with ALU Pipelines of sizes 2, 3, 4, and 5 instructions each. The majority of

mini-graphs are of size 2. Coverage increases when longer mini-graphs are supported,

but this tends to taper off at 4 instructions.

Empirically, the integer mini-graphs of size 4 offer the best coverage (14.0%).

Adding a fifth MGT bank to support 5-instruction integer mini-graphs is not worth

the minimal (.3%) coverage increase. (Longer mini-graphs offer little increased cov-

erage because they are still limited to just three register inputs, one register output,

37

and only integer operations.) Consequently, integer mini-graphs execute on 4-long

ALU Pipelines, and total execution latency is no more than 4 cycles.

The “knee” of the coverage curve for integer-memory mini-graphs is at the 3-

ALU or 4-ALU instruction limit. With loads that can take up to 3 cycles plus

single-cycle control instructions, the maximum execution latency is 7 or 8 cycles,

depending on the size of the ALU Pipeline. Because this directly impacts the size

of the MGT — cycles translate to banks — and because the fourth ALU operation

plays a less significant coverage role for integer-memory mini-graphs, an empirically

good limitation is to have ALU Pipelines that are only 3 ALUs long.

To simplify the execution of integer-memory mini-graphs across multiple func-

tional units, memory instructions may only occur before or after constituents that

execute on the ALU Pipeline. Stores are moved past ALU instructions because

they produce no transient values on which other constituents might be dependent.

Atomicity restricts control instructions to the terminal position in the mini-graph.

The entire sequence may have no more than one memory operation. The maxi-

mum execution latency is simply the sum of the components: ALU-Pipe-length +

load-latency + branch-latency, in this case, 7 cycles.

Figure 2.4a shows an exhaustive list of all possible 7-cycle mini-graph patterns.

The mini-graphs are ordered according to coverage; the rightmost columns show both

the mini-graph’s contribution to coverage as well as a running cumulative coverage

score. The shaded coverage fields at the bottom of the list show those that contribute

the least to coverage. For example, mini-graphs following the familiar load-op pat-

tern of micro-op fusion are ranked ninth in their coverage contribution, offering only

an absolute 1.74% of the total 36.94% coverage. The familiar op-branch pattern of

macro fusion is ranked fifth, contributing to an absolute 2.33% coverage. Extend-

ing fusion benefits beyond these two idioms does, in fact, allow mini-graphs to have

increased amplification benefits over more constrained forms of fusion.

These empirical data suggest simplifying the MGT and its banks. For example,

38

int1 int2 int3

1 2 3 4 5 6 7

int1 int2 int3 BR

int1 int2 int3 ld - -

int1 int2 int3 st

int1 int2 int3 st

int1 int2
int1 int2

int1 int2 - -

int1 int2 - -

int1 int2

int1 int2

int1

int1

int1

int1

int1

BR

BR

BR

BR

BR

st

st

ld

ld

- -ld

- -ld BR

BR

st

st

BRst

- -ld

- -ld

- -ld
- -ld

int1

int1

int1

int2

int2 int3
BR

int1 int2 int3 ld - - BR

(a) Prevalence of mini-graphs in 7 MGT Banks

%

cov.

2.81

2.60

0.97

0.32

2.16

1.01

3.23
3.66

1.64

1.13

1.88

0.86

2.33

2.66

0.58

1.08

0.23

0.10

1.74

1.48

0.54

0.55

- -ld int1 BR 1.46

- -ld int1 int2 BR 0.86

- -ld int2int1 int3 BR 1.06

int1 int2 int3

1 2 3 4 5

int1 int2 int3 BR

int1 int2 int3 ld -

int1 int2

int1 int2

int1 int2 - -
int1 int2
int1

int1

int1
BR

BR

st
ld

- -ld

st

- -ld
- -ld
- -ld

int1
int1
int1

int2
BR

(b) Prevalence of mini-graphs in 5 MGT Banks

int1 - -ld BR

int1 BRst

- -ld BR

int1 int2 BRst

%

cov.

3.17

3.73

2.79

3.23

3.84

2.14

1.31

2.07

2.42
2.70

0.56

1.09

0.28

1.85
1.87

0.55

1.98

cuml.

cov.

9.70

14.96

32.90

36.61

19.45

31.93

6.89
3.66

24.71

28.78

21.33

33.76

17.29

12.36

35.20

29.86

36.84

36.94

23.07

26.19

36.29

35.75

27.65

34.62

30.92

cuml.

cov.

13.97

7.57

16.76

10.80

3.84

24.02

33.10

26.09

21.88
19.46

34.75

34.19

35.58

31.79
29.94

35.30

28.07

total coverage

*

*

* load-op (micro-op fusion)
+ op-branch (macro fusion)

+
+

Figure 2.4: 7- and 5-Bank Mini-Graph Patterns. Rightmost columns of tables show
coverage contribution and cumulative coverage for each mini-graph pattern. Left:
Shaded percentages show patterns offering the least coverage. Dark shading indi-
cates mini-graphs whose support requires extra logic. Right: Mini-graphs with dark
shading no longer supported.

39

the only two patterns that utilize the 7th bank of the MGT contribute only 2.07%

total. Removing the 7th bank of the MGT would provide significant area and power

savings at little coverage cost. Figure 2.4b shows the result of supporting a more

restricted set of mini-graph patterns. By removing the 8 least contributing patterns,

two banks can be removed from the MGT. Additionally, the logic that determines

which banks drive which functional units can be simplified. Notice that three less

frequent patterns are still supported (see the shaded coverage fields). Although

these patterns are infrequent, they require no additional hardware support (i.e., not

supporting them does not simplify the design) and so they are still allowed. The

table on the left suggests that not supporting these mini-graphs could cut coverage

by a relative 20%. In practice, however, the coverage/complexity tradeoff is good;

reducing almost 30% of the MGT’s real estate budget reduces coverage by less than

4%. This is because many of the unsupported mini-graphs can be broken down into

smaller, supported mini-graphs. As a consequence, total coverage decreases only

slightly from 36.9% in the original design to 35.6% in the simplified design. For the

sake of showing maximal coverage, however, the rest of the dissertation assumes the

original, 7 bank configuration.

Connectivity. Long sequences of instructions with limited number of register

inputs and register outputs naturally favor mini-graphs that are connected in a

dataflow graph. That mini-graphs are internally connected is likely, but not strictly

required. Internally disconnected mini-graphs require no special support. Allowing

disconnected mini-graphs increases the number and size of mini-graph candidates.

There is, however, one potential downside; pairing two independent instructions can

change their execution schedule. If this results in a critical instruction being delayed,

overall slowdowns can result (see Section 3.2).

A conservative sweet spot. The set of restrictions imposed on mini-graphs

represents a conservative sweet spot for maximizing coverage and minimizing sup-

port. Relaxing just one of the more easily supported restrictions would not likely

40

significantly increase the number of possible mini-graphs. In order to significantly

increase the number of possible mini-graphs, almost all restrictions—specifically the

less easily supported ones such as atomicity or a single memory operation—would

need to be simultaneously relaxed. The result would be an aggregate scheme far

more complicated than mini-graph processing.

Supporting the target processor. A given mini-graph processor supports

only a certain number of register inputs, constituents, and instruction/cycle count.

It is important that the software tool selecting mini-graphs know this configuration

so that it selects mini-graphs supported by the target mini-graph processor. Incom-

patibilities between a mini-graph binary and the expected mini-graph processor do

not result in a correctness problem. The binary simply executes less efficiently, be-

cause incompatible mini-graphs have to execute in non-mini-graph form (see Section

2.2).

2.2 Mini-Graph Encoding

Mini-graphs use an encoding scheme called annotated outlining that supports func-

tional compatibility on non mini-graph processors and across different mini-graph

processor implementations. Annotated outlining also enables instruction cache ca-

pacity and fetch bandwidth amplification on mini-graph processors.

Figure 2.5 illustrates the creation of an outlined executable. The original binary

is shown in Figure 2.5a. First, the constituents of a particular mini-graph are out-

lined—replaced with a single control instruction that points to the new location of

the outlined (as opposed to “inlined”) constituents. A second control instruction

following the mini-graph constituents returns the program to the outlining code’s

original location. Next, the constituents are annotated—prepended with a tag, i.e.,

the mini-graph handle. Figure 2.5b shows the mini-graph instructions — contiguous

and prepended with a handle — in outlined form. The annotated, outlined binary

41

F

(a) Original

Binary

(b) Annotated, Outlined

Binary

A

B

C

D

E
A

B

C

D

E

mg12

J1

J2

F

F

mini-graph

constituents

outlining

jump

mini-graph

handle / nop

normal

instructions

J#

mg#

Key(c) Committed Instruction Stream

Non-Mini-Graph

Processor

B

C

J1

J2

F

B

C

F

1st

encounter

subsequent

encounters

mg12

Mini-Graph Processor

B

C

J1

J2

A

D

E

A

D

E

Figure 2.5: Basics of Annotated Outlining.

executes on both mini-graph and non-mini-graph processors. Figure 2.5c details

which instructions are actually executed on which type of processor.

L2

B

C

F

1st encounter

mg12

flushed!

(c)

 Committed

Instructions

F X C

F X C

B

C

J1

F

F C

F X

insn
source

L2

L2

L2

L2

mg12

A

D

E

?

J2

L2

L2

L2

L2

C

C

F

F flushed!

X

X

pipeline stages

B

C

J1

J2

F L2 X CF F

X

STEP 1: J1's target
resolved. Flush.

Fetch from mg12.
STEP 2: mg12

overwrites J1 in I$.

STEP 4: J2's target
resolved. Flush.
Fetch from F.

A

B

C

D

E

mg12

J1

J2

F

?

(a)

Annotated,

Outlined

Binary

(b) Diagram showing structures occupied and execution schedule

L2

STEP 3: mg

constituents
sent to MGT.

subsequent

encounters

B

C

F

mg12

I$

I$

I$

I$

F X C

F X C

F

X

C

F X C

A

D

E

MGT

MGT

MGT

X

X

subsequently

F

F

F

F

C

CX

X

X

A

D

E

Figure 2.6: Annotated, Outlined Execution on Mini-Graph Processor.

42

Mini-graph execution. Execution on a mini-graph processor is shown in Figure

2.6. The “insn source” column of Figure 2.6b shows the structure from which the

instructions come. Code fetched from the L2 is in its original annotated, outlined

form and is placed in an instruction buffer. The mini-graph pre-processor (MGPP)

sits logically between the L2 and the instruction cache, directing which instructions

should be written from the instruction buffer to the instruction cache. Standard

instructions and mini-graph handles are directed into the instruction cache; mini-

graph constituents are pre-processed into template form and sent to the MGT.

The pipeline stages column of 2.6b shows a simplified pipeline of just fetch,

execute, and commit stages. When the first outlining jump (J1) is resolved (step

1), the processor flushes the pipeline and begins fetching the outlined code from

the L2 into the instruction buffer. The fetch unit begins fetching the annotated,

outlined code (i.e., the target of J1). Once decoded, the mini-graph handle (mg12) is

recognized by the MGPP. It begins scanning the mini-graph constituents that follow.

If the entire mini-graph is compatible with the mini-graph processor, the MGPP

writes mg12 into the instruction cache, overwriting the instruction cache entry for

the most recently executed branch, J1 (step 2). The MGPP does not direct the

constituent instructions (ADE) to the instruction cache. Instead, it transforms ADE

into their template form (A’D’E’) according to an algorithm explained in Section 2.5.

The constituents in template form are placed in the MGT (step 3), at an index

corresponding to the MGID in the handle. The first time a mini-graph is encountered,

it executes in constituent form (see the committed instruction stream in Figure

2.6c). After the constituents are executed, the second jump (J2), returns control to

the program main line (step 4). Execution continues, in this case beginning with

instruction F. Subsequent encounters of the same static instructions find mg12 in

the instruction cache instead of J1. The processor executes the handle without

encountering the outlining jumps. The MGT entry for mg12 is accessed when the

mini-graph handle reaches the execute stage.

43

Note that only the handle is written to the instruction cache; the other outlined

instructions (ADE, J2) never enter the instruction cache. For this reason, the place-

ment of the outlined code in the mini-graph binary has little effect on the instruction

cache layout or performance. Because a mini-graph handle can be evicted from the

instruction cache, the “first encounter” scenario occurs any time a handle is not in

the instruction cache and needs to be fetched from the L2.

Non-mini-graph execution. Execution of an annotated, outlined binary on a

non-mini-graph processor proceeds similarly to the first encounter of a mini-graph

on a mini-graph processor. A non-mini-graph processor fetches all instructions from

the L2 into the instruction cache. When the first outlining jump is resolved, the

processor jumps to the outlined code. When the outlined code is executed, the

“annotation”—the handle that precedes the mini-graph constituents—is processed

as a nop, i.e., ignored. The non-mini-graph processor next executes the mini-graph

instructions. Finally, when the second outlining jump is resolved, the processor

returns to the program main line.

The overhead is not insignificant. Each dynamic mini-graph instance requires

fetching three additional instructions, including two jumps. This overhead is accept-

able, however, because it occurs only in the unlikely event that a mini-graph binary

is run on a non-mini-graph machine. This requires two unlikely circumstances: (1)

one has access to a mini-graph binary and not the original non-mini-graph binary

from which it was created and (2) one has access to a mini-graph binary and not a

mini-graph processor.

A mini-graph processor can execute mini-graphs in their original, outlined con-

stituent form. There are three contexts in which doing so is useful, each of them

requiring slightly different handling. First, the processor can disable all mini-graphs

across the entire program. This could aid in debugging, for example, by making

execution more transparent. Non-mini-graph execution mode is signalled by setting

44

a user-level, per-process (non-privileged) control bit. When active, the MGPP sim-

ply treats each mini-graph handle as a nop, just like the non-mini-graph processor.

This control bit is saved and restored as part of the processor state by the operating

system; this is the only mini-graph processing support required by operating system.

The next two cases in which constituent execution is preferred over non-mini-

graph execution is for a specific static mini-graph. This can be accomplished either

permanently or temporarily. Permanent disabling of a particular mini-graph is used

when a mini-graph is rejected due to correctness or performance. If a mini-graph

cannot be correctly executed on a particular mini-graph processor—perhaps because

it contains an unsupported constituent or its execution latency is longer than the

MGT can hold—it is disabled for correctness. If a mini-graph is shown to degrade

performance (see Chapter 3), it is disabled for performance. A mini-graph processor

can permanently disable a mini-graph by maintaining (or restoring) the outlined

form of the instructions in the instruction cache and overwriting the mini-graph

handle in the instruction cache with an actual nop. The processor thus removes any

indication that the instruction sequence was ever intended to be in a mini-graph.

This process is simply repeated if the nop ever leaves the instruction cache.

Finally, a mini-graph processor can temporarily disable a specific mini-graph

should an exception occur. Exceptions within a mini-graph may be more easily

handled in outlined form, exposing the offending constituent instruction for exception

handling at a finer granularity. Temporary disabling of a mini-graph is accomplished

by simply re-fetching the PC of the handle into the instruction cache from the L2.

This fetches the original outlining jump and constituents which are processed in non-

mini-graph form just once before the MGPP kicks in and restores the mini-graph

handle to the instruction cache.

Branch offsets. During the outlining process, the offsets of all PC-relative

branches are updated. Branches not participating in mini-graphs are updated to

reflect the code motion induced by outlining. By compressing the main line code,

45

I$

B C F

MGT

A D

mg12

C

D

A

E: jump -4

B

(a)
Reordered

Binary

(c)
Processed

Constituents

12:

(b)
Annotated,

Outlined Binary

E

#2
E: n+1

instructions away
from original

location,
n+1 instructions

further from
target

F

H: jump -7

G

C

B

F

H: jump -5

G

mg 12

J2: jump -n-3

J1: jump + n

D

A

E: jump -n-5

#1
H: 2

instructions
closer to

target

#3
E: in a mini-
graph, only 2
instructions
away from

target

E: jump -2

1

2

3

4

5

6

7

8

1

2

3

4

5

6

3+n

4+n

5+n

6+n

7+n

Figure 2.7: Correcting branch offsets.

outlining brings non-mini-graph branches closer to one another. All updated offsets

will continue to fit in the immediate field of the branch because they are made only

smaller by outlining.

Branches inside mini-graphs are updated twice: once in the binary to reflect their

new outlined location in the code and then again in the MGT to reflect their “re-

inlined” location once the handle has replaced the outlining jump in the instruction

cache. These three cases are shown in Figure 2.7. The first case concerns control

instructions not in mini-graphs. When instructions are removed from the program

main line, the remaining instructions are relatively closer together. In Figure 2.7a,

branch ˝ targets instruction B with an offset of -7. Once mini-graph ADEis annotated

and outlined (Figure 2.7b), its target is only 5 instructions away.

The offset of a relative branch inside a mini-graph needs to be updated to account

for its new static location. In Figure 2.7a, branch E targets instruction B with an

offset of -4. If the outlined code is n instructions from the first outlining jump,

as shown in Figure 2.7b, the branch offset needs to be adjusted by n+1 ; the +1

accounts for the inserted handle, mg12. It is important that the new offset be small

enough to fit in the number of bits allocated for the offset field. If n gets too large,

a closer location for the outlining needs to be found.

Finally, the MGPP (discussed in Section 2.5) essentially reverses this process

46

when it programs the MGT. In this example, instruction E effectively has the PC of

its handle, mg12 which is only 2 instructions away from the target B. The offset of E,

written to the MGT reflects this, as shown in Figure 2.7c.

Mini-graphs and branch prediction. When an outlining jump is first encoun-

tered and resolved it cannot be distinguished from other branches. Consequently,

even though the jump does not persist in the instruction cache, the branch target

buffer (BTB) is updated with the PC and target of the outlining jump, J1. After

the mini-graph handle overwrites this jump, the newly created BTB entry leads to

a branch mis-prediction upon subsequent encounters. To avoid this, the BTB entry

for J1 is cleared at the time that the outlining jump is overwritten in the instruction

cache.

If a mini-graph terminates in a branch, the handle’s PC stands in for the branch’s

PC for the purposes of target and branch prediction. The handle’s PC is in fact

the PC of the original outlining jump, J1. A new BTB entry for the mini-graph

template (at the PC of J1) is created. A BTB entry is never created for the second

outlining jump because it should only be encountered once (unless re-fetched into

the instruction cache).

Other schemes. Annotated outlining can be viewed as a composite of two pre-

vious encoding techniques, outlining [20, 28, 61, 99] and annotating [90]. Classic

outlining removes the mini-graph from the main line of code, which amplifies the

instruction cache capacity. Annotating prepends the aggregate with an annotation,

which offers binary compatibility for non-mini-graph processors that interpret the

handle as a nop. Annotated outlining performs both of these tasks, and as a con-

sequence reaps the benefits of both approaches. Additionally, annotated outlining

amplifies a processor’s fetch bandwidth by replacing the original outlining jump with

the handle itself. Furthermore, because the annotation is the handle, knowledge of

the mini-graph’s interface registers and control over placement of the mini-graph in

the MGT (via MGID choice) can be specified prior to runtime.

47

There are also more explicit ISA extension schemes. One commercial effort to

support application specific ISA extensions is Tensilica’s synthesizable processor,

Xtensa [40, 41]. Programmable Instruction Set Computers (PRISC) [83] augment

the base ISA with a single new instruction which exploits hardware-programmable

functional units (PFU) determined at compile-time. Like MGID in the mini-graph

handle, the PFU instruction specifies an identifier to specify which of 2048 different

PFU configurations is meant. Unlike annotated outlining, the programming informa-

tion for the configurations is found in the data rather than the instruction segment

of the application’s object file. For this reason, a PRISC binary isn’t compatible

with a non-PRISC processor; annotated outlining could possibly be used by PRISC

to support compatibility.

2.3 Mini-Graph Execution

This section describes all the necessary structures and modifications for executing

a mini-graph. The Execution Mini-Graph Table (Execution MGT) is the structure

that holds all mini-graph constituents for a particular program. In the simplest

case, the Execution MGT drives the execution of integer mini-graphs on a single

functional unit. This functional unit is the ALU Pipeline: a multi-cycle functional

unit on which an entire integer mini-graph can be executed. The ALU Pipeline can

optionally be used for executing constituents two-at-a-time. In the more advanced

case, the Execution MGT drives the execution of integer-memory mini-graphs across

multiple function units.

2.3.1 ALU Pipelines

An ALU Pipeline is a multi-cycle functional unit. Figure 2.8 shows an ALU Pipeline

with 3 external register inputs and a single register output. This particular ALU

Pipeline has three ALUs and therefore supports an execution latency of three cycles.

48

(This can be easily extended to the longer ALU Pipelines.) The three inputs to

the ALU Pipeline are latched at each cycle and made available to each ALU in the

pipeline. The outputs of each stage ALU are latched to form a pipeline. Outputs

from previous cycles are the transient values that are be needed as inputs in subse-

quent cycles. These inputs are selected with muxes. The register output of the final

ALU is the register output of the ALU Pipeline. It alone is saved to the register file

and broadcast across the bypass network.

cycle 1 cycle 2 cycle 3

in 1

in 2

out

in 3

global
register/
bypass

Figure 2.8: 3-Stage ALU Pipeline: 3 inputs, 1 output. Inputs are latched for ALUs
to use at cycles 2 and 3.

The ALU Pipeline amplifies execution bandwidth to match the amplification of

all other bandwidths that mini-graphs provide. A 3-stage ALU Pipeline can perform

3 operations per cycle, but has only 1 register/bypass output and 3 inputs, rather

than 3 outputs and 6 inputs.

Early Out. The mini-graph constituent producing the mini-graph’s register

output might not always execute on the final ALU of the ALU Pipeline. This is

because a mini-graph could be shorter than the length of the ALU Pipeline. To

allow mini-graphs to broadcast their register outputs as soon as they are ready, the

ALU Pipeline also has an “early out” network. The output of an ALU Pipeline is

selected between the unlatched outputs of each of the stage ALUs by control signals

49

from the MGT.

Allowing register outputs to exit the pipeline as soon as they are ready also

allows singleton instructions to execute on ALU Pipelines without penalty. A mini-

graph processor can simply replace n standard ALUs with n ALU Pipelines. This

keeps fixed the number of functional units that the scheduler manages as well as the

complexity of the bypass network, while maintaining the number of functional units

available to programs without mini-graphs.

Figure 2.9 shows the signals from the MGT. These signals are comprised of

immediate and control information stored in the MGT. The control information

dynamically drives the execution of each mini-graph on the ALU Pipeline. Control

signals select inputs for each ALU, provide the ALU with the opcode it should

perform during a given cycle, and finally determine which ALU produces the output

of the ALU Pipeline for each cycle. The immediates are used as inputs to certain

ALU operations.

cycle 1 cycle 2 cycle 3

in 1

in 2

out

in 3

global
register/
bypass

immediates and control from MGT

Figure 2.9: Programming the ALU Pipeline

Execution MGT with ALU Pipeline example. An example of execution

on an ALU Pipeline is shown in Figure 2.10, beginning with the definitions of two

mini-graphs, 14 and 20, in Figure 2.10a.

50

bank 0

opcode

 add-

cycle 2 cycle 3 cycle 4 cycle 5

select mg14

read input

registers (r1,r2) for

mg14, send ID 14

to Bank 0.

Bank 0 drives

execution of mg14

on ALU[0]. send ID

14 to Bank 1.

Bank 1 drives

execution of mg14

on ALU[1].

select mg20

read input

registers (r4,r5) for

mg20, send ID 20

to Bank 0

Bank 0 drives

execution of mg20

on ALU[0]. send ID

20 to Bank 1.

Bank 1 drives

execution of mg20

on ALU[1].

 sub-

add r1,r2,r1

addi 4,r1,r1

sub r4,r5,r6

cmplt r4,r6,r6

(a) Original Instructions & Handles

(b) Execution Schedule

cycle 6

output of mg14

leaves ALU

Pipeline, written to

register file (r1)

mg14 r1,r2!r1 mg20 r4,r5!r6

(c) Snapshot of Cycle 4

Execution MGT

(d) Snapshot of Cycle 5

r1

add

14:

20:

Execution MGT

in2in1
immmux2mux1

r2

in2in1

bank 0

opcode

 add-

 sub-

14:

20:

in2in1
immmux2mux1

in2in1

bank 1

opcode

 addi4

cmplt-

a[0]imm
immmux2mux1

a[0]in1

bank 1

opcode

 addi4

cmplt-

a[0]imm
immmux2mux1

a[0]in1

r4

sub

r5

addi4
imm

a[0]

r1

out

1

out

1

out

1

1
out

0

0
out

0

0

Figure 2.10: The ALU Pipeline in Action. For clarity, each cycle shows only utilized
connections from Execution MGT to ALU Pipeline.

Figure 2.10b shows a detailed pipeline diagram for the scheduling, register read,

and execution stages for each instruction. At cycle 2, mg14 is selected for execution

and scheduled. In cycle 3, mg14’s input registers (r1,r2) are read and MGID 12 is sent

to the first bank of the Execution MGT. Concurrently, mg20 is scheduled. In cycle

4, mg14 is in the first stage of execution, executing the first constituent of mg14 on

ALU[0]. Concurrently, mg20’s input registers (r4,r5) are read and MGID 20 is sent

to the first bank of the Execution MGT. Execution proceeds further as described in

Figure 2.10b. The MGT and ALU Pipeline structures for cycles 4 and 5 are depicted

in Figures 2.10c and 2.10d, respectively.

One issue that arises when multiple mini-graphs execute on the same ALU

51

Pipeline is the possibility of “writeback” conflicts. Because mini-graphs do not all

have the same latency, it is possible that multiple mini-graphs executing on the same

ALU Pipeline may produce an output at the same cycle. Unfortunately, the ALU

Pipeline may only output one value per cycle. Although the MGT ultimately de-

termines which ALU’s output leaves the pipeline (notice the out field of the MGT),

avoiding writeback conflicts is the job of the scheduler, and is described in Section

2.4.

Inter-stage connectivity and stage functionality. Each stage of the ALU

Pipeline could access each of three register inputs as well as each output of the

stages prior to it in the pipeline. Furthermore, each stage of the ALU Pipeline could

perform various types of integer operations: arithmetic, logical, shift, etc.. Neither

full inter-stage connectivity nor full stage functionality is strictly necessary.

The top diagram of Figure 2.11 shows a (slightly abstract) ALU pipeline fully

connected with respect to inputs per pipeline stage. (Input replication for each

input mux to each ALU are not shown for simplicity.) This full connectivity may

be expensive to implement, particularly for the latter stages which have ever more

input possibilities due to the increasing number of values produced by earlier pipeline

stages. Table 2.5 shows the rates of use for each connection. Input 1 is used in ALU[0]

(the first stage of the ALU Pipeline) by 94% of all mini-graphs, and in ALU[1] by

13% of all mini-graphs. The final two stages, however, use Input 1 less than 3% of

the time each. This is in part due to the fact that fewer mini-graphs execute on these

final stages and in part because latter constituents tend to depend on constituents

prior to them.

Integer mini-graphs of length 4-instructions generate an average coverage rate

of 14%. If the target ALU Pipeline does not support each input connection, fewer

mini-graphs are eligible for selection. However, by removing rarely used connections,

coverage is not as affected. The bottom of Figure 2.11 shows the ALU Pipeline with

5 fewer input connections; the connections with usage rates lower than 3% (shown

52

in 1
in 2
in 3

ALU[0] ALU[1] ALU[2] ALU[3]

in2_A2

in3_A2

A0_A2

A1_A2
out

in3_A3

A1_A3

A2_A3

in1_A0

in2_A0

in1_A1

in2_A1

in3_A1

A0_A1

in1_A3in1_A2

in3_A0

in2_A3

A0_A3

in 1
in 2
in 3

ALU[0] ALU[1] ALU[2] ALU[3]

in2_A2

in3_A2

A0_A2

A1_A2
out

in3_A3

A1_A3

A2_A3

in1_A0

in2_A0

in1_A1

in2_A1

in3_A1

A0_A1

Figure 2.11: Full (top) and Reduced (bottom) Inter-Stage Connectivity within the
ALU Pipeline. (top) Every pipeline stage has every possible input available to it.
(bottom) Connections used for fewer than 3% of mini-graphs are no longer supported.

in bold in Table 2.5) are removed. Primarily, inputs to the final stages of the ALU

Pipeline — exactly those with the most number of input sources — are pruned. The

resulting coverage is still 13.5%, just down half an absolute percent from the original

coverage rate of 14%.

Of the many types of integer operations (arithmetic, logical, shift, etc.), some are

more difficult than others to complete in a single cycle. Variable shift operations,

for example, can take multiple cycles in modern processors [52]. The ALU Pipeline

does not need to be built to support all forms of integer operations at all stages

of the pipeline. This is illustrated in a survey of 4-instruction integer mini-graphs

(which run exclusively on 4-stage ALU Pipelines) as shown in Table 2.6. Arithmetic

operations (spread across all 4 stages of the ALU Pipeline) account for 56% of all

53

Input Source ALU[0] ALU[1] ALU[2] ALU[3]
input 1 93.6 % 12.7% 2.7% 1.0%
input 2 31.7 % 37.2% 4.2% 2.3%
input 3 0.1% 16.1% 5.4% 3.7%
ALU[0] — 93.2% 8.8% 0.8%
ALU[1] — — 26.6% 6.0%
ALU[2] — — — 14.1%

Table 2.5: Input Connectivity Statistics. Average rate of how often each input
connection is used across all chosen 4-instruction integer mini-graphs only. For ex-
ample, 31.7% of all mini-graphs use input 2 in the first stage of the ALU Pipeline.
Connections used for fewer than 3% of mini-graphs shown in bold.

instruction type ALU[0] ALU[1] ALU[2] ALU[3]
arithmetic 25.7 % 21.8% 5.5% 2.8%

logical 11.0 % 15.8% 4.9% 1.8%
shift 4.7 % 3.9% 1.6% 0.5%

Table 2.6: ALU Instruction Distribution. Rates of arithmetic, logical, and shift
instructions run across each of 4 ALUs in a 4-long ALU Pipeline. Averages across
78 benchmarks for 4-instruction integer mini-graphs only.

54

shift operations allowed in
all first 3 first 2 first only none

ALU[0]-ALU[3] ALU[0]-ALU[2] ALU[0]-ALU[1] ALU[0] none
14.0% 14.0% 13.3% 13.3% 12.0%

Table 2.7: Coverage Variation and Shift Operations. Coverage rates with varying
degrees of support for shifts throughout the ALU Pipeline. Averages across 78
benchmarks for 4-instruction integer mini-graphs only.

integer operations. Logical operations account for 34% of all integer operations.

Shift operations account for 11%. As shown in Table 2.6, because most mini-graphs

are 2-instruction sequences, fewer operations (of any kind) occur in the final two

stages of the ALU Pipeline.

It is possible to design the ALU Pipeline such that some or all stages do not

support shift operations. Table 2.7 shows the coverage degradation associated with

supporting shifts in fewer and fewer ALU Pipeline stages. When shift operations

are prohibited from occurring in the final stage of the ALU Pipeline, coverage is

unaffected. When shifts are unsupported entirely, coverage decreases from 14.0% to

just 12.0%. The shifts examined here are generalized barrel shifts. Another possible

compromise would be to support only small constant shifts.

Extensive exploration of reduced connectivity and stage functionality have been

studied previously [21, 111] and is outside the scope of this dissertation. The re-

mainder of this dissertation assumes full connectivity and stage functionality of the

ALU Pipeline.

Superscalar ALU Pipelines. A superscalar ALU Pipeline would be possible,

but would provide little benefit, because the integer components of mini-graphs as

constrained have effectively no ILP. Even though mini-graphs technically do not

require data dependences between constituents, mini-graphs with 3 register inputs

and a single register output are most often—75% of the time—dependent chains of

instructions. And in the 25% of cases where there are independent constituents,

these are typically independent by virtue of a single store or branch. (Instructions

55

that have no register outputs tend to be more “promiscuous” in their mini-graph

participation. They can be paired with any existing mini-graph without increasing

the number of outputs.) These instructions are not executed on the ALU Pipeline in

the first place and could not benefit from it being made superscalar. Other aggregate

studies [21, 23] have needed to relax the register input and output constraints in order

to exploit their proposed superscalar functional units.

2.3.2 Interlock-collapsing ALU Pipelines

A mini-graph processor’s strength is its bandwidth and capacity amplification. That

said, mini-graphs can also exploit execution latency reduction. Consider, for exam-

ple, a four-instruction integer mini-graph. Ordinarily, each constituent requires one

cycle for execution; total execution time is 4 cycles. If this mini-graph could execute

on hardware that could perform two operations in a single cycle, total execution time

would be 2 cycles instead. This mini-graph would not only amplify bandwidth and

capacity, offering “four for the price of one,” but it would also compress the height

of the dataflow graph of this path by two cycles each time it is encountered.

There are many techniques for aggregate latency reduction [65, 83, 91, 112].

Although none of these techniques are fundamentally incompatible with mini-graph

processing, those that use static (i.e., non-reconfigurable) datapaths are a better fit

for mini-graphs. The reason is as follows. In order to maximize amplification, mini-

graphs support many different mini-graph templates which regularly co-occur with

one another in the pipeline. A mini-graph processor regularly issues two mini-graphs

per cycle. At this rate, it would be difficult to tolerate a reconfiguration penalty for

each mini-graph. An alternative to supporting reconfigurable hardware is to support

pair-wise stage collapsing in the ALU Pipeline. Consecutive ALU Pipeline stages

are fused into a single cycle of execution. Unlike reconfigurable schemes, the ALU

Pipeline’s control is programmed by the MGT with no penalty.

Example. Figure 2.12 illustrates an example. Mini-graphs are shown in Figure

56

opcode

 add-

cycle 2 cycle 3 cycle 4 cycle 5

select mg14

read input

registers (r1,r2) for

mg14, send ID 14

to Bank 0.

Bank 0 drives

execution of mg14

on ALU[0].

select mg20

read input

registers (r4,r5) for

mg20, send ID 20

to Bank 0

Bank 0 drives

execution of mg20

on ALU[0]. send ID

20 to Bank 1.

Bank 1 drives

execution of mg20

on load unit.

 add-

(a) Original Instructions & Handle

(b) Execution Schedule

cycle 6

output of mg14

leaves ALU

Pipeline, written to

register file (r1)

(c) Snapshot of Cycle 4

14:

20:

Execution MGT

in2in1
immmux2mux1

in2in1

opcode

 addi4a[0]imm
immmux2mux1

r1

add

r2

addi4
imm

a[0]
r1

out

out

1

1

add r1,r2,r1

addi 4,r1,r1

add r4,r5,r6

load 4(r6) r6
mg14 r1,r2!r1 mg20 r4,r5!r6

exploits latency reduction does not exploit latency reduction

bank 0

-
opcode

load4

-

immmux2mux1

-a[0]
opcodeimmmux2mux1 out

1

bank 1

-

Figure 2.12: MGT support for latency reduction applied to all mini-graphs.

57

2.12a. Hypothetically, mini-graph mg14—two add instructions—does exploit latency

reduction, whereas the mini-graph mg20—an add-load—does not. An example ex-

ecution schedule is shown in Figure 2.12b.

The layout of the MGT is shown in Figure 2.12c, which depicts the program-

ming of the ALU Pipeline at cycle 4. The MGT supports interlock-collapsing ALU

Pipelines by doubling each bank and storing in a single bank the information needed

to execute two instructions. This maintains the one-port-per-bank invariant and

supports the execution of two instructions per cycle. Mini-graph entries eligible for

latency reduction (e.g., mg14) take up half as many banks as they previously did.

In cases where an instruction cannot exploit latency reduction (e.g., mg20), the sec-

ond half of the bank entry remains empty. Execution of mg20 proceeds as it did

previously: one constituent per cycle and per bank.

Doubling the width of every MGT bank is expensive, but potentially justifiable,

given the performance benefit of 2-to-1 collapsing over no collapsing and the preva-

lence of mini-graphs with 2 integer operations (recall Figure 2.4). Tripling the width

of each MGT bank to support 3-to-1 collapsing is probably not justified, because

mini-graphs with 3 integer operations are less frequent and only a subset of these

are comprised of three operations that could be executed in a single cycle. Pair-

wise (2-to-1) collapsing is a good cost/benefit compromise for supporting latency

reduction.

ALU Pipelines can support pair-wise latency reduction in three ways. First, like

CCA graphs [23] which leverage forward bypassing, the ALU Pipeline can exploit the

lack of high-latency global bypass. Because there is only local/point-to-point bypass

between ALU pipeline stages, values travel only short distances. A similar approach

is seen in Intel’s macro fusion [72, 102] which pairs a test or compare instruction with

a branch on a modified branch unit that can execute both instructions in a single

cycle. If leveraging forward bypassing allows two ALU instructions of any kind to

execute in one cycle, then every mini-graph with two back-to-back ALU instructions

58

can be executed in one fewer cycles.

The impact of a latency reduction technique is measured in an alternative form

of coverage. Whereas amplification coverage measures the number of dynamic

instructions removed from a program’s execution (dynamic instructions removed

÷ total dynamic instructions), latency reduction coverage measures the num-

ber of cycles removed from a program’s execution (dynamic cycles removed ÷

total dynamic instructions). In the case of a simple pair-wise collapsing scheme,

the average latency reduction coverage for integer-memory mini-graphs with up

to four integer operations is approximately 13.7%. In other words, 13.7% of total

dynamic program instructions experience a 1 cycle reduction in execution time.

If the lack of global bypassing is not sufficient to support pair-wise collapsing,

other forms of 2-to-1 latency reduction are possible. ALU Pipelines can pair ALU

operations with fast, simple logical operations and execute them in a single cycle, a la

CCA graphs [23]. Because simple logical operations take one or two logic delays, they

can be performed in the same cycle prior to arithmetic operations. ALU Pipelines

can be constructed in such a way to support pairs of operations (one shorter, one

longer) in a single cycle. The coverage of logical/arithmetic pairs is 5.9%. This

coverage includes pairs occurring in any order.

Finally, if logical/arithmetic pairs can be executed in a single cycle, then arith-

metic/arithmetic pairs, too, can be executed in a single cycle via carry-save addition,

a derivative of the aforementioned logical-ALU pairing. This technique was initially

proposed with interlock-collapsing ALUs [65] and has been subsequently employed

by others, such as RENO [81]. By calculating partial sum and partial carry bits in

parallel, carry-save addition converts two adds to an XOR (partial sum) and parallel

AND--OR (partial carry) followed by an add. In other words, it can add three numbers

in a single cycle. The instances of two arithmetic operations appearing back-to-back

in mini-graphs is somewhat limited, offering a coverage of 4.3%.

59

Combining the coverage rates of both arithmetic/arithmetic and logi-

cal/arithmetic pairs yields a total latency reduction coverage rate of 10.2%,

compared to the 13.7% coverage rate of a generic 2-to-1 collapsing mechanism.

Given that approximately 11% of integer mini-graph constituents are shifts and

34% are logical operations (see Table 2.6) it is likely that at least some of this

coverage gap could be bridged by supporting the execution of two logical operations

in a single cycle. Pairs incorporating generalized shifts would be more difficult to

execute in one cycle.

For all the latency reduction coverage estimates, it is important to note two

things. First, coverage rates for latency reduction are much more likely to translate

directly to performance improvement than mini-graph coverage for amplification.

This is because the chances of latency reduction shortening the dataflow height of

a program are quite high. Second, these coverage numbers assume that the selec-

tion algorithm knows nothing of any special hardware that the mini-graph processor

might have. Were an ALU Pipeline to support a particular form of latency reduc-

tion, coverage would likely improve by adjusting the selection algorithm to favor the

coverage of these combinations.

2.3.3 Execution on multiple functional units

Thus far, this section has described the support of integer mini-graphs that can be

executed entirely on ALU Pipelines. Integer-memory mini-graphs contain instruc-

tions that execute on ALU Pipelines, as well as load, store, and branch functional

units. Multiple functional units are essentially unavoidable for integer-memory mini-

graphs; incorporating memory execution into an ALU Pipeline would be prohibitively

complicated. Supporting integer-memory mini-graphs requires several changes to a

mini-graph processor. In addition to expanding the Execution MGT to accommo-

date for more cycles of constituent execution, these changes include support for

coordinating external and internal values of the mini-graph across functional units.

60

ALU

Pipeline

Store

Unit

(a) Original

Instructions

subi r4, 2, r1

store r4 0(r3)

add r1, r2, r4

(d) Internal Dataflow (e) Functional Unit Dataflow

r1 r2r3

St

+

—

r1

r4

r1 r2r3

r1

r4

mg

(c) External Dataflow

r3 r1 r2

r1

(b) Mini-Graph Handle

mg 6 r1,r2,r3 ! r1

Figure 2.13: Internal and External Value Communication

External value coordination. External values are those which serve as register

inputs to the mini-graph. Figure 2.13 illustrates, beginning with three constituents

in Figure 2.13a and their corresponding mini-graph handle in Figure 2.13b. The

external dataflow of the mini-graph is shown in Figure 2.13c, and the dataflow that

occurs across the multiple functional units is shown in Figure 2.13e. When mini-

graph execution occurs across functional units, not all register inputs are used at

the same time. The mini-graph in this figure has three inputs (r1, r2, r3); only two

are used by the ALU Pipeline. The third is not needed for 2 more cycles, and it is

needed by the store unit.

In this example, the mini-graph’s third register input can be read at the first

cycle of execution of the mini-graph and latched for two cycles, or the register read

can be delayed two cycles until just before the input is needed. A mini-graph pro-

cessor takes the former approach. Traditionally, register (or bypass) inputs to an

instruction are acquired at schedule. This invariant is maintained for a mini-graph

processor’s scheduler. Instead of complicating both the Scheduling MGT and the

scheduler to support delayed register/bypass reads, a mini-graph processor places

the responsibility with the Execution MGT. When execution begins on a non-initial

functional unit, the MGT selects the correct register input from a series of latches

just prior to that functional unit.

A mini-graph processor acquires all necessary inputs for a mini-graph at schedule.

61

Each mini-graph issues to the slot associated with the first functional unit on which

the mini-graph executes; register ports and bypass inputs to this functional unit are

bound to this issue slot as they are with a traditional processor. The mini-graph

scheduler makes one register input available to all other mini-graph functional units

via a single register read port exclusively dedicated to the single issue slot of the

integer-memory mini-graph. This input is broadcast to the four relevant functional

units. Mini-graphs requiring multiple external inputs to non-initial functional units

are not supported.

Figure 2.14 illustrates. The table on the left shows the possible mini-graph con-

figurations (originally shown in Figure 2.4) sorted according to constituents. The

physical layout of the inputs to the four functional units are shown on the right at

approximately the same height as the constituents on the left. All new structures

and wires are outlined in dashed lines. If the functional unit is the first on which

the mini-graph executes, the register input is simply the “standard input” from the

register file. At the top of the figure lies the mini-graph dedicated external latched

input bus from the register file. This input (coming from the register file or the

global bypass) is selected by the scheduler and made available to all mini-graph

functional units. Each functional unit latches this input for the number of cycles

necessary to support all the mini-graphs shown on the right of the figure. Requiring

each functional unit to latch the input allows there to be a single value broadcast

to all four functional units per cycle. If, instead, the value were latched globally,

multiple latched values would be broadcast.

The diagram for the load and store units are merged as they happen to both occur

in only the first, second, third, or fourth cycle of execution. In these three cases,

one, two, and three latches are required to hold the inputs until execution begins on

the store unit. These latches are shown in Figure 2.14 labeled “mg-external input.”

Support for inputs to the ALU Pipeline and the branch unit are similar. Because

mini-graph execution only begins on the ALU Pipeline at cycle one or four, the

62

mg-external

input

mg-external

input

from
mg

register
file slot

Load/Store

Unit Inputs

standard

inputfrom
register

file

s
lo

t
2

s
lo

t
0

 (
lo

a
d

 u
n

it
)

s
lo

t
1

 (
A

L
U

 P
ip

e
lin

e
)

from

Scheduler

loads

stores

Branch

ALU Pipeline

1 2 3 4 5 6 7

int1 int2 int3
int1 int2
int1

(BR)
(BR)

(BR)
BR

(a) Possible memory locations in

integer-memory mini-graphs

st
st

st
st

int1 int2 - -
int1

(BR)

- - (BR)

- -
- -
- -

int1
int1 int2

BR
(BR)

(BR)

int1 int2 int3 - - (BR)

- - int2int1 int3 (BR)

ld
ld

ld
ld
ld

ld

ld

int2 int3 (BR)
int2 int3 st

int2

int2 - -
int2

(BR)

(BR)
(BR)

BR

(BR)
st
ld

- -ld (BR)
(BR)st

- -ld

- -ld int2
(BR)

(BR)

int2 int3 ld - - (BR)

- -ld int2 int3 (BR)

int1
int1
int1

int1
int1

int1

int1
int1

int1

int1
int1

int1

int1 int2 int3

int1 int2 int3 st

int1 int2

int1 int2 - -

int1 int2

int1

int1

int1

st

ld

- -ld

st

st

- -ld

- -ld

- -ld
int1
int1 int2

int1 int2 int3 ld - -
- -ld int2int1 int3

BR

BR

BR

BR

BR
BR

BR

BR

BR

BR

BR
BR

BR
BR

P
C

 +
 4

from
register

file

from
register

file

MG-dedicated

external latched

input bus

ALU

Pipeline

Inputs

Branch

Input

standard

input

mg-external

input

standard

input

Branch

PC

from

MGT

added to support

mini-graph

processing

Figure 2.14: External Value Coordination.

63

mg-external input is only latched three times to support the latter case. Branches

can occur anywhere from the second to the seventh cycle of execution and therefore

require one to six latches. In addition to a register input, the branch also requires

the PC+4 input. This is also latched one to six cycles. Finally, both the branch

unit and both memory units may require an immediate for offsets in their address

calculations. The immediate value comes either from the reservation station or the

Execution MGT, depending on whether the load is a mini-graph participant or not;

it does not come from the register file and requires no latching.

Internal value coordination. Transient (or mini-graph internal) values pro-

duced by one functional unit often feed constituents of the same mini-graph executing

on different functional units. Because the scheduler reserves the global result bus

for any value leaving a functional unit (see Section 2.4.1), these values are auto-

matically broadcast across the existing global bypass. The scheduler cannot select

this transient value from the global bypass as it normally would for bypassed values,

however, because the value has no register name associated with it, nor does the

scheduler know the internal register dataflow of the mini-graph. Instead, control

from the Execution MGT selects this direct bypass input to the functional unit.

In some cases, the transient value is produced in a particular cycle, but not

actually needed until some number of cycles later. For example, the transient value

originally associated with r4 in Figure 2.13 is produced by the first instruction of the

mini-graph and broadcast immediately but the store unit does not use it until one

cycle later, as shown in Figure 2.13d. The value is latched just before the functional

unit and kept alive until needed.

The complete set of inputs, muxes, and latches for the various functional units

is shown in Figure 2.9. The transient value enters the functional unit from the

existing global bypass via a dedicated “mg-internal input” wire. In the case of the

load/store units, transient values can only come from the ALU Pipeline. This value

is taken off the ALU Pipeline bypass and latched every cycle. The Execution MGT

64

mg-external

input

mg-external

input

from
mg

register
file slot

Load/Store

Unit Inputs

standard

inputfrom
register

file

s
lo

t
2

s
lo

t
0

 (
lo

a
d

 u
n

it
)

s
lo

t
1

 (
A

L
U

 P
ip

e
lin

e
)

from

Scheduler

loads

stores

Branch

ALU Pipeline

1 2 3 4 5 6 7

int1 int2 int3
int1 int2
int1

(BR)
(BR)

(BR)
BR

(a) Possible memory locations in

integer-memory mini-graphs

st
st

st
st

int1 int2 - -
int1

(BR)

- - (BR)

- -
- -
- -

int1
int1 int2

BR
(BR)

(BR)

int1 int2 int3 - - (BR)

- - int2int1 int3 (BR)

ld
ld

ld
ld
ld

ld

ld

int2 int3 (BR)
int2 int3 st

int2

int2 - -
int2

(BR)

(BR)
(BR)

BR

(BR)
st
ld

- -ld (BR)
(BR)st

- -ld

- -ld int2
(BR)

(BR)

int2 int3 ld - - (BR)

- -ld int2 int3 (BR)

int1
int1
int1

int1
int1

int1

int1
int1

int1

int1
int1

int1

int1 int2 int3

int1 int2 int3 st

int1 int2

int1 int2 - -

int1 int2

int1

int1

int1

st

ld

- -ld

st

st

- -ld

- -ld

- -ld
int1
int1 int2

int1 int2 int3 ld - -
- -ld int2int1 int3

BR

BR

BR

BR

BR
BR

BR

BR

BR

BR

BR
BR

BR
BR

P
C

 +
 4

from
register

file

from
register

file

MG-dedicated

external latched

input bus

ALU

Pipeline

Inputs

Branch

Input

standard

input

mg-external

input

standard

input

Branch

PC

from

MGT

from
load

mg-internal

input

mg-

internal

input

from
ALUP

mg-internal

input
from
load

mg-internal

input
from

ALUP

global

bypass

added to support

mini-graph

processing

Figure 2.15: External and Internal Value Coordination.

65

selects both the input source and its delay. The mini-graph processor detailed in this

dissertation has two ALU Pipelines, one dedicated to integer mini-graphs and one

on which integer-memory mini-graphs may also execute. This distinction keeps the

direct bypass from the ALU Pipeline to other functional units from being ambiguous.

Even though there are two ALU Pipelines, only one of them will ever produce the

value needed by the “mg-internal input” latches. The mg-internal input to the ALU

Pipeline need only come from the load unit and does not need to be latched at all.

The mg-internal input to the branch unit can come from either the load unit or the

ALU Pipeline and is latched one to three or one to five cycles, respectively.

2.4 Mini-Graph Scheduling

The scheduler of a mini-graph processor is responsible for three basic tasks. First, it

determines the latency of the register output and reserving a result bus and register

write port at the appropriate cycle. Second, it reserves functional units on which

the mini-graph will execute. Finally, the scheduler coordinates memory instruction

scheduling, including possible load replays. These tasks apply to increasingly more

specific types of mini-graphs. Reserving register ports applies to all mini-graphs. Re-

serving functional units in advance applies to integer-memory mini-graphs, because

they execute on multiple functional units, unlike integer mini-graphs which execute

on ALU Pipelines only. Finally, coordination of memory instructions applies only to

mini-graphs that have memory instructions as constituents.

2.4.1 Reserving Result Busses and Register Write Ports

This dissertation explicitly couples the reservation of an issue slot with the reserva-

tion of both the result bus and and the corresponding register write port. When an

instruction is issued and then executed, the result is broadcast on the result bus and

concurrently sent to the register file to be written. Conventional schedulers schedule

66

register writes for multi-cycle operations by logically maintaining a two-dimensional

reservation bitmap: one dimension represents resources (register ports), the other

time (future cycles). Each cycle, the issuing instructions reserve register write ports

(and result buses) by setting bits in the appropriate subsequent bitmap lines, and

the bitmap advances by one line. Scheduling a three-cycle multiply reserves a write

port three cycles in the future.

The primary difference between a mini-graph and a standard multi-cycle instruc-

tion (e.g., a multiply) is that mini-graphs have varying execution latencies. Whereas

the latency of conventional multi-cycle instructions is hard-wired into the scheduler

based on opcode, the output latency of each mini-graph is calculated by the MGPP

(see Section 2.5) and stored in the Scheduling MGT on a per template basis. Output

latency is read from the Scheduling MGT at dispatch and stored in a field in each

issue queue entry. The scheduling MGT needs one read port per mini-graph that

can be dispatched in a cycle.

Coordinating transient values. An ALU Pipeline may reserve the result bus

for multiple cycles: one for the register output and one for transient values sent

to other functional units. An example of this is seen in the out field of the MGT

entry for mg20 of Figure 2.12c. The first result bus is reserved to pass a transient

value from the ALU Pipeline to the load; the second result bus is reserved for the

mini-graph output.

2.4.2 Reserving Functional Units

The mini-graph scheduler is a single, unified scheduler that schedules both inte-

ger and memory instructions. The scheduler represents functional unit reservations

using a two-dimensional bitmap—functional unit by time. The Scheduling MGT

maintains this bitmap for each mini-graph as it does the result bus/register write

port information. At dispatch, the bitmap is copied from the Scheduling MGT into

the issue queue.

67

In addition to the per-mini-graph reservation bitmaps there is a global reservation

bitmap with the same configuration. The bitmap is implemented as an n− 1 stage

pipeline (or shift register) where n is maximum mini-graph execution latency (in

this dissertation, 7 cycles). Each latch has a number of bits that is equal to the

number of different functional units on which mini-graphs can execute. The mini-

graph scheduler uses the global reservation bitmap to record which units have been

reserved by recently scheduled integer-memory mini-graphs. Functional units are

reserved in two stages corresponding to the first and subsequent functional units of

a mini-graph.

First unit scheduling is the traditional reservation of the first functional unit

needed by a particular mini-graph or the only functional unit needed by a conven-

tional instruction or integer mini-graph. This task is essentially unchanged from the

original behavior of a conventional scheduler except that the scheduler additionally

consults the first stage of the global reservation bitmap to check for reservations

made by previous cycles. The scheduler either incorporates the bitmap into the

usual bid/grant process or broadcasts the bitmap to the issue queue and suppresses

bids from conflicting instructions. The scheduler thus precludes a load from being

issued if an in-flight mini-graph is already scheduled for the load unit in the next

cycle.

The Scheduling MGT contains the first functional unit that each mini-graph will

execute on. This information is copied to the issue queue and used during first

unit scheduling. The first unit needed by an integer-memory mini-graph determines

the scheduling slot into which the mini-graph is issued. The scheduler treats a mini-

graph beginning with a load as a normal load. It, too, cannot be issued if an in-flight

mini-graph is already scheduled for the load unit in the next cycle.

Subsequent unit scheduling is required by integer-memory mini-graphs because

they execute on multiple functional units. To support this, the scheduling MGT

contains a bitmap of the subsequent functional units required by each mini-graph.

68

These also go through a bid/grant process that matches (ANDs) them with the

global reservation pipeline/shift-register. If any mini-graphs are selected, then their

bitmap is ORed into the global reservation bitmap.

Multiple mini-graphs per cycle. A mini-graph processor requires one ALU

Pipeline and one MGT read port for each mini-graph scheduled per cycle. In the

case of integer mini-graphs, scheduling multiple mini-graphs is simple. Each ALU

Pipeline is bound to a single scheduling and writeback slot. Just like multiple ALU

operations, multiple integer mini-graphs are scheduled simultaneously with no pos-

sible resource conflict. The mini-graph processor in this dissertation supports the

scheduling of only a single integer-memory mini-graph per cycle. Scheduling a second

integer-memory mini-graph per cycle achieves a small (approximately 2%) perfor-

mance improvement limited to those benchmarks with high coverage (and presum-

ably already high performance gains). This gain is not enough to justify the added

complexity of supporting downstream simultaneous reservations of functional units

nor the ambiguity introduced in the direct bypass from duplicate functional units

(i.e., ALU Pipelines, load units) for transient values (recall Section 2.3.3).

2.4.3 Coordinating Memory Instructions

Load replays. The MGT implicitly assumes a fixed latency for each instruction.

The latency of a load is assumed to be the time associated with a cache hit. When a

mini-graph load misses in the cache, there are two possible courses of action. Misses

on terminal loads are handled like misses on singleton loads. No mini-graph con-

stituent follows the load, so the scheduler holds (or replays) all waiting instructions

(which may include younger handles) as usual. Misses on interior loads are more

difficult. Since it is not possible to reschedule only the subset of the mini-graph

that depends on the load, the entire mini-graph is replayed. The result is a small

performance penalty.

Memory instruction scheduling. If a mini-graph contains a load instruction,

69

the PC of the handle is used as a proxy for the PC of the memory instruction for all

memory disambiguation and scheduling tasks. Mini-graph handles that contain loads

are scheduled according the same policy used to schedule singleton loads. Memory

scheduling mechanisms like store sets [18]—which minimally synchronize loads and

stores pair-wise—are PC-based and continue to work when loads and stores embed-

ded in mini-graphs are identified by handle PCs. As on interior load misses, the

entire enclosing mini-graph is (squashed and) replayed on a load mis-speculation.

A non-mini-graph scheduler broadcasts tags in order to wake up dependent in-

structions eligible for scheduling in the following cycle. Because stores execute in

a single cycle, a non-mini-graph scheduler couples the broadcast of store tags with

the scheduling of the store. If a store is a non-initial constituent in a mini-graph,

this broadcast is reserved the appropriate number of cycles in the future, extending

the capability of future wakeups from those already supported (e.g., loads) to store

instructions. There is no threat of conflicts with other stores; the future reservation

of the store functional unit already guarantees that no other store instruction needs

the tag bus at that future cycle.

2.5 Mini-Graph Pre-Processing

The Mini-Graph Pre-Processor (MGPP) supports the annotated, outlining mecha-

nism described in Section 2.2. Logically, the MGPP directs “instruction traffic” from

the level two cache to the instruction cache; after leaving the level two cache, in-

structions reside in an instruction buffer awaiting direction. Physically, the MGPP

sits after the instruction decoder, processing decoded instructions. (The decoder

does not need to be replicated.) Most instructions are sent directly to the instruc-

tion cache. Annotated, outlined sequences of mini-graph constituents, however, are

converted into their template form and written to the Execution MGT; a summary

of their resource needs is written to the Scheduling MGT.

70

Instruction scanning. The MGPP scans instructions in their original fetch

order. Until a handle is encountered, all instructions are simply directed from the

instruction buffer to the instruction cache. When a handle is encountered, the MGPP

scans the entire mini-graph. The instruction buffer is large enough to hold the

maximum number of cache lines across which a mini-graph template could span.

(Fetching these cache lines requires no special handling because the fetch mechanism

is agnostic to the presence of mini-graph templates.) Incompatible mini-graphs are

sent to the instruction cache; compatible mini-graphs are compiled into templates

and sent to the MGT.

1. Inspect Handle:

 ID = MGT index

 map register inputs to in0-in2

 note register output

2. Inspect Constituents:

 for each constituent:

 map register inputs to in0-in2 or mg[0]-mg[2]

 map register output for downstream mappings

 note whether register output = mini-graph register output

 note cumulative execution time of mini-graph (so far)

 note functional unit required to execute constituent

3. When all constituents seen:

 output producer = last register mapping to mini-graph output

 send opcode, immediates, & mapped inputs to Execution MGT

 send writeback port and functional unit needs to Scheduling MGT

Figure 2.16: Pseudo-Code for Creating a Mini-Graph Template

Compiling Templates. Mini-graph constituents—as they appear in the anno-

tated, outlined portion of a program binary—are simply regular instructions. The

MGPP converts these instructions into template form before they are placed in the

MGT. The pseudo-code of the conversion process is shown in Figure 2.16.

Figure 2.17 shows an example of the pseudo-code of 2.16. First, the handle is

inspected (see Figure 2.17a). The MGID field has the value 22, so the information

gathered is used to update the MGT entry at index 22. The inputs and output are

recorded for use when the constituents are inspected. The MGPP uses the interface

as detailed by the handle to specify the internal register dataflow of the mini-graph.

The constituent instructions immediately follow the handle. Each constituent is

71

buses

(1-4)

(a) Inspect handle

add r6, r7 ! r6

addi 4, r6 ! r6

cmplt r6,r8 ! r9

mg 22 r6 r7 r8 !r9

(b) Convert constituents into template form for Execution MGT

index

(c) Summarize resource needs for Scheduling MGT

bne r6, 0xA

" !

!

!

!

mg22[0]:

[1]:

[2]:

[3]:

in0 in1 in2 output

22 r9r6 r7 r8

op imm mux1 mux2

add 0 in0 in1

addi 4 imm AP[0]

cmplt 0 AP[1] in2

bne 0xA' AP -

Ld St BrAP

X

Ld StAP

del1

-

-

-

1

del2

-

-

-

-

first fn. unit

(cycle 1)

next units

(cycles 2-4)

APO

X

X

Br

X

WE

X

Figure 2.17: Template Compilation Example

converted to template form, as shown in Figure 2.17b. The external register interface

(made bold in the figure) is specified by the handle; this informs the initial mapping

of register names to input numbers. For example, r6 is mapped to in0. Compiling

the subsequent, internal register dataflow is similar to renaming and can be recorded

on a per-constituent basis. The first instruction of the mini-graph writes to what

was originally named r6; subsequent instructions within the mini-graph read this

input as AP[0]—the value created by the first stage of the ALU Pipeline.

In addition to storing the necessary opcode, immediate, and mux selectors, the

Execution MGT also contains control signals for input delays, del1, del2. These

are used when inputs to the functional units require some number of latching. For

example, the input to the branch uses the transient value generated by the second

constituent of the mini-graph. The mux selector is set to AP and the delay selector

is set to 1. This way, the instruction selects the output of the ALU Pipeline, latched

once, as its input.

The offset of the conditional branch (shown as 0xA’) in the fourth instruction is

made relative to the PC of the handle, according to the rules specified later in this

section. The completed templates with register names removed is shown in 2.17b.

72

In addition to creating templates used to program the Execution MGT, the

MGPP also gathers the necessary information to program the Scheduling MGT,

as shown in Figure 2.17c. For this, the MGPP records the functional units required

by the constituents (AP, Ld, St, or Br), separating first-unit reservations from sub-

sequent unit reservations. The Scheduling MGT reserves the ALU Pipeline at cycle

1. This takes care of the first three cycles of execution. The fourth instruction is

executed on a branch functional unit, which is reserved for cycle 4.

Finally, the result busses for the ALU Pipeline is reserved. This is because ALU

Pipelines have variable execution latency that depend on the instruction sequence

executing on them; all other functional units have fixed latencies. In this example,

a transient value created at cycle 2 that needs to be passed to the branch functional

unit. The output of the mini-graph is created at cycle three. Consequently, the result

bus (indicated as APO, for ALU Pipeline Output) is reserved at cycles 2 and 3. Only

the latter also contains a write enable (WE) signal that indicates the value should be

written to the register file. The transient value lives in the bypass network only. The

write enable signal is used only by the ALU Pipeline and the load unit—the only

two functional units that potentially create values needing to be written back to the

register file.

2.6 Managing the Mini-Graph Table

The MGT is a cache that holds mini-graph templates and scheduling information.

The MGT is indexed by the MGID field of any in-flight mini-graph handle. Like

any other cache, the MGT can map multiple indices to the same entry. Mini-graph

templates can displace one another, and MGT misses can occur during execution.

Filling the MGT. Because entries are written into the MGT infrequently (usu-

ally once per static mini-graph), these writes are not timing critical. As a conse-

quence, a single write port is sufficient for the entire MGT; n MGT banks are written

73

over a period of n cycles. The MGT is a blocking cache; during these n cycles of

write, dispatch is stalled. Like the penalty of executing the first instance of a mini-

graph in outlined form, this stall has no performance impact over the course of an

entire program run.

Handling MGT misses at dispatch. An MGT miss occurs at dispatch when

the scheduling information for a particular mini-graph template is needed, but that

entry has been evicted from the MGT. The mini-graph processor responds by squash-

ing the instructions starting at the handle that triggered the miss. This instruction

is invalidated from the instruction cache. When the processor re-fetches the instruc-

tion at this PC, it loads the annotated, outlined code from the level two cache, and

the MGPP re-programs the MGT with the necessary scheduling and execution infor-

mation. An MGT miss is expensive. In addition to the pipeline flush, the processor

also incurs two back-to-back instruction cache misses in response to fetching the

original outlining jump and then its target, the location of the mini-graph handle

and constituents.

Avoiding MGT misses at execute. It is possible that a template present

at the time of dispatch has been evicted by the time the mini-graph is ready to

be executed. The processor handles the miss as it does in the dispatch case. It

is possible, however, to close this “eviction window” vulnerability and keep MGT

misses isolated at dispatch only. A mini-graph processor can track which mini-graphs

are in flight using a counter-vector that is incremented at dispatch and decremented

at commit. Using this counter, the processor can determine whether an MGT entry

for a mini-graph that happens to be in-flight is about to be evicted. In such cases,

the processor stalls both dispatch and the MGPP until the in-flight instruction has

committed. At this point, the MGPP can evict the template and re-program the

MGT with the information needed by the handle currently stalled at dispatch. When

a pipeline flush occurs, the counter is also cleared to maintain precise state.

Minimizing MGT misses. There are two main ways to reduce the number of

74

MGT misses that occur during the execution of a program. None of these approaches

are required for correctness, but they will help performance.

First, if the software tool used to select mini-graphs knows the size of the MGT, it

can limit the number of mini-graph templates encoded in the binary to the number of

MGT entries; each template has a dedicated MGT entry. If the program in question

contains known phases, MGID assignments can allow non-conflicting templates to

sharing MGT entries. By profiling a program and creating an interference graph

between mini-graphs, static templates known not to conflict (or to rarely conflict)

can be assigned the same MGT entry. This assumes prior knowledge of the MGT

size and the method by which MGIDs are mapped to MGT entries.

The second way to minimize MGT misses is in the organization of the MGT

itself. When evictions and conflicts are anticipated, the MGT—like any cache—can

benefit from set associativity. Specifically, the Scheduling MGT is set-associative.

The Execution MGT can be direct mapped, because it is accessed after the MGT

entry has already been located by the lookup in the Scheduling MGT. The Scheduling

and Execution MGTs act like the tags and data of a serial tag/data cache.

A final approach to minimizing MGT misses is to disable any mini-graph whose

MGID conflicts with an existing MGT entry. With this approach, any mini-graph

with an “overflowed” MGID executes in outlined form. Although outlining injects two

additional jumps into the instruction stream, this penalty is less than the pipeline

flush followed by two instruction cache misses that occur for each MGT miss.

Virtualizing the MGT. MGIDs map handles to templates on a per process

basis. As such, the relationship between MGIDs and the MGT is similar to that of

virtual addresses and a TLB. The MGT mirrors the behavior of the TLB. If the

TLB does not support process ID tags and is therefore flushed on a context switch,

the MGT follows suit. When a program returns from the context switch, the MGT

is re-programmed as each static handle is encountered. If, however, the TLB does

support process ID’s, the MGT utilizes these to support multiple processes.

75

The question of performance remains; inter-thread conflicts in the MGT would

incur MGT misses. As suggested in the previous section, cache performance prob-

lems can be addressed by introducing a low degree of associativity. An extensive

investigation of mini-graph processing in the context of multi-threaded execution is

out of the scope of this dissertation.

2.7 ISA Issues

This dissertation examines mini-graph processing in the context of the Alpha ISA.

Extending mini-graphs to other instruction sets is possible, but may require addi-

tional considerations. This section discusses these potential issues.

CISC instructions. The instructions executed by a Complex Instruction Set

Computer (CISC) are complex instructions comprised of multiple lower-level, oper-

ations. The complex instructions are often referred to as macro-ops, the lower-level

operations as micro-ops. For example, a single CISC macro-op may load a value from

memory, perform some arithmetic or logical operation on the value, and then store

it back into memory. In most implementations of modern CISC processors, the com-

plex instruction is broken into its micro-op components at decode and subsequent

manipulations occur at a micro-op granularity.

Processing mini-graphs in the context of CISC computing is possible on both

a micro-op and macro-op level. First, any group of macro-ops that decode into a

set of micro-ops that would themselves satisfy mini-graph criteria can be outlined

and encoded as mini-graphs in the prescribed manner. “Mini-graphing” macro-ops

applies particularly well to the many macro-ops that are actually comprised of lone

micro-ops.

Second, any single macro-op that decodes into multiple micro-ops can either

wholly or partially be executed as a mini-graph, assuming that it meets mini-graph

criteria. In this way, mini-graph processing provides a more general, programmable

76

implementation of micro-op fusion; micro-ops are fused into mini-graphs after decode

and processed as instruction aggregates with the aid of the MGT. “Mini-graphing”

micro-ops does not require outlining. The MGT could also be hard-wired to support

idioms found at the ISA rather than the program level.

Because the MGPP sits after the decoder already, forming mini-graphs after in-

structions have been split into micro-ops is not unreasonable. Forming mini-graphs

subsequent to decode will not have the same “pinching the pipeline” effect on a

CISC processor that it would have on a RISC processor; CISC instructions already

compress the instruction cache footprint as well as amplify fetch bandwidth. Detail-

ing the subsequent changes required of the encoding scheme are out of the scope of

this dissertation. Fusing micro-ops into single-instruction aggregates has been the

subject of other related research projects [47, 48].

Condition codes. Some ISAs support condition codes, “meta-results” corre-

sponding to the execution of a particular instruction. If an ALU operation results in

a zero or negative value, for example, a condition code can be set. Condition codes

are essentially a second type of instruction output—an implicit register. Mini-graphs

can be made to support condition codes, regardless of whether these codes assume

single or multiple condition “registers.” Supporting condition codes requires atten-

tion when creating the binary, and when renaming and executing the mini-graph.

Converting the binary of an ISA with condition codes respects the “dataflow”

of the condition codes as it does for register or memory values. If a condition code

dependence exists between two instructions, their relative ordering is maintained in

the outlined binary when mini-graphs are formed and anchor positions are found.

This added constraint may further restrict mini-graph formation. However, liveness

analysis can detect which instructions actually have condition code dependences

[63], making it possible to aggressively determine which instruction pairs have actual

condition code dependences and which pairs do not.

77

Unless the condition code is both set and exclusively read inside the same mini-

graph, the condition code itself is renamed. Normally, an instruction’s interactions

with condition codes is implicit in the opcode, but multiple mini-graphs often share

the same designated mini-graph opcode. Naively assuming that all mini-graphs read

and set the condition codes would induce serialization that would be prohibitive

performance-wise. One option is to have multiple designated mini-graph opcodes;

one that does read and set a condition code, and one that does not. Another option

is to dedicate an interface register to specify condition codes. Finally, it is always

possible to simply disallow condition code communication between a mini-graph and

any other instruction.

The condition codes themselves should still be set at a constituent granularity.

This supports intra-mini-graph (i.e., transient) communication of condition codes,

where one constituent reads the condition code of a previous constituent of the

same mini-graph. To identify the actual constituent that sets a particular code, the

processor can replay the instructions in their outlined form.

Predication. Predicated instructions are instructions whose execution is depen-

dent upon a condition, or predicate. Only if the condition is true is the instruction

executed. in partial predication, the predicate is simply the value of one of the existing

registers. In partial predication, the predicate is already encoded in the instruction

as a register input and requires no special handling. Alpha’s conditional moves, for

example, are naturally incorporated into the mini-graphs in this dissertation already.

In full predication, the predicate is either part of a special predicate register file

(e.g., Itanium) or is a condition code (e.g., ARM). In the former case, predicate

registers need to be explicitly encoded in the mini-graph handle just as standard

register inputs are. Supporting condition code predicates is similar to the support

for condition codes previously discussed. However, in cases where every instruction

is predicated, the predicate reads can be made implicit. Aggregation schemes have

been studied in the context of processors that support predication [22]. Finally,

78

predication may be beneficial as it could potentially be leveraged in a mini-graph

framework to guarantee the atomicity of mini-graphs that cross basic block bound-

aries.

SIMD. Single Instruction, Multiple Data (SIMD) is an execution style that

exploits data level parallelism. When an operation needs to be applied multiple

times to many pieces of data (e.g., some computation performed on each pixel of an

image) a SIMD instruction can be used to apply a single instruction to a batch of

inputs. There are many existing examples of SIMD instructions (Intel’s MMX and

SSE, ARM’s NEON, SPARC’s VIS, etc.).

This dissertation details the support of mini-graph processing in the context of

the integer pipeline only. Although some SIMD implementations (Intel’s SSE [49],

and Freescale’s Altivec [35]) support integer execution, the SIMD execution is not

part of the standard integer datapath, usually leveraging a separate register file,

access to memory, etc. So although mini-graphs would be compatible with SIMD

that executes single-cycle operations in theory, in practice, no SIMD is integrated

into the the integer datapath so as to make this a reality. Combining mini-graph

processing and floating-point SIMD instructions would require mini-graph support

to be extended to the floating point pipeline and register file accordingly. While

not impossible, this extension of a mini-graph processor would be non-trivial and is

beyond the scope of this dissertation.

Variable instruction length. Some ISAs encode instructions in a varying

number of bytes. When instructions are fetched from the instruction cache, exact

boundaries of each instruction are not known a priori. If a decoder can handle in-

structions of variable length independent of of mini-graphs, this capability should

not be hindered by the presence of mini-graphs. Furthermore, a processor that

supports variable instruction lengths would also support mini-graph handles of vari-

able lengths. Variable length mini-graph handles would support a more flexible

mini-graph interface. Each template could be expressed by a single unused opcode

79

followed by a longer, dedicated MGID field. More bytes would support more inputs

and outputs. Of course, these capabilities only change the cost/benefit equations;

pros and cons would still need to be weighed before settling on an encoding scheme

in this new context.

Forward Compatibility. Mini-graph encoding relies on the existence of unused

opcodes that identify mini-graphs. Once a processor has committed to supporting

mini-graphs, these dedicated mini-graph opcodes cannot be used to encode new,

non-mini-graph instructions or else mini-graph handles would be mis-interpreted

by new processors. That said, subsequent processors are not required to continue

to support mini-graphs; the dedicated opcodes can once again be interpreted as a

nop, effectively disabling all mini-graphs and reverting to constituent execution in

outlined form.

2.8 Architectural Issues

This dissertation examines mini-graphs in the context a microarchitecture similar

to an unclustered Alpha 21264, specifically one that implements register renaming

using a unified physical register file (PRF) (as opposed to an architectural register

file and a value-based ROB), that has a unified scheduler for integer and memory

operations and a separate scheduler for floating-point operations.

Register renaming style. A processor that performs renaming with an archi-

tectural register file (ARF) and a value-based ROB can both support and benefit

from mini-graph processing. In the context of a PRF, instruction inputs are read

from the PRF at dispatch and outputs are written to the PRF at writeback. In the

context of an ARF, instruction inputs are read from the ROB or ARF at dispatch

and outputs are written to the ROB a writeback and the ARF at commit. As a

consequence, mini-graphs amplify both ROB and ARF read and write bandwidth.

ROB and ARF read bandwidth is amplified at dispatch, ROB write bandwidth at

80

writeback, and ARF write bandwidth at commit. Whereas mini-graphs in the con-

text of a PRF amplify PRF capacity, mini-graphs in the context of an ARF amplify

ROB capacity.

Clustered architectures. A clustered microarchitecture can easily support

mini-graph processing. The steering algorithm operates on handles at it would for

any other singleton instruction. The only caveat is that the cluster to which a mini-

graph is sent have the local resources necessary to execute that mini-graph. For most

mini-graphs, for example, the target cluster needs access to an ALU Pipeline.

Memory models. Because mini-graphs may contain at most one memory in-

struction, supporting mini-graphs is completely orthogonal to the memory model

maintained by the processor. Whether it support sequential, relaxed, or weak con-

sistency, the processor need no extra effort to maintain correctness when executing a

mini-graph binary. The processor simply handles any mini-graph with a load/store

in it as it would any singleton instruction with a load/store in it.

2.9 Summary

There are any number of instructions that might be embedded in mini-graphs. This

dissertation isolates two forms of mini-graphs. Integer mini-graphs are mini-graphs

that contain only single-cycle ALU operations. Integer mini-graphs execute entirely

on ALU Pipelines driven by control from the Execution MGT. A scheduler need only

know the execution length and it can schedule any mini-graph as it would a multi-

cycle operation. Integer mini-graphs require minimal support, but are fewer and

smaller and therefore have less impact, both in terms of resource amplification and

performance. Integer mini-graphs have coverage rates of 14% on average. However,

even these mini-graphs could be used to support limited latency reduction, which

could compensate for some lack of amplification with a non-trivial performance boost.

81

Integer-memory mini-graphs are a superset of integer mini-graphs; integer-

memory mini-graphs may additionally contain memory instructions as well as

control instructions. The execution of integer-memory mini-graphs occurs across

multiple functional units. The integer portion of integer-memory mini-graphs

are executed on ALU Pipelines. Memory and control operations are sent to

existing functional units. The scheduler of a mini-graph processor that can process

integer-memory mini-graphs is modified to make forward reservations of multiple

functional units and result buses/register write ports. Latches are also needed to

store transient values prior to their use by some functional units. For this added

support, integer-memory mini-graphs have greater impact; coverage more than

doubles into the 30-35% range on average.

Several restrictions follow from the desire to process mini-graphs as singleton

instructions; each ensures that mini-graphs have minimal impact on the existing mi-

croarchitecture, ISA, and the operating system. First, a mini-graph has the register

interface of a singleton RISC instruction (up to three inputs, one output); this allows

a mini-graph to be processed on the existing mechanisms that coordinate register

renaming, scheduling, bypassing, and writeback. Integer-memory mini-graphs are

constrained to have at most one memory reference and one control transfer. This pre-

serves the processor’s instruction-level handling of memory and control operations,

as well as memory-related exception handling. To preserve atomicity, mini-graph

constituents cannot cross basic block boundaries. Control instructions are allowed

in integer-memory mini-graphs, but only in the terminal position.

Mini-graphs use an encoding scheme called annotated outlining, which supports

functional compatibility on non mini-graph processors and across different mini-

graph processor implementations. Annotated outlining also enables instruction cache

capacity and fetch bandwidth amplification on mini-graph processors.

82

Chapter 3

Mini-Graph Selection

This chapter describes and evaluates techniques for selecting mini-graphs. The chap-

ter begins by introducing several techniques for maximizing coverage. The goal of

maximizing coverage is reasonable, because the greater the coverage—the more dy-

namic instructions that are embedded into mini-graphs—the more impact mini-graph

processing can make. A brief evaluation of the coverage-maximizing algorithm ex-

poses a potential performance problem associated with mini-graph processing called

serialization. Serialization is the introduction of an artificial dependence between

two instructions by virtue of being placed in a mini-graph. This dependence can

delay the execution of instructions found within a mini-graph, making them execute

later than they normally do in singleton (i.e., non-mini-graph) form.

The benefit of mini-graph processing is capacity and bandwidth amplification—a

second-order performance effect, but the cost of serialization is increased latency—a

first-order performance effect. As a result, serialization can degrade IPC, even to

the point of overwhelming the benefits of mini-graph processing. Aggressive selection

schemes that maximize amplification produce high amplification rates, but—due to

serialization—cannot use this amplification to simulate a commensurate increase in

physical resources without great IPC penalties. Conservative selection schemes avoid

serialization by static analysis, but produce only half the amplification rates of their

83

aggressive counterparts. This prohibits using mini-graph processing as a replacement

for superscalar width; if there aren’t enough mini-graphs, the amplification does not

match the effect of actually increasing processor resources.

In response to this problem, the second part of the chapter focuses on

serialization-aware mini-graph selection—the exclusion of harmful mini-graphs in

order to maintain robust performance. To reconcile the seemingly conflicting goals

of resource amplification and serialization avoidance, this chapter develops four

schemes that identify and reject mini-graphs with harmful serialization:

• StructNone uses program structure to accept only mini-graphs not subject to

serialization.

• StructBounded uses program structure to accept mini-graphs whose delay can be

qualitatively bounded.

• SlackProfile uses local slack profiles [32] to quantify the delay induced by mini-

graph formation, to estimate whether that delay can be absorbed by the rest

of the program, and to reject mini-graphs whose estimated delay cannot be

absorbed.

• SlackDynamic is a hardware implementation of SlackProfile. It monitors actual

execution to identify and disable mini-graphs that actually suffer from serial-

ization delay and whose delay is actually propagated to consumers.

The most effective of these, SlackProfile, uses local slack profiles to reject mini-

graphs whose estimated delay cannot be absorbed by the rest of the program.

SlackProfile virtually eliminates serialization-induced slowdowns while maintaining

high amplification rates.

The rest of this chapter is as follows. Section 3.1 introduces the basic, coverage-

maximizing mini-graph selection algorithm. Section 3.2 introduces the problem and

84

causes of serialization. Sections 3.3 and 3.4 presents the four serialization-aware selec-

tion algorithms. Section 3.4.3 presents a detailed analysis of all selection algorithms

using an exhaustive limit study. Finally, Section 3.5 discusses the applicability of

these selection policies to aggregate schemes beyond mini-graph processing.

3.1 Basic Coverage Maximizing Selection

Mini-graphs are selected off-line by a software tool (compiler or binary rewriter) that

identifies instruction groups that satisfy mini-graph criteria and then encodes them

into the executable. The goal of the most basic mini-graph selection algorithm is to

maximize dynamic coverage, the percentage of original program dynamic instructions

that are “embedded” in handles and eliminated from the pipeline. Higher coverage

means more resource amplification.

This section describes this basic coverage-maximizing mini-graph selection algo-

rithm, which is a simple two-step process. First, an initial pool of static mini-graph

candidates are identified in the program binary. This step is described in Section

3.1.1. Second, a greedy algorithm selects non-overlapping mini-graph templates from

this initial pool. This step is described in Section 3.1.2. Two improvements to the

basic greedy algorithm are subsequently introduced in Sections 3.1.3 and 3.1.4. Fi-

nally, Section 3.1.5 compares the greedy approach with exhaustive methods.

3.1.1 Mini-Graph Identification

An offline software tool enumerates all legal mini-graphs in a program. The identi-

fication algorithm performs an exhaustive backward search from each instruction in

the program, enumerating all possible legal mini-graphs. Enumeration is exponen-

tial in the number of instructions considered, but since mini-graphs are restricted

to basic-blocks, the number of instructions under consideration at any time is typi-

cally small. This enumerated list is the pool from which the actual mini-graphs are

85

selected.

Although the instructions in a mini-graph are not necessarily contiguous in the

original program, execution semantics do not change when they are collapsed to

a single handle. Each mini-graph needs a legal anchor location around which to

collapse the constituent instructions. Moving constituents to the anchor location

can not result in load/store reordering or register dependence violations [90]. If a

mini-graph contains a control transfer, this is the anchor location.

G: bne r3, K

C: addi r4, -1, r4

B: addi zero, 4, r4

G: bne r3, K

F: and r3,15,r3

G: bne r3, K

C: addi r4, -1, r4

E: and r2,r4,r4 G: bne r3, K

E: and r2,r4,r4

C: addi r4, -1, r4

B: addi zero, 4, r4

A: load r2,0(r1)

B: addi zero, 4, r4

C: addi r4, -1, r4

C: addi r4, -1, r4

D: shift r2,24,r3

E: and r2,r4,r4

B: addi zero, 4, r4

C: addi r4, -1, r4

D: shift r2,24,r3D: shift r2,24,r3

F: and r3,15,r3

A: load r2,0(r1) F: and r3,15,r3

G: bne r3, K

(a) Static Instructions (b) Possible mini-graphs with legal anchor options

B: addi zero, 4, r4

C: addi r4, -1, r4

D: shift r2,24,r3

E: and r2,r4,r4

F: and r3,15,r3

G: bne r3, K

G: bne r3, K

B: addi zero, 4, r4

C: addi r4, -1, r4

E: and r2,r4,r4E: and r2,r4,r4

F: and r3,15,r3

G: bne r3, K

G: bne r3, K

G: bne r3, K

G: bne r3, K

(d) Selected mini-graphs

G: bne r3, K

B: addi zero, 4, r4

C: addi r4, -1, r4

E: and r2,r4,r4

F: and r3,15,r3
D: shift r2,24,r3

(c) Possible mini-graphs without legal anchor options

Figure 3.1: Mini-Graph Identification. (a) 7-instruction basic block from SPEC
benchmark eon. List of mini-graphs with legal (b) and illegal (c) anchor positions.
(d) Mini-graphs chosen with greedy selection algorithm.

Identification example. Figure 3.1 shows an example of mini-graph identifica-

tion. Figure 3.1a shows a 7-instruction basic block from the SPEC benchmark eon.

Of this basic block, an exhaustive search identifies 14 possible mini-graphs. Of these,

9 are “legal” in that they can be moved to a single static location that maintains con-

trol flow and creates no register dependence violations (see Figure 3.1b). (Because

this basic block contains only one load, load/store reordering is not a concern.)

The other five mini-graphs (shown in Figure 3.1c) are “illegal” because they create

a register dependence violation. For example, the first mini-graph of Figure 3.1c,

AG, consists of a load and a branch. In order to maintain the original control flow,

86

instruction A (the load) should be moved past instructions B-F. This move violates

the r2 register dependence between instruction A and its consumers D and E.

It is possible that some register dependence violations occur as a result of the

register name assignment and are not due to an actual dependence violation. For

example, instructions C and E both write to register r4. As a result, moving instruc-

tion C below instruction E creates a register naming violation that simply does not

occur if instruction C had instead been assigned a different output register, say r5.

In such cases, changing the register assignment does solve this violation. In practice,

however, this scenario is rare. In fact, the real reason instruction C cannot be moved

past instruction E is because E depends on C: r4 is also an input to E. Of the five

illegal examples shown in Figure 3.1c, none of them are made legal by changing the

register names. Due to the infrequency of this scenario, this optimization is not

further explored. In the context of an ISA with fewer register names available, such

a study might prove more worthwhile.

3.1.2 Greedy Selection Algorithm

Once all possible, legal mini-graphs have been identified, mini-graph selection begins.

Among the benchmarks studied in this dissertation, mini-graph identification pro-

duces a candidate pool of anywhere from thousands to tens of thousands of possible

mini-graphs per program and anywhere from tens to hundreds of possible mini-

graphs per basic block. For performance reasons, not all of the mini-graphs in the

candidate pool are encoded in the binary. Mini-graphs dynamically populate a fixed-

size structure, the MGT. If more mini-graphs are chosen than there are entries in

the MGT, mini-graphs share MGT entries, which potentially leads to MGT conflicts

at runtime. An MGT miss results in a pipeline flush followed by two consecutive

instruction cache misses. This event does not affect performance if it occurs one

time per static mini-graph, but it does affect performance if it occurs one time per

87

dynamic mini-graph. One way to minimize MGT misses is to constrain the mini-

graph selection algorithm to choose only as many mini-graph templates as can fit

in the MGT. This requires prior knowledge of the MGT capacity. A simple, greedy

algorithm selects the most beneficial mini-graphs until the MGT budget is reached.

MGT entry sharing. It is also possible to select more mini-graphs than there

are MGT entries and coordinate MGT entry sharing with no performance penalty.

This is done by leveraging profiling information about a program’s behavior. If

two mini-graphs occur within different phases of the same program, they can use the

same MGT entry for their respective program phases without performance-hindering

conflicts in the MGT. This assumes prior knowledge of both the MGT size and

the method by which MGIDs are mapped to MGT entries. The performance data

shown throughout the dissertation assume a knowledge of the MGT capacity but

do not exploit entry sharing techniques as they were found to offer limited coverage

improvements in practice. (Under a constrained MGT budget, the most beneficial

mini-graphs are those which occur so frequently throughout the program that sharing

an MGT entry with much less frequent mini-graphs has little impact.)

add r1, r2 ! r3

addi r3, 4 ! r1

cmplt r1,r3 !r4

bne r4, 0xA

add r1, r2 ! r3

addi r3, 4 ! r1

Name

add r1, r2 ! r3

addi r3, 4 ! r1

cmplt r1,r3 !r4

Address Definition

A

B

C

D

...

X

Y

Z

0x04

0x08

0x12

0x16

...

0x60

0x64

0x68

bne r4, 0xA

...

add r6, r7 ! r8

addi r8, 4 ! r8

cmplt r6,r8 ! r9

mg1 (AB) mg2 (ABC) mg3 (ABCD)

(not all legal mini-graphs shown)

f
100

75

add r1, r2 ! r3

addi r3, 4 ! r1

cmplt r1,r3 !r4

add r6, r7 ! r8

addi r8, 4 ! r8

cmplt r6,r8 ! r9

mg4 (XYZ)

Figure 3.2: Static instructions and their mini-graphs. f indicates frequency.

A simplified starting point of the mini-graph selection algorithm is is illustrated

in Figure 3.2; inspection of the static instructions A-Z (left) identifies four possible

mini-graphs mg1-mg4 (right). The goal of the basic, greedy selection algorithm is to

maximize dynamic coverage, the amplification benefit offered by each mini-graph.

88

The algorithm proceeds iteratively, selecting mini-graphs until the candidate pool

is empty or the MGT budget is reached, whichever comes first. Each iteration has

two simple steps, as shown in the pseudo-code at the top of Figure 3.3. Step 1 is to

choose the mini-graph from the candidate pool with the largest coverage. Step 2 is

to remove any mini-graphs with shared constituents from the selection pool.

- -

mg4 (XYZ) 150

Start State

candidate pool:

mg1 (AB)

mg2 (ABC)

coverage:

100

200

After First Iteration

total coverage for 1 entry

MGT budget = 300

!

while (candidate pool not empty & budget not exceeded)

 1. Choose M, mini-graph with largest coverage

 2. Remove all mini-graphs overlapping with M from candidate pool

mg3 (ABCD) 300

chosen mgs: coverage:

mg3 (ABCD) 300

chosen mgs: coverage:

mg4 (XYZ) 150

candidate pool: coverage:

After Second Iteration!

mg3 (ABCD) 300

chosen mgs: coverage:

- -

candidate pool: coverage:

mg4 (XYZ) 150

total coverage for 2+ entry

MGT budget = 450

1. Choose mg3

2. Remove mg1, mg2

1. Choose mg4

2. —

Stop.
(pool empty)

Example:

Figure 3.3: Greedy selection algorithm. Pseudo-code (top) and example (bottom).

Estimating coverage. Coverage can be approximated as (n − 1) ∗ f , where n

is its size in instructions and f is its execution frequency. A basic-block frequency

profile approximates f ; frequencies of each static instruction in the current example

are indicated in Figure 3.2. For example, mg3, with a size of 4 and a frequency of

100, has a coverage score of 300. The smaller, less frequently occurring mg4 has a

coverage score of only 150.

Removing overlapping mini-graphs. Once a mini-graph is selected, any

mini-graphs with shared constituents are removed from the selection pool. Allow-

ing a single static instruction to occur in two distinct mini-graphs duplicates the

instruction from the original program. On the one hand, instruction duplication

89

potentially allows more instructions to participate in mini-graphs. If an instruction

has two consumers and is duplicated and placed in two mini-graphs—one with each

consumer—that instruction no longer requires an output register. As a consequence,

another constituent that does have a register output can be included in the mini-

graph. An upper bound on the increased coverage offered by replication is to allow

mini-graphs to have 2 register outputs (one output is assumed to be made entirely

transient due to replication). The coverage improvement is at most 5% (see Format

C in Table 2.2 of Section 2.1). On the other hand, duplicating instructions actually

increases the operation count of the program. Even if the execution bandwidth am-

plification offered by ALU Pipelines could mitigate this increased operation count,

instruction duplication runs contrary to the goals of mini-graph processing and has

ominous energy implications.

A working example of the greedy selection algorithm is shown at the bottom of

Figure 3.3. The start state shows the initial candidate pool with each mini-graph’s

coverage score. In the first iteration, mg3 is selected and the overlapping mini-graphs,

mg1 and mg2 are removed from the selection pool. At this point, total coverage is

300. If there were only room for a single mini-graph in the MGT, this would be the

final coverage score. In the second iteration, the final mini-graph, mg4 is selected,

yielding a final coverage score of 450.

3.1.3 Template Sharing

The basic, greedy algorithm presented in the previous section yields high coverage

rates when the MGT budget is large. When the MGT budget is small, however,

the algorithm shows room for improvement. The greedy algorithm assigns a single

static mini-graph to each MGT entry. One way to maximize the utility of each MGT

entry is to explicitly coordinate the sharing of the same mini-graph template across

multiple static mini-graphs.

90

Name

add r1, r2 ! r3

addi r3, 4 ! r1

cmplt r1,r3 !r4

Address Definition

A

B

C

D

...

X

Y

Z

0x04

0x08

0x12

0x16

...

0x60

0x64

0x68

bne r4, 0xA

...

add r6, r7 ! r8

addi r8, 4 ! r8

cmplt r6,r8 ! r9

add in0,in1

addi mg[0],4

t1

add in0,in1

addi mg[0],4

cmplt in0,mg[1]

t2

add in0,in1

addi mg[0],4

cmplt in0,mg[1]

t3

bne in2, 0xA

instances of t1:

mg 1 (AB)

instances of t2:

mg2 (ABC)

mg 4 (XYZ)

instances of t3:

mg3 (ABCD)

f
100

75

Figure 3.4: Static instructions and their mini-graph templates. f indicates frequency.

Forming templates. The template encodes the mini-graphs’s internal defi-

nition. A mini-graph template specifies the exact constituent operations (opcodes

and immediates) as well as the internal register dataflow of the mini-graph. Fig-

ure 3.4 illustrates. The hypothetical stream of static instructions, A-Z, and the four

mini-graphs, mg1-mg4, are unchanged from Figure 3.2, but the mini-graph templates,

t1-t3, are new. This is the information occupies the MGT.

Two semantically equivalent mini-graphs—mg2 and mg4, for example—may use

the same mini-graph template even if they have different register names. Register

names are used by the handles and act as parameters to a particular static instance

of a mini-graph. Due to space constraints within the handle, mini-graph templates

are not parameterized by immediates or operations; static mini-graphs using the

same template agree on all opcode and immediate values within the mini-graph. A

discussion of parameterizing immediates under a comparable use of templates has

been discussed elsewhere [25, 26].

By incorporating the ability of multiple static mini-graph instances to use the

same mini-graph template (and therefore a single MGT entry) the basic greedy

algorithm can yield improved coverage under smaller MGT budgets. Pseudo-code

for the modified greedy algorithm is shown at the top of Figure 3.5. After mini-

graphs are formed into template groups, the algorithm proceeds almost identically,

operating on templates rather than individual mini-graphs. The template with the

91

t2: mg2(ABC)

 mg4(XYZ)

200

150

- -

- -

Start State

template pool:

t1: mg1(AB)

coverage:

100

After First Iteration

total coverage for 1+ entry

MGT budget = 350

!

Form template groups.

while (template pool not empty & budget not exceeded)

 1. Choose T, template with largest coverage

 2. Choose M, all mini-graph instances of T

 3. Remove all mini-graphs overlapping with instances of M from candidate pool

 4. Update coverage of remaining templates in template pool

t3: mg3(ABCD) 300

chosen mgs: coverage: chosen mgs: coverage:

template pool: coverage:

1. Choose t2

2. Choose mg2, mg4

3. Remove mg1, mg3

4. t1 & t3 now empty (i.e., no coverage)

Stop.
(pool empty)Example:

t2: mg2(ABC)

 mg4(XYZ)

200

150

Figure 3.5: Greedy selection with template sharing. Pseudo-code (top) and example
(bottom). Modifications to previous algorithm shown in bold.

92

highest coverage is chosen first. All mini-graph instances of this template are selected

and any overlapping mini-graphs are removed from the template pool. At the end of

each iteration, coverage scores of the remaining mini-graph templates are updated.

The process repeats until the template pool is exhausted or the MGT budget is

reached.

Estimating and updating template coverage. The coverage score of a mini-

graph template is still (n − 1) ∗ f , where n the template size in instructions and f

is its execution frequency. The execution frequency, however, is now the sum of the

execution frequencies of all of a template’s static instances. Once again, a basic-

block frequency profile approximates f . When a mini-graph is removed from the

template pool because it overlaps with a newly-chosen mini-graph, the template’s

execution frequency estimate is no longer correct. The mini-graph’s coverage score is

recomputed after the removed mini-graph’s execution frequency is subtracted from

the template’s total execution frequency.

A working example of the greedy selection algorithm with template sharing is

shown at the bottom of Figure 3.5. The start state shows the initial template pool

with each template’s coverage score. In the first iteration, t2 and its members

(mg2 and mg4) are selected. The mini-graphs that overlap with mg2—mg1 and mg3—

are removed from the template pool. Because these two mini-graphs were the sole

members of t1 and t3, both of these templates are now empty and have no remaining

coverage. At this point, there are no remaining templates in the template pool, and

the algorithm halts. The total coverage is 350.

Good news and bad news. The good news is that the greedy algorithm with

template sharing does, in fact, produce a higher coverage rate for a small MGT

budget. If there were only room for a single mini-graph in the MGT, the coverage

score of 350 is in fact superior to the basic greedy algorithm, which yields a coverage

score of just 300 at an MGT budget of 1 entry. The bad news is that for a larger MGT

budget, the greedy algorithm with template sharing produces a lower coverage rate.

93

With an MGT budget of 2 entries, for example, the coverage score for the greedy

algorithm with template sharing remains 350; for the basic greedy algorithm, the

coverage score increases to 450.

3.1.4 Backtracking to Include Larger Templates

The problem with the greedy algorithm with template sharing from the previous

section is that it favors commonly occurring templates at the expense of larger,

possibly less common—but still beneficial—templates. In this example, mg3 (ABCD)

is eliminated due to the selection of mg3 (ABC). If the MGT could only hold a single

template, the choice of just t2 is correct. But if the MGT were large enough to

support both templates, coverage would improve by supporting t3 (i.e., mg3 (ABCD)

as well. By simply rejecting all overlapping mini-graphs, the algorithm in Figure 3.5

no longer considers mg3 once it has chosen mg2, despite the fact that it could still be

useful.

The pseudo-code at the top of Figure 3.6 shows a slight modification of the

algorithm to address this problem. Once again, algorithmic changes are shown in

bold. In this version, smaller, more frequent mini-graph templates are chosen first,

but their supersets remain in the selection pool in the event that the MGT is large

enough to support both. (Smaller overlapping mini-graphs are always removed from

the template pool because they will always have a lower coverage score due to size.)

If the MGT budget permits, the larger mini-graph template can still be chosen.

In such cases, the algorithm backtracks, un-doing its original decision to select the

smaller mini-graph belonging to the more frequent template.

An example of the modified selection algorithm is shown at the bottom of Figure

3.6. During the first iteration, template t2 has the highest coverage score (350) and

is chosen first. When mg2 (ABC) is selected, the smaller, overlapping mini-graph mg1

(AB) is removed, thereby removing template t1 from the pool. Overlapping mini-

graph mg3 (ABCD) is not removed from the pool because it is a strict superset of

94

t2: mg4(XYZ) 150

t3: mg3(ABCD) 300

t3: mg3(ABCD) 300

t2: mg2(ABC)

 mg4(XYZ)

200

150

- -

Start State

template pool:

t1: mg1(AB)

coverage:

100

After First Iteration

total coverage for 1 entry

MGT budget = 350

!

Form template groups.

while (template pool not empty & budget not exceeded)

 1. Choose T, template with largest coverage

 2. Choose M, all mini-graph instances of T

 3. Un-choose S, all previously chosen subsets of M

 4. Remove all non-superset mini-graphs overlapping with instances of M from candidate pool

 5. Update coverage of remaining templates in template pool

t3: mg3(ABCD) 300

chosen mgs: coverage: chosen mgs: coverage:

template pool: coverage:

1. Choose t2

2. Choose mg2, mg4

3. —

4. Remove mg1

5. t1 now empty, t3 unchanged

Stop.
(pool empty)

Example:

t2: mg2(ABC)

 mg4(XYZ)

200

150

1. Choose t3

2. Choose mg3

3. Un-choose mg2

4. —

5. —

- -

After Second Iteration

total coverage for 2+ entry

MGT budget = 450

!

chosen mgs: coverage:

template pool: coverage:

Figure 3.6: Greedy selection with template sharing and backtracking. Pseudo-code
(top) and example (bottom). Modifications to previous algorithm shown in bold.

95

the chosen mini-graph. On the second iteration, template t3 now has the highest

coverage score (300) and it is selected. Even though mg2 (ABC) was already selected,

the algorithm backtracks; mg2 (ABC) is removed from the chosen list, in favor of its

superset mini-graph mg3 (ABCD). At this point, there are no remaining templates

in the template pool, and the algorithm halts. The total coverage under an MGT

budget of 1 entry is 350 and under and MGT budget of 2 entries is 450. The greedy

algorithm with template sharing and backtracking shows the best coverage rates for

both the small and the larger MGT budget.

If enough larger mini-graphs etch away all of its mini-graph instances, t2 might

no longer be worth retaining. If the coverage score of t2 ever dips lower than any of

the templates in the template pool, it is returned to the template pool for re-selection.

This step is easily added as a final step in the pseudo-code (not shown).

Coverage comparison. Figure 3.7 illustrates the behavior of the basic greedy

algorithm and its two variants. The graph at the top of Figure 3.7 plots coverage rates

for the three algorithms as the MGT budget drops from infinite, to 2048 entries, down

to 4 entries. The results corroborate the both the intuition behind the algorithms

and the toy example used thus far. The basic greedy algorithm exhibits superior

coverage at large MGT budgets, but rapidly loses coverage as the MGT budget

decreases. The greedy algorithm with template sharing shows improved coverage

at small MGT budgets, but loses coverage relative to the greedy algorithm at large

MGT budgets due to its unforgiving preference of template frequency over size. The

greedy algorithm with template sharing and backtracking exhibits the best of both

worlds, showing high coverage across the entire range of MGT budgets.

The graph at the bottom of Figure 3.7 shows the exact same data, but all cov-

erage rates are relative to the basic greedy algorithm. The greedy with template

sharing outperforms the basic greedy only when the MGT budget is small. The

greedy algorithm with template sharing and backtracking has nearly the coverage of

the basic greedy algorithm at large MGT budgets and superior coverage to greedy

96

Comparisons of Greedy-Based Algorithms

10

15

20

25

30

35

40

nomax 2K 1K 512 256 128 64 32 16 8 4

Template Limit

%
 C

ov
er

ag
e

basic greedy
+template sharing
+sharing +backtrack

Coverage Relative to Greedy Algorithm

0.9

0.95

1

1.05

1.1

1.15

1.2

nomax 2K 1K 512 256 128 64 32 16 8 4

Template Limit

C
ov

er
ag

e
R
el

at
iv

e
to

 b
as

ic
 g

re
ed

y basic greedy
+template sharing
+sharing +backtrack

Figure 3.7: Variations of Greedy Algorithm.

97

algorithm with template sharing at all budget excepts when they converge at 4 en-

tries. The basic greedy algorithm is slightly superior to the backtracking algorithm

at high MGT budgets because the backtracking algorithm only keeps strict supersets

in the template pool. The basic greedy algorithm can select larger, overlapping, non-

supersets belonging to less frequent templates, whereas the backtracking algorithm

cannot.

3.1.5 Exhaustive Selection

The basic greedy selection algorithm described in the previous section is a heuristic

attempting to maximize coverage, but does not provably do so, even outside the

context of template sharing. This section assesses the limitations of the basic greedy

algorithm—without template sharing or backtracking—and addresses the question

of whether a greedy approach could be improved upon with more comprehensive

approaches. The two approaches explored are exhaustive search and integer pro-

gramming formulation. Both techniques are provably optimal, when they terminate.

Exhaustive search. The obvious alternative to a greedy selection algorithm

is an exhaustive search of all possible mini-graph combinations. A simple exhaus-

tive search considers all
∑t

k=1

(
n
k

)
possible combinations of n candidate mini-graphs,

where t represents the MGT budget. In other words, if there are n mini-graphs to

select from, it explores every possible combination of t or fewer.

Each selected mini-graph, i, removes (size(i)−1)×frequency(i) dynamic instruc-

tions. The goal is to maximize the total number of dynamic instructions removed

from a program:

Z = ∀i
∑

(size(i)− 1)× frequency(i)).

The combination with the largest value for Z is the optimal combination. The

algorithm does not group mini-graphs into templates; none of the algorithms com-

pared in this section do. For simplicity, the greedy algorithm is assessed in its most

98

basic form.

In the worst case, where t = n, the search space is exponential, i.e. O(2n). In

practice, a technique that greatly reduces the search space of an exhaustive search

is to prune conflicting mini-graphs mid-search. Once a mini-graph, i, is selected, the

rest of the list of potential mini-graphs is pruned. Those that overlap with mini-

graph i or those that no longer have a legal anchor position because mini-graph i

and its predecessors were selected are pruned. At each selection point, then, the

remaining list becomes smaller by more than just one, making the search space

potentially smaller than 2n in practice.

Algorithm Problem Size(
20
4

) (
40
8

) (
60
12

)

Greedy 10.2% 14.8% 18.2% *
Exhaustive 10.2% 14.9% 18.3% *

Table 3.1: Coverage Summaries: Greedy vs. Exhaustive. *-Results are shown for
only 63 of 78 benchmarks because 15 benchmarks did not terminate on the Exhaus-
tive algorithm after 2 days.

The benchmarks in this dissertation usually produce a candidate pool with thou-

sands of mini-graphs. Performing an exhaustive search of such a large number of

mini-graph combinations is simply not tractable. For this reason, the experiments

of this section begin with a significantly smaller candidate pool. Table 3.1 shows the

average coverage rates of the greedy and exhaustive selection algorithms achieved

across 78 benchmarks. The candidate pools are fixed at sizes 20, 40, and 60, and the

MGT budget is fixed at 4, 8, and 12, respectively. In each case, the candidate pool

is comprised of the most frequently occurring n mini-graphs for each benchmark.

Average coverage scores for the greedy algorithm are nearly identical to those of

the exhaustive search. Detailed results for all 78 benchmarks are shown in Figure

3.8. In a few cases, the greedy algorithm yields less coverage, but for all benchmarks

across all three experiments the greedy coverage is at least 87% of the coverage of

the exhaustive algorithm. Once the candidate pool reaches 60, only 63 of the 78

99

Greedy Coverage Relative to Exhaustive, 20 choose 4

0.86
0.88

0.9
0.92

0.94
0.96

0.98
1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

78 benchmarks, sorted worst to best

R
el

.
C
ov

er
ag

e

Greedy Coverage Relative to Exhaustive, 40 choose 8

0.86
0.88
0.9
0.92
0.94
0.96
0.98
1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

78 benchmarks, sorted worst to best

R
el

.
C
ov

er
ag

e

Greedy Coverage Relative to Exhaustive, 60 choose 12

0.86
0.88
0.9
0.92
0.94
0.96
0.98
1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

78 benchmarks, sorted worst to best

R
el

.
C
ov

er
ag

e

15 benchmarks
did not complete

in exhaustive search
after 2 days

Figure 3.8: Individual Benchmarks: Greedy vs. Exhaustive Search. Greedy search
relative to exhaustive search for 78 benchmarks.

100

benchmarks actually terminate within 2 days under the exhaustive search. For this

reason, it is difficult to assess the effectiveness of the greedy algorithm in the context

of more realistic or challenging search problems.

Mathematical programming-based search. An alternative but still optimal

approach is to convert the greedy selection problem of maximizing coverage into an

integer program. Unlike a greedy algorithm, an integer programming solver can offer

incremental solutions that can be used in the case of long searches that might not

otherwise terminate.

The selection problem can be written in the form of an integer programming

problem as follows. There are n mini-graphs to choose from. Each mini-graph, i,

has an indicator variable, xi, that has the value 1 or 0 depending on whether the

mini-graph i is selected or not. Each mini-graph, i, also has a utility variable, ci,

equal to the number of dynamic instructions that are removed by selecting mini-

graph i. The goal is to maximize the total number of dynamic instructions removed

from a program,

Z = c1x1 + . . . + cnxn. (1.1)

The obvious solution to the following equation is to select all mini-graphs. Be-

cause overlapping mini-graphs conflict with one another, the equation is constrained

as follows. For all mini-graphs j, k, . . . l that conflict with one another, only one can

be selected. This is represented by the following constraint:

xj + xk + . . . + xl = 1. (1.2)

The conflicts between overlapping mini-graphs are constructed just prior to per-

forming the search. There are at most n conflict equations (at most one for each

candidate mini-graph).

The restriction of the MGT budget is represented by the following constraint:

101

x1 + . . . + xn ≤ t. (1.3)

where t represents the MGT budget. This prevents more than t mini-graphs from

having an indicator variable of 1. In other words, no more than t mini-graphs will

be selected.

The problem is solved by assigning a value of 0 or 1 to each variable xi, while

satisfying the list of constraints in (1.2) and (1.3) and maximizing the objective

function (1.1).

The final constraint that is placed on mini-graph selection is that each mini-

graph have a legal anchor point. Not having a legal anchor option is a property

that is specific to the context of the other chosen mini-graphs. The only way to

incorporate this constraint into the solver (without exhaustively considering every

possible combination of mini-graphs) is to simply test the solution of the solver. In

the event that a combination of mini-graphs m, n, . . . o does not have a legal anchor

option for each mini-graph, the solver is run again after adding the following new

constraint:

xm + xn + . . . + xo = 1 (1.4)

Integer programming is known to be NP-hard, but can be approximated efficiently

by relaxing it into a linear programming problem. The difference between an integer

program and a linear program is that the former assigns integer values {0, 1} to the

variables xi, while the latter allows real values within the interval [0, 1]. The solution

of the linear program is converted into an integer solution by carefully rounding the

values to either 0 or 1.

This dissertation uses the GNU Linear Programming Kit (GLPK) to find a fea-

sible solution to the integer problem [64]. As with exhaustive search, some problems

do find provably optimal solutions after days of computation. However, the GLPK

performs a series of iterations; each iteration brings the solver closer to the optimal

102

solution. In cases of long-running problems, results can be harvested by terminating

computation after a particular number of iterations have been reached and accepting

the best found solution at that point. The higher this maximum is set, the closer

the solution is to optimal, but the more likely it is that some programs will not

terminate in a reasonable amount of time.

Algorithm Problem Size(
100
20

) (
200
40

) (
400
80

)

Greedy 20.1% 25.3% 29.2%
Integer Programming 21.4% 25.8% 29.4%

Table 3.2: Coverage Summaries: Greedy vs. Integer Programming.

Greedy Coverage Relative to Exhaustive, 100 choose 20

0.88

0.9

0.92

0.94

0.96

0.98

1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

78 benchmarks, sorted worst to best

R
el

.
C
ov

er
ag

e

Greedy Coverage Relative to Exhaustive, 200 choose 40

0.88
0.9
0.92
0.94
0.96
0.98
1

1.02

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

78 benchmarks, sorted worst to best

R
el

.
C
ov

er
ag

e

Greedy Coverage Relative to Exhaustive, 400 choose 80

0.88
0.9
0.92
0.94
0.96
0.98
1

1.02
1.04
1.06
1.08

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

78 benchmarks, sorted worst to best

R
el

.
C
ov

er
ag

e

Figure 3.9: Individual Benchmarks: Greedy vs. Integer Programming. Greedy
search relative to integer programming search for 78 benchmarks.

Table 3.2 shows the average coverage rates of the greedy and integer programming

selection algorithms achieved across 78 benchmarks. The candidate pools are fixed at

103

sizes 100, 200, and 400, and the MGT budget is fixed at 20, 40, and 80, respectively.

Once again, the candidate pool is comprised of the most frequently occurring n mini-

graphs for each benchmark. The integer programming runs in this set of experiments

were performed with a maximum number of iterations set to one million iterations.

Although runs with no iteration limit completed for the
(

100
20

)
experiment, runs for

the
(

200
40

)
and

(
400
80

)
experiments did not complete within 24 hours.

Once again, the average coverage scores for the greedy algorithm are nearly identi-

cal to those of the integer programming search. Detailed results for all 78 benchmarks

are shown in Figure 3.9. In a few cases, the greedy algorithm yields less coverage,

but for all benchmark across all three experiments the greedy coverage is at least

88% of the coverage of the exhaustive algorithm. In some cases, the greedy algorithm

actually out-performs the integer programming approach. This is the result of ter-

minating the program after one million iterations—in some cases before a provably

optimal solution was discovered. Interestingly, running this experiment several times

could change the results. This is due to the fact that the integer programming solver

incorporates a certain amount of randomness when it searches for solutions.

The experiments presented in this section show that a greedy selection algo-

rithm is both effective and pragmatic. It is effective because it yields coverage rates

competitive with provably optimal techniques. It is pragmatic because unlike both

exhaustive and integer programming techniques, it reliably terminates in a matter

of minutes. Furthermore, the greedy algorithm terminates within minutes for the

actual selection tasks of this dissertation, not just the toy examples shown in this

section. As a consequence, the remainder of the dissertation uses the greedy selection

algorithm.

104

3.2 Introduction to Serialization

This section begins with a short evaluation and analysis of the coverage-maximizing

selection algorithm presented in section 3.1. Initial results in Section 3.2.1 show that

maximizing coverage gives rise to IPC penalties in many cases due to the introduction

of serialization within a program. Section 3.2.2 explains the concept of serialization

in detail. This yields way for the structural and subsequent slack-based selection

algorithms of Sections 3.3 and 3.4, respectively.

3.2.1 Basic Coverage Maximizing Selection

This section presents a short evaluation and analysis of the coverage-maximizing

selection algorithm. The evaluation tests the assertion that IPC improvement can

be achieved by amplifying processor resources—without actually making them phys-

ically larger. To do so, it compares the IPC of an amplified, 3-wide mini-graph

configuration to that of a 4-wide, non-mini-graph configuration, both relative to a

3-wide, non-mini-graph processor. The experimental evaluation throughout this dis-

sertation follows the methodology introduced in Section 1.4 and the corresponding

table in Figure 1.9.

Because ILP can be limited by many factors—including the nature of the bench-

mark itself—coverage rates do not translate to performance because amplification

only improves performance in regions of high ILP. However, coverage rates are an

important diagnostic tool because they indicate the amount of amplification present.

Low coverage rates indicate low amplification and can be used to explain why a 3-

wide mini-graph processor might not perform as well as a 4-wide processor. High

coverage rates can explain why a 3-wide mini-graph processor might even out-perform

a 4-wide processor.

Initial performance and coverage. The left graph in Figure 3.10 shows

105

Performance Relative to 3-wide
Processor

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1 7 13 19 25 31 37 43 49 55 61 67 73
78 benchmarks, sorted worst to best

R
el

at
iv

e
IP

C

3-wide

4-wide (+ 15%)

3-wide + mg (+ 6.4%)

Performance Relative to 4-wide
Processor

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1 7 13 19 25 31 37 43 49 55 61 67 73
78 benchmarks, sorted worst to best

R
el

at
iv

e
IP

C

4-wide

4-wide + mg (- 1.3%)

Figure 3.10: Amplifying vs. Increasing Resources. Left: Comparison of 3-wide
mini-graph processor and 4-wide processor. Relative to a 3-wide processor. Right:
Comparison of 4-wide mini-graph processor and 4-wide processor. Relative to a
4-wide processor.

106

performance—IPC relative to the 3-wide processor, whose own performance cor-

responds to the y = 1 axis—for mini-graphs selected by the coverage-maximizing

selection algorithm. The 4-wide processor alone (no mini-graphs, light grey line) is

on average 15% faster than the 3-wide processor. On the 3-wide configuration, mini-

graphs achieve less than half of the 15% IPC gain achieved by creating a 4-wide

machine, yielding an average improvement of 6.3% relative to the original 3-wide

processor. However, individual results vary greatly. For some programs (on the

right side of the graph), mini-graphs allow the 3-wide processor to out-perform the

4-wide processor. On 14 programs, it yields lower IPC than the original processor

with no mini-graphs at all.

To provide additional insight, the right graph shows the IPC of the 4-wide pro-

cessor, also enhanced with mini-graphs. Performance in this graph is relative to the

4-wide processor. A 4-wide processor enhanced with mini-graphs actually yields IPC

loss for 28 programs (and an average IPC loss of 1.3% across all programs), relative

to a standard 4-wide processor. For 14 of the benchmarks, the performance degrada-

tion seen at 4-wide is hidden on the 3-wide processor, which translates amplification

to IPC at a high rate. On the 4-wide processor, on which amplification provides

fewer IPC benefits and penalties are more exposed, these slowdowns are apparent.

This initial experiment indicates that from an IPC standpoint, mini-graph pro-

cessing driven by coverage maximizing selection is not a robust alternative to physical

increases in superscalar width and window size. The mini-graph IPC loss seen in

both graphs can be attributed to mini-graph serialization. After explaining the con-

cept and causes of serialization, the following sections show how to select mini-graphs

not only to maximize coverage, but also to minimize the IPC degradation associated

with serialization.

107

3.2.2 What is Serialization?

A dynamically scheduled processor ostensibly executes singleton instructions in data

dependence order. Mini-graph-induced serialization is an artificial dependence be-

tween two singleton instructions that is created when both instructions are placed

in the same mini-graph. There are two forms of serialization. In both cases, an

artificial dependence is created between two instructions. Serialization can degrade

performance, even to the point of overwhelming the benefits of mini-graph process-

ing.

External serialization, the more frequent and destructive form, introduces a new

dependence between the first constituent in a mini-graph and some instruction out-

side the mini-graph; this outside instruction produces an input to the mini-graph,

but this is not an input to the first constituent. External serialization occurs because

a mini-graph cannot issue until all of its external register inputs are available. Most

forms of instruction fusion—not just mini-graphs—are subject to external serializa-

tion.

Micro-op fusion, however, is not one of the forms of instruction fusion that suffers

from external serialization. Avoiding serialization is, in fact, cited as one of the rea-

sons the store-address/store-data macro instruction was split in the first place [38].

By fusing operation pairs into single, expanded entries, micro-op fusion amplifies

the capacity of the reservation station. Because the operations themselves still issue

separately, however, scheduling bandwidth is not amplified. Mini-graphs, like many

other forms of fusion, expose themselves to external serialization by issuing aggre-

gates atomically. They do so because of the desire to extend resource amplification

to scheduling bandwidth.

Internal serialization, a less dominant form, is a dependence between an instruc-

tion in a mini-graph and a previous independent instruction in the same mini-graph.

Internal serialization occurs in mini-graphs because mini-graph constituents execute

108

in series. Most—but not all—forms of aggregation are subject to internal serializa-

tion.

1:

2:

3:

4:

A

E

F

C

D

C B

A

D

E

F

A

E

F

B

D

C

(a)

Original

Dataflow Graph

(c)

Original

Execution Times

(d)

Execution Times

with Mini-Graph

(b)

Mini-Graph

Dataflow Graph

B C

A

D

E

F

External

Serialization

Internal

Serialization

B

5:

Figure 3.11: Serialization Effects in Mini-Graphs

Figure 3.11 shows an example of serialization, beginning with the original

dataflow graph of six abstract instructions A-F in Figure 3.11a. The dataflow graph

after forming mini-graph ADE is shown in Figure 3.11b. External serialization

requires the head of the mini-graph to wait for all inputs, creating a new dependence

edge between instructions A and C. Internal serialization requires all mini-graph

constituents to wait for one another, creating a new dependence edge between

instructions D and A.

Figure 3.11c shows a singleton execution of these instructions. Figure 3.11d shows

the execution of the same instructions, but with instructions ADE aggregated into

a mini-graph. Notice, each serializing edge induces a delay on the corresponding

instruction: A and D are both delayed by 1 cycle. However, the total delay on

the output of the mini-graph, E, is 1 cycle. Here, the external serialization masks

the internal serialization. The 6-instruction sequence A-F previously completed in 4

cycles; with mini-graphs, it uses far fewer resources, but completes in 5 cycles.

Experience with mini-graphs shows that internal serialization is often masked

by external serialization. This suggests that, at least for mini-graphs, a constituent

109

execution model that simplifies implementation at the cost of adding internal serial-

ization is a reasonable design choice.

Mini-graphs are not alone in their vulnerability to both forms of serialization.

Most aggregation schemes are vulnerable to external serialization [23, 83, 89, 112],

and many are also vulnerable to internal serialization as well [58, 89]. However, mini-

graphs suffer from serialization more than most other aggregation techniques when

they do not provide a direct latency-reduction benefit that can directly counter-act

serialization-induced delay (e.g., interlock-collapsing ALU Pipelines). By focusing

on resource amplification, mini-graphs require wholesale (rather than opportunistic)

aggregation, increasing the probability of harmful mini-graphs.

3.3 Structural Selection Algorithms

The basic mini-graph selection algorithm described in Section 3.1.1 starts by identify-

ing an initial pool of static mini-graph candidates. From there, it selects mini-graph

templates in order to maximize dynamic coverage (i.e., resource amplification). An

abstract view of the original selection process is shown in Figure 3.12a. Shading

indicates serialization. Numbers are hypothetical and used for explanatory purposes

only. Step 1 begins with 42 mini-graphs, some of which overlap. Step 2 greedily

selects non-overlapping mini-graphs, resulting 19 selected mini-graphs. The selected

set contains mini-graphs with and without serialization.

Static, structural pruning. Figure 3.12b depicts the 3-step static, structural

pruning algorithm. Unshaded mini-graphs are structurally benign and are always

included in the initial selection pool of every selection algorithm. In Step 1.5, struc-

tural pruning removes from this pool all mini-graphs with any structural potential

for serialization (according to an algorithm’s definition of potential). As a result,

the greedy algorithm has only 20 overlapping mini-graphs to select from, resulting

in a total of 12 selected mini-graphs.

110

(19 mgs)

1: Identification
Identify all legal mgs

2: Selection
Select disjoint mgs,

maximize coverage

until MGT full

1: Identification
Identify all legal mgs

1.5: Pruning
Remove mgs with

any serialization

2: Selection
Select disjoint mgs,

maximize coverage

until MGT full

(a) Serialization Blind (StructAll)

(b) Structural Serialization Avoidance (StructNone, StructBounded)

(42 mgs)

(42 mgs) (20 mgs) (12 mgs)

SerializationNo Serialization

Figure 3.12: Basic Selection vs. Structural Pruning Selection. (a) Serialization Blind
(b) Structural Serialization Avoidance.

111

This section presents two structural mini-graph selection algorithms that are

performed statically in software before the program runs. The first, StructNone, is

a naive selection algorithm that simply forbids potential serialization entirely. The

second, StructBounded, is a less conservative algorithm that forbids only a particular

type of serialization, called bounded serialization.

3.3.1 StructNone

This section briefly compares two naive responses to the problem of serialization.

The first response is to ignore the problem and continue to maximize coverage. This

algorithm (which has already been introduced) is hereafter referred to as StructAll,

because it admits all possibly serializing mini-graphs.

The second response—introduced in this section—is to avoid serialization entirely

by only selecting non-serializing mini-graphs. By virtue of their dataflow shape, some

mini-graphs are simply not vulnerable to serialization. This can be easily inspected;

the first instruction of a structurally benign mini-graph depends on each and every

external register input of the mini-graph. This algorithm is called StructNone, because

it admits no possibly serializing mini-graphs.

Figure 3.13 compares the IPC (left) and coverage (right) of both algorithms. The

performance graph shows IPC relative to the 3-wide processor and also shows results

for the 4-wide, non-mini-graph processor for comparison.

StructAll. StructAll is an aggressive selector that admits all potentially serializing

mini-graphs into the starting pool. This selector—the original selector introduced

in Section 3.1—is serialization blind. It maximizes coverage without any thought to

potential slowdowns induced by serializing mini-graphs. Naturally, StructAll achieves

the highest coverage rates (of about 37%).

Without serialization, the high amplification rates of StructAll should allow mini-

graphs to simulate—in terms of performance—the increase in processor resources

from a 3-wide fetch/issue/commit to a 4-wide fetch/issue/commit and from 20 issue

112

Performance of 2 naïve selection
algorithms

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

78 benchmarks, sorted worst to best

R
el

at
iv

e
IP

C

3-wide
4-wide (+ 15%)
Struct-All (+ 6.4%)
Struct-None (+ 11.8%)

Coverage of 2 naïve selection
algorithms

0

10

20

30

40

50

60

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

78 benchmarks, sorted worst to best

C
ov

er
ag

e
R

at
e

Struct-All (36.6%)

Struct-None (19.2%)

Figure 3.13: Ignoring vs. Forbidding Serialization. Left: Comparison of StructAll

and StructNone on a 3-wide mini-graph processor and 4-wide processor. Relative to
a 3-wide processor. Right: coverage of StructAll and StructNone algorithms.

113

queue entries and 56 rename registers to 30 and 80, respectively; an increase that

typically results in a 15% IPC improvement, on average. Unfortunately, StructAll

admits a small number of pathological serializing mini-graphs that degrade the IPC

of 20% of all programs.

StructNone. StructNone is a conservative selector that admits no potentially seri-

alizing mini-graphs into the starting pool. This selector sits on the opposite end of the

selector spectrum from StructAll, assuming all mini-graphs that appear structurally

vulnerable to serialization are harmful to performance. It removes all possibilities

of performance loss, but with that removes a good deal of coverage as well. By

cutting coverage in half of that offered by StructAll, StructNone makes it impossible

to compete IPC-wise with a 4-wide processor.

StructNone mini-graphs (diamond) produce better average IPC, achieving an

11.8% improvement over the 3-wide machine. IPC gains are also more consistent.

StructNone almost always outperforms the non-mini-graph processor. However,

for about half the programs, it provides less IPC than StructAll. The key here is

coverage. StructAll yields coverage rates from 15% to 60% (37% on average). By

conservatively rejecting all mini-graphs with serialization potential, StructNone has

only half this coverage, ranging from 6% to 38% (19% on average).

The case for a serialization-aware “hybrid” scheme. The different shapes

of the StructAll and StructNone S-Curves and their “cross-over” behavior illustrate the

tension between resource amplification on one hand and serialization on the other.

They also suggest the existence of an intelligent hybrid scheme. Any hybrid should

provide the “best of either world”, matching the IPC of StructAll when amplification

is at a premium and StructNone when amplification is ineffective and serialization

dominates. However, a hybrid scheme that is intelligently serialization-aware should

be able to consistently outperform both StructNone and StructAll, as it should be able

to make coverage vs. serialization decisions on a per mini-graph basis. The expected

IPC of this hybrid is approximately the IPC of the 4-wide, non-mini-graph processor

114

(square of Figure 3.13), which has the IPC these experiments have been targeting

all along.

3.3.2 StructBounded

StructAll and StructNone are two extreme structural approaches to dealing with po-

tentially serializing mini-graphs. StructBounded represents a heuristic compromise.

The observation behind StructBounded is that a dynamically scheduled execution core

can tolerate short execution delays (e.g., data cache misses) quite well, but is less

effective at tolerating longer delays (e.g., L2 misses). In line with this reasoning,

StructBounded accepts mini-graphs whose serialization-induced delay can be bounded

(i.e., proven to be short) by inspection and rejects only ones with “unbounded”

delay.

Bounded vs. unbounded serialization. Figure 3.14 uses abstract examples

to illustrate bounded and unbounded serialization delays. Bounded serialization is

any serialization that delays a mini-graph’s register output by a number of cycles

that is less than the execution latency of the entire mini-graph. Clearly, all strictly

internal serialization is bounded. Figure 3.14a shows an example. Both instructions

A and B are ready at the same time, but B waits for A, delaying the register output

of the mini-graph by the execution latency of A.

In the context of external serialization, delay is bounded if the serializing input

is “upstream” from the mini-graph register output. The mini-graph in Figure 3.14b

has bounded serialization. Even if the serializing input is ready n cycles after the

input to the first instruction in the mini-graph, the delay on the mini-graph’s register

output (B) is equal only to the latency of instruction A. This is because in a singleton

execution, B is dependent on and ultimately waits for the serializing input anyway. In

contrast, the slightly different mini-graph in Figure 3.14c is vulnerable to unbounded

serialization. Here the serializing input is “downstream” from the mini-graph register

output. If the serializing input is ready n cycles after the input to A, the mini-graph’s

115

ready

x

ready

x

(b)

Bounded External

Serialization

(c)

Unbounded External

Serialization

B

A

B

delay =

ex-lat(A)

delay

= n

ready

x+n

ready

x+n

A

(a)

Internal Serialization

always Bounded

A & B both

ready

C

delay =

ex-lat(A)

B

A

ready

x

A

B

delay

= n

ready

x+n

(d)

Disconnected Mini-Graphs

always Unbounded

Figure 3.14: Bounded vs. Unbounded Serialization.

register output is delayed by n cycles. Here, in a singleton execution, A never waits

for B’s input.

Disconnected mini-graphs (shown in Figure 3.14d) are a special case of the un-

bounded serialization in Figure 3.14c. Once again, if the instruction producing the

mini-graph register output (A) is required to wait an additional n cycles for the input

to a second independent instruction (B), the mini-graph’s register output is delayed

by n cycles.

Store and branch outputs. Although a mini-graph has only a single register

output, it may also have a memory output (via a store) and a control output (via

a branch). From the point of view of dynamic scheduling, stores act as outputs

if they forward their values to younger in-flight loads and branches act as outputs

when they are mis-predicted. StructBounded bounds the delay on register and memory

outputs. In practice, however, the register output plays the dominant role. This is

because the determining factor in whether a mini-graph has bounded or unbounded

serialization is the position of the most “upstream” output relative to the position

of the serializing input (Figure 3.14b vs. Figure 3.14c). Branches cannot play a role

here because they are always mini-graph terminal and therefore control outputs can

never be upstream of anything. Stores are almost always located at the end of a

116

mini-graph and are never upstream of a register output. Only in the rare case of

a mini-graph that has a store and a branch and no register output does a memory

output affect the categorization of serialization as unbounded. The common case is

shown in Figure 3.14c. Instruction B is either a store or a branch. Yet it is the reg-

ister output of instruction A that categorizes this serialization as unbounded. Here,

the control/memory output plays no role whatsoever. Even though StructBounded

considers delays on both memory and register outputs, in practice only the register

output matters.

By allowing all mini-graphs with bounded serialization and no mini-graphs

with unbounded serialization, StructBounded accepts strictly more mini-graphs than

StructNone and strictly fewer than StructAll. Being only a heuristic, it rejects some

mini-graphs with statically unbounded delay which are benign in practice; a delay

may be statically unbounded but short or non-existent at run-time. It also accepts

some harmful mini-graphs with bounded delay; even bounded delay is bad if it

delays the resolution of a mis-predicted branch.

mg2 mg4

C

A

mg1

B

A
B

D

A

C

B

Output Delay

StructBounded1

StructBounded2

StructBounded3

StructBounded

1

1

mg3

C

A

B

1

+1

1

mg5

D

A

C

B

1

+1

+1

31211

!!!!!

!!!!!

!!!!!

!!!!!

Figure 3.15: Serialization Bounded by Various Cycles. Mini-graphs with delays of d
are accepted by StructBoundedx where d <= x. StructBounded accepts all mini-graphs
with bounded delay.

117

StructBoundedN. In general, static analysis can bound delays to any number of

cycles up to the execution latency of the mini-graph minus one. In the case of the

mini-graphs of this dissertation, the maximum delay is 6 cycles. (Mini-graphs can

have an execution latency of up to 7 cycles; if the serializing input feeds the last

instruction in a 7-cycle mini-graph, this final instruction waits 6 cycles beyond when

its input arrives before it can execute.) With this in mind, StructBounded is actually

the most lenient instance of a more general selector, StructBoundedN. StructBoundedN

is a selector that accepts only mini-graphs with a potential serialization delay of n

cycles. For this dissertation, in which mini-graphs are supported up to 7 cycles,

StructBounded, is really an instance of StructBounded6. (Incidentally, if one were to

ignore internal serialization, StructNone is actually an instance of StructBounded0.)

Stricter selectors that allow bounded serialization with a tighter delay bound

can be created by choosing a smaller value for N . Figure 3.15 shows some ex-

amples. Instructions A-Dare single-cycle operations. Mini-graphs 1 through 5 have

various output delays. All exhibit bounded serialization and are therefore accepted

by StructBounded. A delay of d cycles is accepted by StructBoundedx, where d <= x.

In practice, because most mini-graphs are only two or three cycles in length, it is

expected that StructBoundedN will converge to the coverage rates of StructBounded at

around StructBounded4.

Performance and coverage. Figures 3.16- 3.17 show the performance and cov-

erage results of StructBoundedN for values of N from 1 to 3 as well as for StructBounded,

which is StructBounded6 for 7-cycle mini-graphs. Figure 3.16 shows IPC of 3-wide

mini-graph processors run with various instantiations of StructBoundedN all relative

to a 3-wide processor (at y=1). Also shown is the 4-wide non-mini-graph processor

which shows a relative IPC improvement of 15%.

The IPC improvement offered by the StructBoundedN algorithms vary from 14.2%

to 17.0%. In general, the more conservative the algorithm, the better the IPC. The

converse is naturally true for coverage. Coverage ranges from 25.7% to 29.1%, with

118

Performance of Struct Bounded algorithms

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77
78 benchmarks, sorted worst to best

R
el

at
iv

e
IP

C

SB-2 (+17.0%)

SB-1 (+16.5%)

SB-3 (+15.6%)

4-wide (+15%)

SB-6 (+14.2%)

3-wide

Struct-None (+ 11.8%)
(min=.71)

(max=1.53)

Figure 3.16: StructBounded. IPC relative to a 3-wide processor of StructBoundedN, for
N = 1,2,3,6

119

Coverage of Struct Bounded algorithms

5

10

15

20

25

30

35

40

45

50

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77
78 benchmarks, sorted worst to best

C
ov

er
ag

e
R

at
e

Struct-All (36.6%)

SB-6 (29.1%)

SB-3 (28.2%)

SB-2 (26.4%)

SB-1 (25.7%)

Struct-None (19.2%)

(max=59%)

Figure 3.17: StructBounded. Coverage of StructBoundedN, for N = 1,2,3,6

120

the more conservative algorithms pruning more mini-graphs, resulting in lower cov-

erage. In the cases where IPC improves significantly (the right side of the graph),

all StructBoundedN algorithms behave similarly. In the worst cases, the conserva-

tive algorithms distinguish themselves as clearly preferable. StructBounded3 and

StructBounded(StructBounded6) both exhibit IPC losses of over 25%, with approxi-

mately 10% of benchmarks exhibiting some form of IPC degradation. (As expected,

results for StructBounded4 were nearly identical to that of StructBounded6; these data

are not shown in order to make the graph more legible.)

StructBounded1 and StructBounded2 are clearly the best of the StructBoundedN al-

gorithms. Although they have the lowest coverage, they exhibit the highest IPC

improvement, and the best robustness. StructBounded2 behaves like a shifted ver-

sion of StructNone (thick grey line); their coverage and performance curves have the

same basic shapes and slopes. StructBounded2 provides more coverage and amplifi-

cation than StructNone (29% vs. 19%), but significantly better relative IPC (17%

vs. 12%). By avoiding unbounded serialization, the StructBoundedN algorithms avoid

the performance pathologies of mini-graph serialization. Whereas StructAll induces

slowdowns for 16 programs on a 3-wide processor, the StructBoundedN algorithms in-

duce none. By allowing 2 cycles of bounded delay instead of just 1, StructBounded2

manages to offer slightly more coverage (26.4% vs. 25.7%) which translates into

slightly better IPC (17.0% vs. 16.5%). The remainder of this dissertation discusses

only StructBounded2 as it is the best of the StructBoundedN algorithms.

3.4 Slack-Based Selection Algorithms

The challenge in detecting problematic mini-graphs is that serialization and

serialization-induced performance loss cannot be deduced by inspecting dataflow

structure. Not all mini-graphs with the potential for serialization are actually

delayed by the serializing input. In some cases, the potentially serializing input

121

is always ready first, and no delay occurs. And even if delay is induced, it might

be masked by other delays and have no performance effect. These mini-graphs

manifest serialization but don’t degrade IPC because the delayed output is “off the

critical path.” The algorithms in this section attempt to quantify these structural

unknowns in order to better determine which mini-graphs to prune.

(42 mgs)

1: Identification
Identify all legal mgs

1.5: Pruning
Remove mgs with

any serialization

2: Selection
Select disjoint mgs,

maximize coverage

until MGT full

(a) Structural Serialization Avoidance (StructNone, StructBounded)

1: Detection
Detect all legal mgs

1.5: Pruning
Remove mgs with

harmful serialization

2: Selection
Select disjoint mgs,

maximize coverage

until MGT full

(b) Quantitative Serialization Avoidance (SlackProfile)

(42 mgs) (20 mgs) (12 mgs)

(35 mgs) (18 mgs)

Harmful SerializationBenign SerializationNo Serialization

Figure 3.18: Structural vs. Slack-Based Pruning Selection. (a) Structural Serializa-
tion Avoidance. (b) Static, Slack-based Serialization Avoidance.

The main problem with structural heuristics is that they remove mini-graphs

with essentially benign serialization. Figure 3.18a illustrates. If the majority of

mini-graphs with serialization are actually benign, then removing all serializing mini-

graphs from the selection pool is too conservative. The slack-based algorithms in

122

this chapter attempt to detect mini-graphs with harmful serialization only. Ideally,

the algorithms function as shown in Figure 3.18b. Step 1.5 removes only harmful

mini-graphs from the initial pool of 42 identified mini-graphs, leaving 35 mini-graphs

to choose from. From here, greedy selection resumes (Step 2), yielding a total of 18

mini-graphs.

The key here is to find a pruning technique that can most accurately distin-

guish between the benign and harmful cases. Techniques that over-prune have lower

coverage. Techniques that under-prune have IPC loss. The slack-based selection

algorithms presented in this section are designed to distinguish between harmful and

benign instances of serialization by paying attention to the criticality of potentially

delayed instructions. The first algorithm is performed statically in software before

the program runs. The second algorithm is dynamic and is performed in hardware

at runtime.

3.4.1 SlackProfile

SlackProfile is a static selection algorithm that uses profiles—information gathered

during the actual run of a program—to determine both whether the formation of a

mini-graph induces a delay and whether this delay can be absorbed by the program

with no performance penalty. The ability to absorb delay is formalized by local slack

[32]. An instruction’s local slack is the number of cycles by which it can be delayed

without delaying any consumer. For example, if an instruction can be delayed 2

cycles before any of its consumers are delayed, that instruction is said to have a local

slack of 2 cycles. A specific example is shown later in this section.

SlackProfile begins with a profiled singleton execution schedule that details the

ready times of all values and the issue times of all instructions. It then applies four

simple rules to: (i) calculate the delay induced on an instruction by virtue of being

placed in a mini-graph, and (ii) estimate whether a delay on a mini-graph’s output

can be absorbed by the program. This section also discusses SlackProfile’s profiling

123

support and the rationale for its use of local, rather than global, slack.

Quantifying mini-graph induced serialization delay. (Rules 1-3.) As a

singleton, an instruction’s issue time is limited by the ready times of its inputs. As

the first instruction in a mini-graph, however, an instruction waits for all inputs to

the mini-graph, even those it was independent of in singleton form. This phenomenon

is encapsulated in the following rule:

Rule 1, External Serialization :

IssueMG(0) = max
i∈mg−inputs

(Ready(i), Issue(0))

The issue time of the first instruction of a mini-graph is determined by the ready time

of all inputs to the mini-graph as well as the issue time of this instruction according

to the singleton execution schedule. Including the issue time of the instruction as

a singleton incorporates non-data dependences (e.g., structural dependences) that

may continue to play a role in an instruction’s issue time when in mini-graph form.

The issue time of subsequent instructions in a mini-graph is determined by the

issue time of the previous mini-graph instructions. This phenomenon is encapsulated

in the following rule:

Rule 2, Internal Serialization :

IssueMG(n) = IssueMG(n− 1) + ExLat(n− 1)

The issue time of all non-initial mini-graph instructions is simply the time the pre-

vious instruction issued plus the execution latency of that previous instruction. The

execution latency of each instruction is known a priori. In the framework of this

dissertation, all mini-graph constituent execute in 1 cycle, excepting loads which ex-

ecute in 3 cycles. More sophisticated frameworks could also incorporate knowledge

about load misses to provide a more accurate estimate. If a mini-graph processor

had a form of execution latency reduction, this should be reflected in the estimate for

ExLat for better accuracy. Other than this refinement, the entire algorithm remains

unaffected in the presence of latency reduction hardware.

124

For each mini-graph candidate, SlackProfile uses Rules 1 and 2 to determine the

issue time of each mini-graph constituent. Finally, for each instruction in the mini-

graph candidate, SlackProfile uses the following rule to determine whether delay is

induced by mini-graph formation:

Rule 3, Instruction Delay :

DelayMG(n) = IssueMG(n)− Issue(n)

The delay induced by mini-graph formation is the difference between the issue time

of that instruction as a singleton and its issue time as part of the mini-graph.

1:

2

3:

4:

A

E

F

C

D

C B

A

D

E

F

(a)

Original

Execution Times

(b)

Execution Times

with Mini-Graph

B

5:

Rule 1: Issue
MG

(A) = max(Ready(C), Issue(A))

 = max(2,1) = 2

Ready(C) = 2,

Issue(A) = 1

Rule 2: Issue
MG

(D) =Issue
MG

(A) + Ex-Lat(A)

 = 2+1 = 3

Rule 2: Issue
MG

(E) =Issue
MG

(D) + Ex-Lat(D)

 = 3+1 = 4

Rule 3: Delay
MG

(E) =Issue
MG

(E) - Issue(E)

 = 4 - 3 = 1

Figure 3.19: SlackProfile. Calculating the delay on instruction E induced by the
formation of mini-graph ADE.

Figure 3.19 steps through a delay calculation. SlackProfile starts with the singleton

execution schedule in Figure 3.19a and calculates the mini-graph execution schedule

in Figure 3.19b. The quantity of interest is the delay induced on instruction E

by the formation of mini-graph ADE. The mini-graph has one external input, from

instruction C, which is ready at cycle 2. SlackProfile uses Rule 1 to calculate the

new issue time of instruction A, Rule 2 (twice) to calculate the new issue times of

instructions D and E, and Rule 3 to calculate E’s delay. The calculations agree with

the depicted mini-graph schedule.

125

Quantifying performance impact of delay. (Rule 4.) Instruction delay

degrades IPC only if it cannot be “absorbed” by consuming instructions. In Figure

3.19, instruction A has 1 cycle of local slack; it could be delayed 1 cycle without

delaying E.

SlackProfile uses per-static instruction local slack estimates to calculate whether a

given mini-graph, if formed, degrades IPC. It does so using the following rule:

Rule 4, Performance Degradation :

DegradeMG(0) =
∨

i∈mg−outputs

(DelayMG(i) > Slack(i))

A mini-graph degrades performance if for any of its outputs, the induced delay is

greater than that output’s local slack. The profiler provides slack information for

stores and branches as well as instructions producing register values, so all three

forms of outputs can be explicitly considered. It is important to include slack on

stores and branches in the algorithm. To illustrate, a single mini-graph that induced a

1-cycle delay on a hard-to-predict branch (i.e., a branch with no slack) in a frequently

executed loop in adpcm.encode single-handedly degraded performance by 3%!

In the example in Figure 3.19, the formation of mini-graph ADE delays E by 1 cycle.

ADE is rejected because E has a local slack of 0 cycles, and its delay is propagated to

F. If, instead, E had a few cycles of local slack—perhaps F were an easy to predict

branch—then E’s delay is easily absorbed by the program and the mini-graph is not

rejected.

Profiling support. As explained, SlackProfile requires local slack estimates,

Issue times, and Ready times. The slack profiling tool—in the case of this dis-

sertation, a simulator—first generates the edge local slack, the slack between any

two instructions, according to the following definition:

∀ij, j ∈ consumers(i), EdgeLocalSlack(ij) = Issue(j)−Ready(i)

126

Suppose instruction A feeds instruction B and instruction A completes (i.e., its result

is ready) at time t. If instruction B issues at time t + 2, then the slack on the edge

AB is 2 cycles. Instruction A could be delayed 2 cycles without delaying B.

Once all of the edge local slack values have been calculated for a particular

instruction, the local slack of each static instruction is calculated according to the

following definition:

Local Slack(i) = min
j∈consumers(i)

EdgeLocalSlack(ij)

Suppose an instruction A feeds three instructions B, C, and D, with edge local slack

values of 1, 2, and 4. The local slack on instruction A is 1 cycle, because instruction

A could be delayed only 1 cycle before delaying a consumer.

It is important to notice that the issue and ready times required by SlackProfile

are, by definition, already generated and used in the course of calculating local slack.

Acquiring these times doesn’t require heavier profiling, just more verbose profiler

output. The profiler outputs this information on a per-static instruction basis, using

averages over all profiled dynamic instances. Average issue and ready times for an

instruction are reported relative to the issue time of the first instruction in its basic

block (a convenient fixed reference point).

Calculating issue and ready times from local slack estimates. Although

modifying a local slack profiler to output issue and ready times requires no extra

computation, there is also a clever way to simply calculate the Issue and Ready times

from local slack profiles without requiring any additional output. This method only

works for mini-graphs that are connected in a dataflow graph, and is consequently

not a general-purpose solution. It is, however, worth introducing as an alternative

to modifying a slack profiler.

A good visual analogy is as follows. Think of a connected dataflow graph as

being implemented with physical links like ropes, where the length of each link is

the amount of slack on the corresponding edge. Now think of terminal outputs in

127

this graph (instructions that have no outputs of their own) as small weights and of

all other instructions as balloons. Then let the rest of the instructions float up and

down as they may. The height to which each instruction rises indicates its relative

position in the original singleton execution schedule. The relevant formulas are:

Ready time back−propagation : Ready(n) = Issue(m)− Slack(nm)

Issue time back−propagation : Issue(n) = Ready(n)− ExLat(n)

where m depends on n.

B

CA

E

D

F

SLACK(AB)

= 1

SLACK(CD)

= 0

SLACK(DE)

= 0
SLACK(BE)

= 3

SLACK(EF)

= 1
E

F

SLACK(EF)

= 1

x-8

x-7

x-6

x-5

x-4

x-3

x-2

x-1

x

B

C

A

E

D

F

SLACK(AB)

= 1

SLACK(CD)

= 0

B

E

D

F

SLACK(DE)

= 0

SLACK(BE)

= 3

(a) (b) (c) (d)

Figure 3.20: Calculating Issue and Ready times from Local Slack Estimates.

Figure 3.20 shows an example of this procedure, beginning with six dependent

instructions and the edge local slack values for each dependent edge in Figure 3.20a.

Each instruction has an execution latency of 1 cycle. Instruction F is the terminal

output instruction in the graph, arbitrarily assigned the issue time x. In Figure 3.20b,

the issue time of the directly dependent instruction E is calculated. E has a 1-cycle

execution latency and the edge from E to F has a slack of 1. Applying the ready time

propagation formula yields Ready(E) = Issue(F)− Slack(EF) = x− 1. Applying

the issue time propagation formula we get Issue(E) = Ready(E) − ExLat(E) =

(x − 1) − 1 = x − 2. In Figure 3.20c, the procedure repeats for instructions B and

128

D along the edges BE and DE respectively. Finally, in Figure 3.20d, the procedure

repeats for instructions A and C along edges AB and CD respectively. With this

complete execution schedule, it is simple to forward-calculate Issue and Ready times

needed for the SlackProfile selection algorithm.

Think globally, act locally. In the strictest terms, delay on a given instruc-

tion translates into IPC loss only if it consumes more than that instruction’s global

slack. However, experience shows that local slack is a more useful indicator of mini-

graph performance impact than global slack. Indeed, although using global slack

yields higher coverage rates (34.8% compared to local slack’s 31%), it yields far

worse performance (10.9% improvement compared to local slack’s 17.6%, with 14%

of benchmarks experiencing slowdowns). The problem with global slack is that it is

a quantity not exclusive to a single instruction. Whereas local slack is “owned” by

a particular instruction, global slack is “shared” by all instructions on a dependence

chain to the critical path.

C

B

A

local = 1,

global = 1

c
ri
ti
c
a
l
p
a
th

n-4:

n-3:

n-2:

n-1:

n:

local = 0,

global = 1

local = 0,

global = 0

for each

 critical node

(a)

Original

Execution Times

(b)

Execution Times

if B Delayed

(c)

Execution Times

if A Delayed

(d)

Execution Times

if A & B Delayed

C

B

A

C

B

A

C

B

A

no delay no delay

delay!

Figure 3.21: Local vs. Global Slack.

Figure 3.21 illustrates. Figure 3.21a shows the execution schedule of a shaded

critical path ending in C and two instructions—A and B—on a non-critical path that

feeds C. Instruction B is ready one cycle before C needs it, and therefore has 1 cycle

of local slack. Because C is a critical instruction, B’s 1 cycle of local slack translates

129

directly into 1 cycle of global slack. (As shown in Figure 3.21b, delaying B does not

delay the critical instruction C.)

Instruction A, on the other hand, is ready exactly as instruction B needs it, and

therefore has no local slack. However, because B has 1 cycle of global slack, A, too,

has 1 cycle of global slack. (As shown in Figure 3.21c, delaying A might delay B, but

it does not delay C.)

Selecting Mini-Graphs with Local Slack

Identify mini-graphs

Compute local-slack profile on singleton program

Prune mini-graphs

Generate templates

while (template pool not empty & budget not exceeded)

 Choose T, template with largest coverage

 Choose M, all mini-graph instances of T

 Kick out overlaps

Selecting Mini-Graphs with Global Slack

Identify mini-graphs

Compute global-slack profile on singleton program

Prune mini-graphs

Generate templates

while (template pool not empty & budget not exceeded)

 Choose T, template with largest coverage

 Choose M, all mini-graph instances of T

 Kick out overlaps

 Re-compute global slack profile on new mini-graph program

 Re-prune mini-graphs

Figure 3.22: Incorporating Local vs. Global Slack into Selection.

SlackProfile decides on a per-mini-graph basis whether a particular delay can be

absorbed by the program. If, independently, SlackProfile were to permit the con-

sumption of the 1 cycle of global slack held by both A and B, the result is a delay

to the critical path (see Figure 3.21d). Avoiding this “over-consumption” of global

slack requires a re-profiling pass over the entire program to recalculate the critical

path and global slack values for each node. Figure 3.22 illustrates by showing the

pseudo code used to incorporate local slack (left) and global slack (right) into the

selection algorithm. When using local slack, the profile is obtained once. When

using global slack, the profile is re-computed after each mini-graph is selected. This

approach is simply not feasible for programs that have potentially tens of thousands

of mini-graphs.

The beauty of local slack is that it is owned by one and only one instruction.

Tracking local slack allows the delay in Figure 3.21b and not the delay in Figure

3.21c. The critical path is not be delayed.

Performance and coverage. Figure 3.23 shows the IPC (left) and coverage

130

Performance of selection
algorithms

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77
78 benchmarks, sorted worst to best

R
el

at
iv

e
IP

C

Slack-Profile (+20.1%)

Struct-Bounded-2 (+17.0%)

4-wide (+ 15%)

Struct-All (+ 6.4%)

3-wide

(max=1.53)
Coverage of selection

algorithms

0

10

20

30

40

50

60

1 7 13 19 25 31 37 43 49 55 61 67 73 79

78 benchmarks, sorted worst to best

C
ov

er
ag

e
R

at
e

Struct-All (36.6%)

Slack-Profile (32.2%)

Struct-Bounded-2
(+29.1%)

Figure 3.23: Comparison of SlackProfile with other models. Left: IPC Relative to a
3-wide processor. Right: Coverage.

131

(right) of mini-graphs selected using StructAll, StructBounded2, and SlackProfile on a

3-wide processor. SlackProfile provides performance that is strictly superior to any

other selection scheme. While both StructBounded2 and SlackProfile more than match

the IPC improvement of actually increasing processor resources to a 4-wide pro-

cessor, SlackProfile outperforms StructBounded2 with an average improvement of 20%

(compared to 17%) because of its superior coverage (32% v.s 29%). Only 8 of 78

programs perform worse than than 4-wide processor. A single benchmark, mcf, ex-

periences slowdowns with respect to the 3-wide processor. This is due to the fact

that SlackProfile calculates the execution time of mini-graphs assuming that loads hit

in the cache. The poor memory behavior of mcf makes this assumption false, and

the ability to accurately calculate delays is compromised. The result is a 3% overall

slowdown.

The key to SlackProfile’s success is its combination of aggressive coverage (32% on

average) and intelligent serialization avoidance. It is aggressive enough to outperform

StructAll on the right side of the graph, and selective enough to outperform StructNone

on the left. SlackProfile greatly outperforms the 4-wide “target selector.”

Breaking down the model. The SlackProfile model has two components: mini-

graph-induced instruction delay (rules #1-3) and impact of delay on consumer in-

structions (rule #4). The graph in Figure 3.24 isolates the contribution of these

components. For comparison, the graph also shows full SlackProfile, StructAll, and a

non-mini-graph 4-wide machine.

Contribution of “consumer delay”. SlackProfile-Delay corresponds to a par-

tial model that does not include rule #4. This model rejects mini-graphs whose

output is delayed, regardless of whether that delay can be absorbed by consumer in-

structions. It generates a strictly smaller mini-graph candidate pool than SlackProfile.

On average, explicit accounting for the impact of delay on consumers contributes 2%

performance. However, it does change the slope of SlackProfile, contributing 4% for

some programs on the right side of the graph while actually reducing the IPC of

132

Isolating components of Slack-Profile

0.9

1

1.1

1.2

1.3

1.4

1.5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77
78 benchmarks, sorted worst to best

R
el

at
iv

e
IP

C

Slack-Profile (+20.1%)

Slack-Profile-Delay (+18.2%)

Slack-Profile-SIAL (+17.6%)

4-wide (+ 15%)

Struct-All (+ 6.4%)

3-wide
(min=.58)

(max=1.53)

Figure 3.24: Isolating Components of SlackProfile.

133

a few programs on the left. Here, slightly reduced coverage is exposing the few

pathological mini-graphs that both SlackProfile and SlackProfile-Delay admit.

Contribution of “serialization delay”. The difference between SlackProfile-

Delay and StructAll corresponds to the contribution of explicit accounting of se-

rialization delay. Obviously, it is this component of the model that accounts for

bulk of SlackProfile’s advantage over serialization-blind selection schemes. SlackProfile-

SIAL (SIAL=Serial Input Arrives Last) is a variant of SlackProfile-Delay that ignores

actual issue delays and focuses only on operand arrival times. Some aggregation

schemes [58] use SIAL as their serialization-avoidance heuristic. The difference be-

tween SlackProfile-Delay and SlackProfile-SIAL shows that explicit accounting for delay

is preferred to the operand-arrival-order heuristic. Although the difference is only

0.5% on average, SlackProfile-SIAL performs a consistent 2% worse than SlackProfile-

Delay on the left-hand side of the graph.

Robustness of slack profiles. In the experiments so far, SlackProfile—the best

performing selector—used “self-trained” profiles collected from simulations on the

target configuration (the reduced processor) and on the target program data input

set. Although self-training with respect to the target microarchitecture is realistic,

self-training with respect to the input data set is not; inputs vary across dynamic

program invocations. Here, we measure the robustness of slack profiles across mi-

croarchitecture configurations and program input data sets.

Robustness to machine configuration. Intuitively, the main determinants

of performance (and subsequently of slack) are the dataflow graph, the latency of

the memory system (via cache misses) and branch predictor (via mis-predictions),

and the capacity and bandwidth of the pipeline. Of these, the factors that are most

likely to vary across machines are pipeline bandwidth and capacity, and on-chip

memory-system capacity.

The graph in Figure 3.25 shows the performance S-curve for all 78 programs

running self-trained SlackProfile mini-graphs on a 3-wide processor. In addition to

134

Performance Sensitivity to Machine Configuration

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

IP
C

 re
la

tiv
e

to
 3

-w
id

e

Self (+20.1%) cross 2-wide (+18.0%)
cross 8-wide (+20.4%) cross dmem/4 (+20.4%)

Figure 3.25: SlackProfile Robustness: Microarchitecture Sensitivity (Performance).
Profiles generated with 2-, 8- wide machines, as well as with a machine with 1/4 the
memory hierarchy (cache sizes). Relative Performance. Each vertical set of points
compares the three cross-trained with the self-trained (3-wide) results.

this S-curve, the graph also shows results for mini-graphs cross-trained on three

configurations: (i) a further reduced 2-wide issue processor (cross 2-wide, circle), (ii)

an 8-wide issue processor (cross 8-wide, triangle), and a reduced processor with an

8KB data cache and a 256KB L2 (cross dmem/4, diamond). These are not shown as

S-curves, but rather as points at the same horizontal position as the corresponding

program on the S-curve.

The performance of cross-trained mini-graphs is stable across these three con-

figurations, suggesting that slack profiles are robust across a relatively wide range

of realistic microarchitectures. This is evidenced by the fact that most points lie

directly under the self-trained S-curve. IPC is occasionally somewhat lower-and cov-

erage somewhat higher-for mini-graphs selected using the 2-wide issue profile (circle).

This is intuitive. The 2-wide issue processor generally yields more execution slack as

ready instructions wait due to limited issue bandwidth. A profile generated on a rel-

atively reduced machine results in the selection of a few harmful mini-graphs whose

delay cannot be absorbed on a more provisioned processor that typically generates

less slack.

Robustness to machine configuration is detailed further in Figure 3.26. In this

135

Training on 2-wide

1- 5 %
degradation

23% < 1%
degradation

67%

5 - 10 %
degradation

6%

> 10 %
degradation

4%

Training on 8-wide

5 - 10 %
degradation

3%

< 1%
degradation

83%

1- 5 %
degradation

14%

Training on 1/4 memory hierarchy

< 1%
degradation

94%

1- 5 %
degradation

6%

Figure 3.26: SlackProfile Robustness: Microarchitecture Sensitivity (Breakdowns).
Profiles generated with 2-, 8- wide machines, as well as with a machine with 1/4
the memory hierarchy (cache sizes). Performance Degradation. Breakdown of IPC
loss for each machine configuration. Relative to self-trained performance (not 3-wide
IPC).

Figure, the IPC degradation associated with each cross training experiment is de-

tailed across all benchmarks. When trained on a 2-wide machine, 90% of benchmarks

experience a degradation of less than 5%. When trained on an 8-wide machine or one

with a smaller memory hierarchy, this number increases to 97% and 100% of bench-

marks. Here, the 5% IPC degradation is relative to the self-trained performance,

not the 3-wide IPC. For example, if a benchmark exhibiting a 40% speedup with

mini-graphs is degraded by 5%, the IPC improvement is now 33% improvement, not

an overall performance loss.

Robustness to input sets. Intuitively, slack profiles should be insensitive to

inputs. Slack is largely a product of parallelism, branch predictability, and memory

behavior. These factors are regarded as being program—not input—specific.

The left graph of Figure 3.27 shows performance results for SPEC and MiBench

programs running SlackProfile mini-graphs. In addition to the self-trained mini-graphs

S-curve (self), there are points for mini-graphs cross trained on a different data input

set (cross-input, circle): ref for SPEC and small for MiBench. The right graph of

Figure 3.27 shows a breakdown of how many benchmarks experience slowdowns when

136

Performance Sensitivity to Program Input Sets

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1 5 9 13 17 21 25 29 33 37 41 45

IP
C

 re
la

tiv
e

to
 3

-w
id

e self (+18.6%)

cross input (+16.9%)

1- 5 %
degradation

23%

> 10 %
degradation

4%
5 - 10 %

degradation
2%

< 1%
degradation

71%

Figure 3.27: SlackProfile Robustness: Program Input Sensitivity. Profiles generated
with ref inputs. Left: Relative Performance. Each vertical set of points compares the
ref-trained with the self-trained results. Right: Performance Degradation. Break-
down of IPC loss relative to self-trained mini-graph runs.

trained on different input sets. Again, there is little difference (less than 2% absolute,

on average) in both coverage and performance between self-trained and cross-trained

mini-graphs, suggesting that slack profiles are robust across program input data sets.

Only 1 of 48 benchmarks experiences an IPC loss compared to the original 3-wide

non-mini-graph performance. Where variation does occur, the reason is differences

in code coverage between the two runs. Such differences can arguably be eliminated

by training on multiple input sets that exercise most of the static code.

3.4.2 SlackDynamic

SlackDynamic implements SlackProfile in hardware. Rather than pruning the mini-graph

candidate pool before selection, SlackDynamic identifies mini-graphs with harmful se-

rialization at run-time and disables them. As explained in Section 2.2, a mini-graph

is disabled by restoring the original outlining jump in the instruction cache and over-

writing the mini-graph handle with an actual nop. SlackDynamic requires no profiling

support and can detect serialization delays based on actual program behavior rather

than qualitative heuristics or predictive models based on profiles of non-mini-graph

runs.

137

Like SlackProfile, SlackDynamic targets serialization directly as the root of perfor-

mance loss; it considers a mini-graph harmful if it experiences serialization delay and

if this serialization delays the execution of a consumer instruction.

Detecting serialization delay. To recognize when a mini-graph is actually de-

layed by a serializing input, SlackDynamic begins by tracking the last-arriving operands

to mini-graphs. This logic, originally introduced as part of the dynamic “shotgun”

critical path profiler [33], simply tracks operand arrival order.

Figures 3.28a and 3.28b illustrate. In the first case (Figure 3.28a) the final

input arriving to the mini-graph (r1) feeds the first instruction of the mini-graph.

Although there is a serial input (r2) the mini-graph does not wait for this input,

and the potential serialization does not manifest. In the second case (3.28b) the

final input to the mini-graph (r2) is the serializing input. This scenario—referred

to in this dissertation as Serial Input Arrives Last (SIAL)—was adopted as the

serialization-avoidance heuristic by macro-op scheduling [58].

(b)
Serial Input

Arrives Last

(SIAL)

(a)

Serialization

Does Not

Manifest

(c)

Serialization

Manifests,

Affects Nothing

(d)

Serialization

Manifests,

Delays Consumer

Ready(r1) > Ready(r2) Ready(r2) > Ready(r1)

Ready(r2) == Issue(mg)

Ready(r3) > Ready(r4)

Ready(r2) > Ready(r1)

C

B

A

r1 r2

C

B

A

r1 r2

C

B

A

D

r1 r2

r3 r4

Ready(r2) > Ready(r1)

Ready(r2) == Issue(mg)

Ready(r4) > Ready(r3)

C

B

A

D

r3 r4

r1 r2

Figure 3.28: Four Dynamic Serialization Scenarios. Bold lines show last incoming
edges to an instruction.

One factor that SIAL does not consider is the actual issue time of the mini-graph

relative to the arrival of the last operand. SlackDynamic does consider this factor. In

138

SlackDynamic, if a last arriving operand is a serializing operand (i.e., an input to an

instruction that isn’t the first in the mini-graph) and if the mini-graph issues as soon

as the operand arrives, serialization delay is flagged.

Detecting consumer delay. To determine whether a mini-graph’s serialization

delays a consuming instruction, SlackDynamic also tracks last-arriving operands and

relative issue times for instructions that consume mini-graph output values. If a

mini-graph consumer is delayed by a mini-graph which is itself serialized, the mini-

graph is disabled.

Figures 3.28c and 3.28d illustrate. In the first case (Figure 3.28c) the serial

input (r2) arrives last and the mini-graph issues as this final input arrives, but the

mini-graph output (r4) is not the last arriving input to the mini-graph consumer D.

Although serialization appears to have delayed the creation of r4, it does not delay

the issue time of r4’s consumer. In other words, although serialization manifested,

it has had no affect. The second case (Figure 3.28d) is identical at first: serialization

manifests. This time, however, the mini-graph output, r4, is the last arriving input

to the mini-graph consumer D. In this case, serialization not only manifest, but

delayed the mini-graph consumer. SlackDynamic disables the mini-graph in Figure

3.28d.

Because execution schedules can change over dynamic instances, SlackDynamic

uses a simple saturating counter hysteresis scheme to both avoid rashly disabling a

mini-graph that serializes only a few time and to support mini-graph resurrection.

Downsides of dynamic pruning. There are two potential downsides to dy-

namic mini-graph pruning.

The first is reduced coverage. Static selection algorithms restrict the pool of

initial mini-graph candidates; instructions that participate in rejected candidates

can still contribute to coverage as participants of other (overlapping) mini-graphs.

In contrast, when SlackDynamic rejects a mini-graph, the lost coverage cannot be

139

(42 mgs)

(a) Static Pruning

(b) Dynamic Pruning

(42 mgs) (35 mgs) (18 mgs)

(19 mgs) (15 mgs)

1: Detection
Detect all legal mgs

1.5: Pruning
Remove mgs with

harmful serialization

2: Selection
Select disjoint mgs,

maximize coverage

until MGT full

1: Detection
Detect all legal mgs

2: Selection
Select disjoint mgs,

maximize coverage

until MGT full

3: Disabling
Disable mgs with

harmful serialization

Figure 3.29: Selection with (a) Static Pruning and (b) Dynamic Pruning

reclaimed because the singletons cannot be dynamically re-constituted into new mini-

graphs. Dynamic pruning disables mini-graphs with no possibility of replacement.

Figure 3.29 illustrates. Figure 3.29A shows the previously-introduced static prun-

ing algorithm. After pruning the 7 harmful mini-graphs, there are still 35 to choose

from. In the case of dynamic pruning, (Figure 3.29B), 4 of the 19 selected mini-

graphs are harmful. Once these 4 mini-graphs are disabled, there are only 15 of the

original 19 remaining. This downside is common to techniques that combine static

aggregation with dynamic pruning.

The second downside is reduced IPC and is a function of mini-graphs’ use of

outlining, which optimizes for mini-graph-enabled execution at the expense of mini-

graph-disabled execution. Disabling an outlined mini-graph may remove execution

serialization, but it introduces fetch serialization in the form of two additional jumps.

In some cases, this exchange actually back-fires; the delay associated with outlining

can be worse than the original serialization delay.

Performance and coverage. Figure 3.30 shows the IPC (left) and coverage

140

Performance of selection algorithms

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1 7 13 19 25 31 37 43 49 55 61 67 73

78 benchmarks, sorted worst to best

R
el

at
iv

e
IP

C

Slack-Profile (+20.1%)

Struct-Bounded-2 (+17.0%)

4-wide (+ 15%)

Slack-Dynamic (+9.5%)

Struct-All (+ 6.4%)

3-wide

Coverage of selection algorithms

0

10

20

30

40

50

60

1 7 13 19 25 31 37 43 49 55 61 67 73

78 benchmarks, sorted worst to best

C
ov

er
ag

e
R

at
e

Struct-All (36.6%)

Slack-Profile (32.2%)

Struct-Bounded-2 (+29.1%)

Slack-Dynamic (+29.0%)

Figure 3.30: Comparison of all Models. Left: IPC Relative to a 3-wide processor.
Right: Coverage of algorithms.

141

(right) of mini-graphs selected using the different slack-based schemes on a 3-wide

processor. The graphs include S-curves corresponding to the two structural selectors

StructAll and StructBounded2. SlackDynamic (box) has similar coverage (29.0%) but

worse average IPC improvement (9.5%) than StructBounded2 (29.1% coverage and 17%

IPC improvement). SlackDynamic has lower coverage than SlackProfile because it cannot

re-constitute dynamically-disabled mini-graphs into smaller, more conservative mini-

graphs. And although it out-performs StructAll, SlackDynamic under-performs the

other serialization-aware selection schemes. This is because although SlackDynamic

eliminates execution serialization penalties, it effectively replaces them with fetch

serialization penalties as a disabled mini-graph executes in outlined form, which

involves two jumps per instance.

Breaking down the model. Like SlackProfile, the SlackDynamic serialization

avoidance model also has two components: serialization delay and impact on con-

sumers. SlackDynamic also has additional performance components that correspond to

the outlining penalty for disabled mini-graphs and loss of coverage. Loss of coverage

is difficult to isolate, but the bottom graph of Figure 3.31 attempts to isolate the

other three.

Contribution of outlining penalty. Ideal-SlackDynamic is an implementation

of SlackDynamic in which the outlining penalty for disabled mini-graphs is removed.

This curve isolates the performance of SlackDynamic’s model from the performance

effects of the mini-graph encoding scheme. On average, the IPC penalty of outlining

degrades SlackDynamic’s IPC by 5.5%. Without this penalty, SlackDynamic is much

more competitive with SlackProfile and almost outperforms a simple 4-wide, non-

mini-graph processor.

Contribution of “consumer impact”. Ideal-SlackDynamic-Delay is a penalty-

free SlackDynamic selector that considers only serialization delay, not impact on con-

suming instructions. This model disables more mini-graphs than SlackDynamic. The

142

Isolating components of Slack-Dynamic

0.8

0.9

1

1.1

1.2

1.3

1.4

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77
78 benchmarks, sorted worst to best

R
el

at
iv

e
IP

C

4-wide (+ 15%)

Ideal-Slack-Dynamic (+14.1%)

Ideal-Slack-Dynamic-Delay (+13.8%)

Ideal Slack-Dynamic-SIAL (+10.9%)

Slack-Dynamic (+9.5%)

Struct-All (+ 6.4%)

3-wide
(min=.58)

Figure 3.31: Isolating Components of SlackDynamic.

143

contribution of explicit accounting for the potential absorption of delay is the dif-

ference between this selector and Ideal-SlackDynamic. Interestingly, in the idealized

SlackDynamic case, explicit consideration of consumer impact makes less than 1% dif-

ference on average. However, when SlackDynamic is used with outlining penalties, this

component of the model contributes almost 2% to performance. Here, explicit ac-

counting avoids disabling mini-graphs over-aggressively and incurring their outlined

execution penalty.

Contribution of “serialization delay”. The contribution of SlackDynamic’s

serialization delay detection component is the difference between Ideal-SlackDynamic-

Delay and StructAll. As in SlackProfile, delay accounting provides the bulk of

SlackDynamic’s impact. Ideal-SlackDynamic-SIAL again compares true delay account-

ing with heuristic tracking of relative operand arrival times. Here—more so than

for SlackProfile—explicit delay accounting provides superior performance, yielding an

IPC difference of 3%.

3.4.3 Analysis: Comparison with Exhaustive Search

This section presents a detailed analysis of the selection algorithms algorithms us-

ing an exhaustive limit study. Mini-graph selection algorithms choose hundreds of

mini-graph templates from tens of thousands of candidates. Because of the huge

number of possible combinations and because the choice of one template affects

the pool of remaining templates, it is not computationally feasible to perform a

traditional “limit study” to determine the ideal set of mini-graphs for each pro-

gram. To analyze our selection algorithms, we create a significantly smaller search

space over which we can exhaustively search. For the ten shortest-running bench-

marks (adpcm.encode, adpcm.decode, auto.susan.corners, jpeg.decode, jpeg.encode,

mesa.osdemo, office.stringsearch, pegwit.decode, pegwit.encode, unepic) we choose

the 10 most frequently occurring non-overlapping static mini-graphs. We then eval-

uate all 1024 combinations of mini-graphs and compare the sets chosen by each

144

selector to the best performing set chosen by exhaustive search.

For each benchmark, Figure 3.32 shows a coverage (x-axis) and IPC (y-axis)

scatter plot for the 1024 possible mini-graph sets running on a 3-wide processor.

Again, because only 10 static mini-graphs are considered, this data does not represent

the actual coverage or IPC for the 10 benchmarks. The results of each selection

algorithm is highlighted at its coverage/IPC intersection.

For most benchmarks, the points on the scatter plot start in the bottom left

corner (low coverage, low IPC) and move to the top right corner (high coverage,

high IPC). The trend is approximately “coverage improves performance.” If this

were always the case, the points would simply be in a straight line. The benchmark

most closely exhibiting this behavior is adpcm.decode, the first—top-left—benchmark

in the figure.

However, because some mini-graphs induce performance loss, the points gen-

erally form a thick parallelogram rather than single line (e.g., adpcm.encode, peg-

wit.encode). The scatter plot for unepic is labeled to show the various possible effects.

Beginning with few mini-graphs (no coverage, no IPC change), by adding only help-

ful mini-graphs (line 1), IPC and coverage increases. By further adding harmful

mini-graphs (line 2) coverage continues to increase, but IPC drops. If instead, one

were to add only harmful mini-graphs in the beginning (line 3), IPC degrades while

coverage increases. Adding helpful mini-graphs (line 4) then increases both coverage

and performance again. When different templates affect performance to greater de-

grees than others, the parallelogram may separate into separate bands (jpeg.decode,

mesa.osdemo) or even two completely disjoint sets (office.stringsearch).

The results for the individual selection algorithms are strikingly intuitive.

StructAll (medium diamond) occupies the right-most point in each graph; it includes

all 10 mini-graphs. StructNone (black diamond) occupies the left-most, i.e., lowest

coverage, point among all non-exhaustive selectors. This may not be the left-most

point on the graph (e.g., adpcm.decode) because some exhaustive combinations will

145

adpcm.decode

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

0 10 20 30 40
Coverage

R
el

at
iv

e
IP

C 1024 choices
best performing (+15.4%)
struct_all (+15.3%)
slack_profile (+13.2%)
slack_dynamic (+10.7%)
struct_bounded_2 (+8.0%)
struct_none (+4.4%)

adpcm.encode

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

0 10 20 30 40 50
Coverage

R
el

at
iv

e
IP

C 1024 choices
best performing (+12.0%)
slack_dynamic (+11.4%)
struct_all (+9.2%)
slack_profile (+8.5%)
struct_bounded_2 (+2.8%)
struct_none (+1.5%)

auto.susan.corners

0.99

1

1.01

1.02

1.03

1.04

0 2 4 6 8 10
Coverage

R
el

at
iv

e
IP

C 1024 choices
best performing (+3.0%)
struct_all (+2.4%)
slack_profile (+1.8%)
struct_bounded_2 (+1.4%)
slack_dynamic (+0.6%)
struct_none (+0.3%)

jpeg.decode

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

0 5 10 15 20
Coverage

R
el

at
iv

e
IP

C 1024 choices
best performing (+12.6%)
slack_dynamic (+10.0%)
slack_profile (+9.1%)
struct_all (+9.0%)
struct_bounded_2 (+6.4%)
struct_none (+1.2%)

jpeg.encode

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

0 5 10 15 20 25 30
Coverage

R
el

at
iv

e
IP

C 1024 choices
best performing (+13.1%)
slack_profile (+11.6%)
struct_bounded_2 (+9.4%)
struct_all (+9.2%)
slack_dynamic (+9.0%)
struct_none (+0%)

mesa.osdemo

0.98

1.03

1.08

1.13

1.18

1.23

0 5 10 15 20 25
Coverage

R
el

at
iv

e
IP

C 1024 choices
best performing (+18.6%)
struct_all (+17.8%)
slack_dynamic (+14.1%)
struct_bounded_2 (+8.2%)
slack_profile (+5.7%)
struct_none (+2.1%)

office.stringsearch

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0 5 10 15 20 25
Coverage

R
el

at
iv

e
IP

C

1024 choices
best performing (+1.2%)
slack_profile (+0.6%)
struct_none (+0.2%)
struct_bounded_2 (+0.2%)
struct_all (-12.1%)
slack_dynamic (-12.1%)

pegwit.decode

0.99

1

1.01

1.02

1.03

1.04

1.05

0 2 4 6 8 10 12
Coverage

R
el

at
iv

e
IP

C 1024 choices
best performing (+4.6%)
struct_all (+4.6%)
slack_profile (+4.4%)
slack_dynamic (+2.9%)
struct_bounded_2 (+2.5%)
struct_none (+0.3%)

pegwit.encode

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

0 2 4 6 8 10 12 14
Coverage

R
el

at
iv

e
IP

C 1024 choices
best performing (+5.2%)
struct_all (+5.2%)
slack_profile (+5.1%)
slack_dynamic (+3.3%)
struct_bounded_2 (+2.3%)
struct_none (+0.3%)

unepic

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

0 5 10 15 20
Coverage

R
el

at
iv

e
IP

C 1024 choices
best performing (+5.2%)
struct_all (+5.2%)
slack_profile (+5.1%)
slack_dynamic (+3.3%)
struct_bounded_2 (+2.3%)
struct_none (+0.3%)

1 2

3 4

Figure 3.32: Exhaustive Limit Study. Coverage vs. IPC Scatter Plot of all combi-
nations of 10 mini-graph candidates with combinations of five selectors highlighted.

146

exclude even mini-graphs not subject to serialization, resulting in lower coverage

than even StructNone. StructBounded2 (box), which heuristically allows bounded

serialization, typically has higher coverage and IPC than StructNone, usually still

residing in the lower right quadrant of the graph. The quantitative slack-based

selectors, SlackProfile (triangle) and SlackDynamic (light diamond), combine high

coverage with high IPC, with both approaching the IPC of the ideal mini-graph set

obtained by exhaustive search.

One nonintuitive result is the position of SlackDynamic, especially relative to

SlackProfile. In a realistic selection scenario, SlackDynamic has poorer coverage and

IPC than SlackProfile because of its inability to re-constitute dynamically disabled

mini-graphs into smaller, benign alternatives. In this less realistic experiment, this

disadvantage is eliminated because the initial pool consists only of non-overlapping

mini-graph candidates.

Performance Relative to Best Performing

0.8

0.85

0.9

0.95

1

ad
p.e as

.c
jpe
g.d

jpe
g.e

me
s.o
s

off
.ss

pg
w.
d

pg
w.
e

ue
pc av

g

slack_profile struct_all slack_dynamic struct_bounded_2 struct_none

Performance Improvement Relative to Baseline

0.95

1

1.05

1.1

1.15

1.2

1 2 3 4 5 6 7 8 9 10

best performing (+9%)

slack_profile (+6.4%)

struct_all(+6.2%)

slack_dynamic
(+5.19%)
struct_bounded_2
(+4.2%)
struct_none (+1.1%)

min = 0.88

Figure 3.33: Summary of Limit Study. (left) Performance of 5 selectors relative to
best performing combination of mini-graphs. (right) S-curve plot of 5 selectors for
10 benchmarks (sorted worst to best).

Figure 3.33 summarizes the individual results of Figure 3.32. On the left, each

selector’s IPC is shown, relative to the best performing mini-graph combination for

that benchmark. The final (11th) set of clusters show average IPC across all 10

benchmarks for each selector. On the right, the familiar s-curve graphs are shown.

This graph is of particular interest because—once again—it emphasizes robustness.

For example, although on average StructAll and SlackDynamic perform almost as well

147

as SlackProfile, they both induce a 12% slowdown in one case. (And this is with only

10 static mini-graphs!) StructBounded2 and StructNone continue to be robust, but un-

remarkable performance improvements in all cases. SlackProfile is both robust and

the closest to the best performing (achieving 6.4% improvement compared to the

best possible 9%).

Examining SlackProfile. In some cases (e.g., auto.susan.corners, jpeg.decode),

the best performing set has both higher IPC and higher coverage than SlackProfile.

This means that the best set includes mini-graphs which SlackProfile rejects. Although

these mini-graphs induce delays by more than their slack, they still improve IPC.

There are several possible reasons for this. In some cases, a mini-graph’s constituent

instructions are so fetch critical that coalescing them into a handle creates enough

slack to compensate for the delay. SlackProfile does not account for fetch criticality—

none of our models do—and thus has no means of assessing such a trade-off. The

same effect can occur when ALU resources are the bottleneck; and coalescing in-

structions into a mini-graph might induce delay but ultimately be beneficial because

it increases the number of ALUs available by leveraging the latter stages of the ALU

Pipelines.

In some cases (e.g., unepic), SlackProfile has higher coverage than the best per-

forming set. In this case, SlackProfile includes a mini-graph which the best perform-

ing set excludes. When chosen in isolation, this mini-graph actually improves IPC!

That this mini-graph is not included in the best performing set speaks to the fact

that mini-graph selection is non-decomposable. (Similarly, sometimes mini-graphs

without any serialization vulnerability are not included in the best performing set!)

Estimating how a mini-graph might change the execution of an unmodified program

is not always an accurate indicator as to how it might change the execution of a pro-

gram with other mini-graphs. Because SlackProfile does not re-profile local slack after

each mini-graph is selected, it assesses mini-graphs in isolation without considering

potential interference.

148

3.5 Related Work on Aggregate Selection Schemes

The selection algorithms presented in this chapter address the problem of serial-

ization. Although these algorithms represent the most extensive treatment of the

subject of serialization, they are not the sole attempts at avoiding serialization penal-

ties. Furthermore, although the algorithms here are presented and evaluated in the

context of mini-graphs, their applicability should extend to other aggregate schemes

[23, 58, 89, 96].

3.5.1 Treatment of Serialization

A few (non-mini-graph) aggregation proposals address the subject of serialization.

Macro-op scheduling [58] avoids “harmful grouping” by disabling macro-ops whose

serializing input is the last-arriving operand. This approach is referred to in Section

3.4.1 as Serial Input Arrives Last (SIAL). In contrast, SlackDynamic detects actual

issue delay and the impact it has on dependent instructions.

Macro-op execution [47] uses a two-pass fusing algorithm to dynamically fuse x86

micro-ops. This algorithm is based on heuristics for instructions that tend to be on

the critical path (e.g., ALU operations), for ones that do not (e.g., stores), and for

instruction pairs that are likely to be critical (e.g., instructions near each other in

the original x86 code). Like StructBounded2, two-pass fusing is heuristic and does not

actually determine the critical path of the program nor does it quantify the potential

for or cost of serialization.

CCA graph selection [21] uses “slack” as a dataflow graph traversal tie-breaker,

not as a performance diagnostic. CCA exploits graph latency reduction which tends

to mask serialization problems.

149

3.5.2 Applicability to other Aggregate Schemes

Although presented in the context of mini-graphs, the selection algorithms presented

in this chapter should be applicable to the other aggregation schemes that target

dynamically scheduled processors [21, 58, 89]. Different aggregate schemes offer

different benefits. Benefits are a function of the underlying microarchitecture, the

pipeline stages and structures that exploit aggregation, aggregate size and interface

restrictions, and the use (or lack thereof) of custom aggregate acceleration.

Aggregation costs, on the other hand, are common to many aggregation

schemes. External serialization is almost unavoidable with the use of aggregation

in a dynamically-scheduled context. Internal serialization is less fundamental—

although several aggregation schemes do suffer from it—but it is also a lesser

effect.

The selection algorithms presented in this chapter are applicable to other aggre-

gation schemes (in varying degrees) because they focus on the aspect of aggregation

that is common to all of them: the cost of serialization. Although as presented,

StructBounded2 and SlackProfile explicitly model internal serialization, this aspect of

the model can be easily removed if it does not apply. SlackDynamic only implicitly

accounts for internal serialization.

The presented algorithms do not explicitly account for mini-graph performance

benefit; partly because the indirect benefits of resource amplification are smaller

than the direct costs of serialization and partly because they are also more difficult to

model. However, the models can be easily extended to account for direct performance

benefits, like ones provided by custom latency reduction [21, 89] or explicit tolerance

of some latency in the underlying micro-architecture, e.g., a pipelined scheduler [58].

Early experiments with macro-op scheduling indicate that SlackProfile (modulo the

penalties of outlining and reduced coverage) is a more selective, better performing

serialization-filter than macro-op’s own SIAL heuristic and that a re-targeted version

of SlackProfile produces better results than the heuristics used by macro-op execution

150

[47]. The SIAL results presented in Section 3.4.1 provide additional support for this

observation, albeit in the context of mini-graphs, not macro-ops.

3.6 Summary

Mini-graph processing extends the benefits of instruction fusion to more pipeline

stages, processor structures, and dynamic instructions than most other instruction

fusion techniques. The benefit of this is increased resource amplification. The cost is

serialization. Serialization, the introduction of an artificial dependence between two

instructions, is specifically introduced by virtue of issuing and executing instruction

sequences—particularly, but not exclusively, independent sequences—as an atomic

unit. Serialization can delay the execution of instructions found within a mini-graph,

causing performance degradation in some benchmarks.

This chapter introduces techniques for avoiding serialization while still maximiz-

ing coverage. The challenge lies in the fact that structural inspection of a mini-graph

is not sufficient for detecting mini-graphs that actually lead to performance degrada-

tions. Some mini-graphs that are vulnerable to serialization do not actually induce

execution delays in practice. Furthermore, some execution delays do not impact

total program performance. A slack-based approach to detecting harmful serializa-

tion is able to detect not only which instructions will induce execution delays when

placed in a mini-graph, but which execution delays will actually affect the overall

performance of a program. By detecting and pruning out the rare, pathological

cases of performance-degrading mini-graphs, the techniques introduced in this chap-

ter manage to remove the performance threat of serialization while maintaining the

amplification benefits of mini-graph processing.

151

Chapter 4

Performance Analysis

This chapter explores the performance benefits of mini-graph processing. Section 4.1

shows a characterization of the four benchmarks suites used, showing how various

functional characteristics lead to more or less mini-graph coverage and how various

characteristics allow that coverage to translate to performance improvement. Section

4.2 analyzes the contributions of the different amplification benefits of mini-graph

processing to performance improvement. Section 4.3 analyzes mini-graph perfor-

mance improvement on an in-order machine and shows how performance contribu-

tors change in this new setting. Because Sections 4.2 and 4.3 both show instruction

cache capacity amplification to have a limited role in performance improvement, Sec-

tion 4.4 shows how instruction cache capacity amplification plays a greater role in

performance improvement with smaller instruction cache sizes. Section 4.5 considers

the coverage and performance implications of various MGT configurations.

4.1 Benchmark Suites

Mini-graph binaries are created from 78 Alpha binaries across four benchmark suites:

SPECint2000 (SPEC), MediaBench [60], CommBench [108], and MiBench [42]. The

original binaries are compiled for the Alpha EV6 using the Digital OSF compiler with

152

optimization flags -O3. All benchmarks are run to completion: SPEC programs on

their training inputs at 2% periodic sampling with warm-up; all other benchmarks

on their largest available inputs with no sampling. Not all of these suites (e.g.,

MiBench) actually target dynamically scheduled superscalar processors. They are

included to show the applicability of mini-graphs to different kinds of codes.

Tables 4.1 through 4.4 show a characterization of the 78 programs, with both suite

and total averages. Tables 4.2 and 4.2 show functional properties of the benchmarks,

beginning with the instruction mix. The first four classes are instructions that can

participate in integer-memory mini-graphs: loads, stores, conditional branches, and

single-cycle ALU operations. Single-cycle ALU operations are significant because

these instructions can occur multiple times per mini-graph, unlike memory instruc-

tions and conditional branches. The SPEC suite—with more memory instructions

and fewer single-cycle ALU operations—on the one hand sees the greatest increased

coverage with integer-memory mini-graphs and on the other hand is the most limited

in forming mini-graphs in the first place. The percentage of floating point operations

is shown to further characterize the benchmarks.

Next, the average dynamic basic block size is shown, where each basic block’s

size is weighted by execution frequency. Smaller basic blocks translate to fewer and

smaller mini-graph, because mini-graphs do not span basic block boundaries. Of

the four benchmark suites, SPEC has smallest basic blocks. Finally, the integer and

integer-memory mini-graph coverage rates for each benchmark are shown.

The microarchitectural characterization, shown in Tables 4.3 and 4.4, begins

with the IPC of 3-wide and 4-wide processors, both with and without mini-graph

processing as well as mini-graph–to–baseline IPC ratios (MG/3w, MG/4w) and the

4-wide–to–3-wide IPC ratio (4w/3w). As expected, the amplification offered by mini-

graph processing yields more performance improvement on the 3-wide machine than

it does on the more-provisioned 4-wide machine. Total and individual suite results

are shown at the bottom of Table 4.4. Once again, on average, a 3-wide mini-graph

153

load store control 1c ALU FP

25.5 8.1 13 50.3 0 7.1 7.6 32.9

28.2 5.4 12.1 51.5 0 7.2 13.3 34.2

24.7 19.5 11.4 25 14.3 9.7 4.4 13.2

25.2 21.2 11.6 23 13.9 9.5 3.3 12.5

23.6 22.1 12 24.4 12.4 9.5 3.6 12.9

24.7 9.6 15.7 44.7 0.1 5.7 9.3 29

23.5 15.6 16.9 38.6 0 4.5 3.5 21.7

20.2 6.7 12.2 59.7 0 9.8 18.2 38.3

28.8 6.1 21.8 30.6 0 4.5 4.8 33

21.7 8.9 17.1 46.1 0.1 4.7 13.9 36.1

27.8 16.8 14.9 36.6 0.1 6.4 5.5 24.1

30 15.2 15 34.4 0.4 5.9 5.7 24.9

22.3 7.2 13.4 49.4 4.5 5.2 11.6 29.9

27 16.9 17.8 32.1 0.2 5.4 2.6 25.4

26.3 8.6 11.6 44.6 6.7 6.2 5.5 20.8

30.5 11.7 11.5 35.2 7 9.1 4.9 15.4

6.6 2.7 10.6 77.4 0 3.8 28.7 34

6.3 1.1 11.6 78.9 0 4.9 22.1 40

13.4 2.3 13.8 47.9 21.2 5.1 2.3 25.2

12.4 3.7 19 59.8 1.4 4.7 16.8 42.9

12 3.5 19 60.4 1.4 4.9 17.2 42.8

18.9 12 16.6 46.2 0.4 6.2 9.2 28.7

6.7 3.8 8.5 71.7 2.7 8.7 25.3 40.8

15.6 2.3 3.4 68.3 1.3 15.7 31.1 39.4

19.1 8.6 5.6 62.6 0 18.2 19.9 42.1

21.7 7.3 12.8 56.4 0 4.9 14.6 45.9

26.2 12.8 8 35.8 9.4 8.8 7.8 26.1

28.8 14.3 8 38.1 1.5 9.1 9.9 33.8

23.7 11.5 7.6 38.1 10.1 9.2 5.9 21.7

16.5 6.1 8.8 51.9 15.9 5.2 9.7 30

26.1 2.9 5.7 59.9 3.6 11.7 25.1 34.3

20.3 5.6 10.5 61.2 1.5 6.9 12.6 35.6

18.1 5 10.8 63.6 1.5 5.5 14.2 36.2

12.6 9.4 16.1 54.2 4.5 6.2 10.5 32.7

21.6 9.4 6.8 56.3 1.5 19.2 17.6 35.6

21.6 9.4 6.8 56.3 1.5 19.2 17.7 35.6

35.5 9.4 19.9 20.4 4.6 3.6 1.1 33.7

13 7.1 16.9 53.6 6.8 5.5 7.6 33.7

19.1 4 12.9 61.7 0 6.6 12 43.8

16.9 4.7 14.2 62.5 0 6.4 16.4 55.6

18.4 9.2 6.8 60.3 0.5 11.5 18.4 37.4

18.7 11.3 10.9 53.9 0.5 5 10.8 38

12.2 5.7 18.1 60.1 0.5 4.4 10.1 45.1

13.5 4.5 15.2 54.2 8.5 4.5 10.4 35.1

25.5 6.8 18.8 44.1 0.4 6.3 6.3 27.6

18.3 11 18.7 46.1 0.2 5 8.4 30.7

int

coverage

(%)

intmem

coverage

(%)

dynamic

basic block

size

S
P
E
C

bzip2

crafty

eon.cook

eon.kajiya

eon.rushmeier

gap

gcc

gzip

mcf

M
E
D

IA
B
E
N

C
H

adpcm.dec

adpcm.enc

epic

g721.dec

g721.enc

gs.dec

gsm.dec

gsm.enc

jpeg.dec

jpeg.enc

mesa.mipmap

mesa.osdemo

mesa.texgen

mpeg2.dec

mpeg2.enc

pegwit.dec

pegwit.enc

unepic

gzip.enc

jpeg.dec

jpeg.enc

reed.dec

cast.enc

drr

frag

gzip.dec

tcpdump

C
O

M
M

cast.dec

benchmark
s
u
it
e instruction mix

%

perlbmk.scrabbl

perlbmk.diffmail

parser

reed.enc

rtr

vpr.route

vpr.place

vortex

twolf

Table 4.1: Functional Properties of Benchmarks across 3 suites: SPEC, MediaBench,
and CommBench

154

load store control 1c ALU FP

basicmath 15.1 9.7 16.4 53.3 1.5 5.7 9.1 31.8

bitcount 7.8 2.4 14.8 71.4 0.4 4.7 17.1 36.5

qsort 21.2 9.6 14.7 48.9 2 5.1 8.1 31

susan (corners) 32.7 1.2 6.5 57.2 0.7 11.5 7.6 27

susan (edges) 29.2 1.2 5.9 55.6 4 12 7 29.6

susan (smoothing) 22.2 0.3 8.6 54.5 0 4.5 0.8 24.5

jpeg.dec 21 10.4 5.5 59.3 0 23.1 16.3 41.1

jpeg.enc 22.3 7.3 11.6 57.1 0 5.2 15.4 44.8

lame 24.7 8.7 6.5 29.8 28.8 11 7.8 18.2

tiff (2bw) 18.8 8.1 5.9 44.9 0 10.2 5.5 22.9

tiff (2rgba) 25 14.2 2.2 55.1 0 2.6 14.7 24.4

tiff (dither) 14 6.8 14.5 62.9 0 4.7 24.4 43.7

tiff (median) 24.9 4.8 12.9 55.1 0 1.8 10.6 51.8

dijkstra 21.3 6.8 14.6 45.9 2.5 5.9 8.1 33.7

patricia 22.2 9.8 17.2 46.3 0.3 5.2 8.4 29

ghostscript 19.2 12.4 16.4 46.3 0.1 6.3 10.1 30.8

ispell 19.3 11.7 16.8 45.6 0.8 4.6 8.2 30

rsynth 25.5 8.7 10.6 30.1 24.4 7.5 9 21.8

stringsearch 10 14.1 19.7 52.8 0.3 5 4.2 41.3

blowfish.dec 22.3 10.7 7.4 51.4 1 6.3 13 32.8

blowfish.enc 22.3 10.7 7.4 51.5 1 6.5 13.2 32.1

pgp 19.2 6.9 8.5 58.5 0 7.4 9 31.8

rijndael.dec 28.9 7.1 5.8 53.8 1.7 13.4 15.7 35.7

rijndael.enc 29.7 7 5.4 55.1 0.4 13.7 16.3 37.4

sha 13.5 3.6 5.9 64.3 0.8 5.4 16.8 28.4

ADPCM.dec 6.4 2.6 10.3 78.2 0 3.9 12.8 25.6

ADPCM.enc 6.1 1 11.1 79.8 0 4.4 14.1 31.3

CRC32 21.7 13 13 47.8 0 4.5 0 26.1

FFT 16.1 9 11 49.3 11.7 8.9 12.8 28

IFFT 15.8 8.9 11.3 50.3 10.8 8.5 12.2 28.3

GSM.dec 8.3 4.6 8.8 69.6 2 8.8 22.6 40.1

GSM.enc 15.7 2.4 3.5 67.1 2.2 16.3 22.2 29.9

25.6 12.5 14.3 39.1 3.7 6.9 7.4 25.3

16.9 6.4 10.9 57.4 4.2 7.8 15.7 35.1

19.5 7.7 13.8 52.5 2.1 8.1 11.4 37.7

19.5 7.4 10.3 54.7 3 7.6 11.7 31.9

20.2 8.2 11.8 51.8 3.3 7.6 11.7 32.2ALL 78

SPEC

MEDIABENCH

COMM

MI BENCH

M
I

B
e
n
c
h

A
u
to

C
o
n
s
u
m
e
r

N
e
t

O
ff
ic
e

S
e
c
u
ri
ty

T
e
le
c
o
m

int

coverage

(%)

intmem

coverage

(%)

%

s
u
it
e

benchmark

instruction mix dynamic

basic block

size

Table 4.2: Functional Properties of Benchmarks in MiBench, averages of each suite,
and all 78 programs.

155

base MG MG/3w base 4w/3w MG MG/4w

1.59 1.89 1.19 1.87 1.18 2.01 1.07 0.00 2.42 29.5 30.5 26.5

1.91 2.30 1.20 2.20 1.16 2.51 1.14 0.13 1.67 25.9 27.9 25.3

2.08 2.20 1.05 2.26 1.08 2.34 1.04 0.01 0.56 9.4 10.0 8.8

1.93 2.00 1.04 2.06 1.07 2.11 1.03 0.03 0.36 7.7 8.6 7.2

2.02 2.08 1.03 2.17 1.07 2.20 1.01 0.02 0.43 8.6 9.3 7.7

0.94 0.98 1.04 1.00 1.06 1.02 1.03 0.03 2.98 21.6 23.1 20.0

1.38 1.48 1.07 1.48 1.08 1.56 1.05 0.48 5.05 14.3 15.6 12.0

1.81 2.07 1.14 2.03 1.12 2.19 1.08 0.00 4.04 28.0 29.7 27.0

0.21 0.20 0.96 0.22 1.06 0.21 0.98 0.00 32.90 24.9 27.5 19.8

1.00 1.03 1.03 1.07 1.07 1.08 1.01 0.00 4.43 26.0 28.3 22.5

1.50 1.66 1.11 1.63 1.09 1.75 1.07 0.37 1.21 12.6 14.0 9.9

1.61 1.83 1.14 1.75 1.09 1.97 1.13 0.41 0.67 17.0 19.0 15.2

1.38 1.59 1.15 1.53 1.11 1.68 1.10 0.00 9.06 23.9 26.3 23.1

1.99 2.29 1.15 2.30 1.16 2.54 1.11 0.39 0.81 19.4 19.8 13.3

1.55 1.79 1.15 1.81 1.17 2.00 1.10 0.00 4.70 15.5 17.1 14.9

0.93 0.96 1.03 1.01 1.09 1.05 1.04 0.01 5.01 11.3 12.3 9.0

1.68 1.94 1.15 1.88 1.12 2.06 1.10 0.00 0.04 17.3 19.1 22.4

1.41 1.56 1.10 1.52 1.07 1.56 1.03 0.00 0.04 22.5 27.0 28.3

2.36 2.73 1.16 2.72 1.15 3.31 1.22 0.00 1.94 21.4 22.4 15.2

2.16 2.79 1.30 2.52 1.17 2.93 1.17 0.00 0.00 33.3 35.7 33.3

2.01 2.55 1.27 2.32 1.15 2.73 1.18 0.00 0.00 30.8 33.5 32.1

2.28 2.73 1.20 2.67 1.17 2.95 1.10 0.02 0.18 23.7 25.0 18.8

2.43 3.21 1.32 3.13 1.29 3.85 1.23 0.00 0.01 37.9 39.3 35.8

2.57 3.77 1.47 3.39 1.32 4.54 1.34 0.00 0.00 36.3 36.9 36.4

2.04 2.59 1.27 2.49 1.22 2.79 1.12 0.04 0.52 36.4 37.9 39.5

2.11 2.72 1.29 2.48 1.17 2.87 1.15 0.01 0.74 39.5 40.8 37.6

2.10 2.56 1.22 2.44 1.17 2.92 1.19 0.00 0.48 23.7 23.7 22.2

2.30 3.00 1.31 2.82 1.23 3.54 1.26 0.01 0.62 31.1 31.5 28.4

2.19 2.58 1.18 2.64 1.20 3.03 1.15 0.02 0.34 18.9 19.3 17.8

2.57 3.26 1.27 3.19 1.24 3.63 1.14 0.00 0.15 27.6 28.3 23.4

2.56 3.38 1.32 3.16 1.24 3.81 1.20 0.00 0.10 31.5 32.4 30.3

1.71 1.92 1.12 2.00 1.17 2.09 1.05 0.01 8.08 21.8 24.0 20.8

1.71 1.94 1.14 2.00 1.17 2.12 1.06 0.00 9.09 22.2 24.4 21.3

2.00 2.34 1.17 2.23 1.12 2.51 1.12 0.01 3.65 27.0 27.8 21.5

2.13 2.25 1.05 2.18 1.02 2.42 1.11 0.00 0.02 32.6 33.1 30.5

2.13 2.25 1.05 2.18 1.02 2.42 1.11 0.00 0.02 32.6 33.1 30.5

2.21 2.58 1.16 2.51 1.13 2.60 1.04 0.00 0.89 30.0 29.3 21.1

2.28 2.52 1.11 2.38 1.04 2.65 1.12 0.00 0.07 32.4 33.8 31.4

1.90 2.09 1.10 2.14 1.12 2.12 0.99 0.00 0.90 35.4 37.6 33.2

1.57 1.83 1.17 1.68 1.07 1.88 1.12 0.00 8.90 42.8 46.1 43.6

2.53 3.25 1.29 3.07 1.22 3.59 1.17 0.00 0.85 34.1 35.2 34.8

2.17 2.76 1.27 2.55 1.18 2.97 1.16 0.00 0.64 32.1 33.6 27.9

2.20 2.78 1.27 2.65 1.21 2.96 1.12 0.00 0.00 36.6 39.5 27.5

1.88 2.30 1.22 2.12 1.12 2.57 1.22 0.00 0.00 21.7 24.7 19.2

1.97 2.24 1.14 2.21 1.12 2.47 1.12 0.00 0.14 24.9 25.4 19.0

1.97 2.31 1.18 2.20 1.12 2.46 1.12 0.05 0.08 21.3 22.9 16.7

mini-graph supported

bookkeeping reductions (%

s
u
it
e

benchmark
I$ miss

rate

(%)

D$ miss

rate (%)

% insns

fetched

% RS

entries

% Reg.

Writes

S
P
E
C

twolf

perlbmk.scrabbl

bzip2

crafty

eon.cook

vortex

gap

eon.kajiya

M
E
D

IA
B
E
N

C
H

C
O

M
M

g721.enc

gs.dec

gsm.dec

gsm.enc

adpcm.dec

adpcm.enc

epic

mpeg2.enc

g721.dec

jpeg.enc

mesa.mipmap

jpeg.dec

eon.rushmeier

gcc

gzip

tcpdump

vpr.route

vpr.place

drr

frag

gzip.dec

pegwit.dec

cast.enc

rtr

perlbmk.diffmail

pegwit.enc

unepic

cast.dec

mesa.osdemo

mesa.texgen

mpeg2.dec

mcf

parser

gzip.enc

jpeg.dec

jpeg.enc

reed.enc

reed.dec

IPC

4wide3-wide

Table 4.3: Microarchitectural Properties of Benchmarks across 3 suites: SPEC, Me-
diaBench, and CommBench.

156

base MG MG/3w base 4w/3w MG MG/4w

basicmath 2.25 2.63 1.17 2.58 1.15 2.88 1.12 0.00 0.00 25.8 27.1 19.9

bitcount 2.42 3.07 1.27 2.76 1.14 3.16 1.15 0.00 0.00 33.6 32.9 29.9

qsort 2.43 2.79 1.15 2.78 1.14 3.33 1.20 0.00 0.19 26.5 27.3 19.2

susan (corners) 2.16 2.50 1.15 2.60 1.20 2.79 1.07 0.00 0.66 23.3 24.4 20.9

susan (edges) 2.19 2.63 1.20 2.55 1.17 2.87 1.12 0.00 0.48 26.1 27.0 25.2

susan (smoothing) 2.53 2.95 1.17 2.83 1.12 3.62 1.28 0.00 0.03 20.8 22.5 16.2

jpeg.dec 2.30 2.99 1.30 2.94 1.28 3.29 1.12 0.01 0.41 36.3 37.3 37.6

jpeg.enc 2.25 2.97 1.32 2.73 1.21 3.20 1.17 0.00 0.72 39.7 40.8 37.7

lame 2.03 2.19 1.08 2.21 1.09 2.33 1.05 0.08 2.09 15.3 15.9 14.3

tiff (2bw) 2.73 3.26 1.19 3.29 1.20 4.00 1.22 0.00 1.11 22.1 22.1 12.2

tiff (2rgba) 1.73 1.93 1.12 2.06 1.19 2.17 1.05 0.00 6.31 23.7 23.8 25.6

tiff (dither) 2.26 2.85 1.26 2.56 1.13 3.07 1.20 0.00 0.30 34.5 37.3 38.6

tiff (median) 2.65 3.40 1.28 3.31 1.25 3.55 1.07 0.00 2.13 50.3 50.7 48.6

dijkstra 2.07 2.59 1.26 2.55 1.23 2.89 1.14 0.00 0.64 32.1 32.5 20.8

patricia 1.55 1.94 1.25 1.67 1.08 2.15 1.29 1.32 0.61 23.0 24.2 18.6

ghostscript 2.23 2.73 1.22 2.62 1.17 3.04 1.16 0.02 0.19 25.4 26.8 21.2

ispell 1.92 2.20 1.15 2.20 1.15 2.47 1.12 0.01 1.36 23.7 24.9 17.4

rsynth 2.33 2.44 1.05 2.39 1.03 2.61 1.09 0.00 0.04 20.5 21.2 20.2

stringsearch 1.95 2.10 1.08 2.08 1.06 2.18 1.05 0.01 0.23 24.8 27.0 19.5

blowfish.dec 2.38 2.69 1.13 2.65 1.11 2.87 1.08 0.00 0.01 28.6 29.1 25.8

blowfish.enc 2.38 2.69 1.13 2.65 1.11 2.88 1.09 0.00 0.01 28.6 29.0 25.8

pgp 2.58 3.34 1.30 3.23 1.25 3.94 1.22 0.01 0.03 28.7 29.8 19.6

rijndael.dec 2.81 3.65 1.30 3.55 1.26 4.02 1.13 0.00 0.45 33.2 33.5 30.0

rijndael.enc 2.77 3.66 1.32 3.54 1.28 4.12 1.16 0.00 0.87 35.2 35.7 33.9

sha 2.50 3.10 1.24 2.84 1.13 3.50 1.23 0.00 0.00 25.2 26.1 22.3

ADPCM.dec 1.84 1.99 1.08 2.08 1.13 2.21 1.06 0.00 0.00 9.7 11.5 12.1

ADPCM.enc 1.69 1.89 1.12 1.89 1.12 2.01 1.06 0.00 0.00 20.9 24.0 24.9

CRC32 2.70 3.28 1.21 3.28 1.21 3.27 1.00 0.00 0.00 26.1 26.1 15.0

FFT 2.23 2.54 1.14 2.56 1.15 2.87 1.12 0.00 0.49 24.6 25.4 20.4

IFFT 2.23 2.53 1.14 2.56 1.15 2.83 1.11 0.00 0.45 24.8 25.5 20.8

GSM.dec 2.45 3.27 1.34 3.16 1.29 3.97 1.26 0.00 0.01 38.1 38.9 34.6

GSM.enc 2.60 3.42 1.31 3.42 1.31 4.21 1.23 0.00 0.00 27.5 27.9 26.7

1.06 1.11 1.09 1.15 1.10 1.19 1.06 0.12 4.77 18.5 19.9 16.4

2.07 2.52 1.23 2.43 1.19 2.77 1.15 0.01 1.44 27.9 29.4 27.0

2.05 2.38 1.16 2.28 1.11 2.53 1.11 0.00 1.04 31.4 32.9 28.0

2.24 2.66 1.20 2.60 1.17 2.94 1.14 0.05 0.62 27.5 28.4 24.2

1.78 2.02 1.18 2.01 1.15 2.19 1.12 0.05 1.73 26.3 27.6 23.8ALL 78

SPEC

MEDIABENCH

COMM

MI BENCH

M
I

B
e
n
c
h

A
u
to

C
o
n
s
u
m
e
r

N
e
t

O
ff
ic
e

S
e
c
u
ri
ty

T
e
le
c
o
m

D$ miss

rate (%)

mini-graph supported

bookkeeping reductions (%

3-wide 4wide % insns

fetched

% RS

entries

% Reg.

Writes

s
u
it
e

benchmark

IPC
I$ miss

rate

(%)

Table 4.4: Microarchitectural Properties of Benchmarks in MiBench, averages of
each suite, and all 78 programs.

157

processor sees a 17.6% speedup over a 3-wide processor, whereas a 4-wide processor

sees a 15% speedup. For SPEC, mini-graph processing is just 1% shy of achieving

the speedup of a 4-wide processor. However, for the remaining three suites, a 3-wide

mini-graph processor has higher IPC than a 4-wide non-mini-graph processor.

Most benchmarks experience few instruction cache misses. Only 6 of 78 have

a 0.1% miss rate, and only 15 of 78 benchmarks have an average 0.01% miss rate.

This means that instruction cache amplification goes largely unnoticed at our default

instruction cache size (32 KB). Because mini-graphs do not effect data memory

access, benchmarks whose performance is limited by data cache effects (e.g., mcf)

are less affected by mini-graphs. The final three columns show mini-graph enabled

reduction in several key pipeline operations—instructions fetched, issue queue entries

allocated, and physical register writes—for a 3-wide processor. The columns show

the percent reduction of book-keeping operations on a 3-wide mini-graph processor

compared to a 3-wide non-mini-graph processor.

4.2 Performance Contribution Analysis

This section analyzes the contributions of the various benefits of mini-graph process-

ing to performance improvement. Translating resource amplification to performance

improvement is not a transparent process because amplifying resources affects per-

formance only indirectly. Direct effects are those that lengthen or shrink the crit-

ical path through a program’s dataflow graph. Mini-graph-induced serialization,

for example, directly degrades performance by introducing new dependences that

lengthen the dataflow graph. Amplifying resources indirectly improves execution

time—insofar as resource limitations are actually a bottleneck to a program’s exe-

cution. The fewer resources a processor has, the more resource contention hinders

performance, and the more amplification yields performance improvement.

Mini-graph processing amplifies all pipeline stages (including execute if ALU

158

Pipelines are present) as well as the capacity of all structures that hold instructions

and register values. For a 3-wide baseline processor, this amplification effect has

been shown to improve performance, enabling a 3-wide mini-graph processor to out-

perform a 4-wide non-mini-graph processor on average—the former yielding a 17.6%

gain over a 3-wide non-mini-graph baseline, the latter a 15% gain.

The experiments in this section show that bandwidth amplification contributes

to performance more than does capacity amplification. More importantly, they show

that mini-graph processing provides a performance improvement only when as many

structures and stages possible are amplified. Amplifying only a few structures or

stages quickly moves all performance bottlenecks to those resources which are un-

amplified; these new bottlenecks prevent the amplification benefits from improving

performance. Only when all resources—both bandwidth and capacity—are amplified

can the instructions flow through the pipeline with an increased throughput.

This section focuses on the effect of amplifying the following five resources:

• in-order bandwidth (fetch, decode, rename, commit)

• out-of-order bandwidth (schedule, execute, register read/write)

• instruction cache capacity

• reorder buffer and physical register file capacity (ROB/regfile)

• issue queue capacity

The first two resources are bandwidths. In-order pipeline stages are naturally

amplified because they process mini-graph handles rather than constituents. The

out-of-order schedule stage is amplified for the same reason; scheduling mini-graphs

on ALU Pipelines and lookahead scheduling both allow scheduling at handle gran-

ularity. Execution is amplified by the additional execution resources of the ALU

Pipeline. Physical register read/write is amplified because register values internal to

a mini-graph are neither written to nor read from the register file.

159

The next three resources are capacities. Capacity amplification targets structures

that hold instructions (e.g., issue queue, ROB, instruction cache) as well as those

that hold register values (e.g., register file). Structures holding instructions are

amplified because they hold handles rather than constituents. Structures holding

register values are amplified because register values internal to a mini-graph do not

consume entries.

Instruction cache occupancy is proportional to static instruction footprint. Am-

plifying instruction cache capacity reduces instruction cache misses. In this section,

instruction cache capacity amplification is experimentally isolated from fetch band-

width amplification, even though in practice these two are tightly-coupled with each

other via the handle representation of the mini-graph in the instruction cache.

Reorder buffer and physical register file (ROB/regfile) capacity are proportional

to in-flight instructions. By amplifying the ROB/regfile, a mini-graph processor can

support more in-flight instructions. Issue queue occupancy is proportional to un-

executed in-flight instructions. By amplifying the issue queue, a mini-graph processor

effectively has a larger number of instructions from which to schedule.

No single benefit is sufficient. The experiment in Figure 4.1 isolates the

effect of each mini-graph benefit and illustrates the fact that no single mini-graph

benefit is responsible for the performance improvement of mini-graph processing.

Figure 4.1 begins by simulating a “no-benefit” mini-graph processor (grey line). A

“no-benefit” mini-graph processor schedules and commits mini-graph constituents

atomically, but the constituents are never represented by a handle in any physi-

cal structure. None of the five resources are amplified. Each mini-graph consumes

one bandwidth and capacity slot for each constituent, rather than one slot for the

handle. An n-instruction mini-graph consumes n entries in the instruction cache,

ROB, issue queue, and register file. Any constituents scheduled for future cycles

consume scheduling slots for those future cycles. Mini-graphs execute on singleton

ALUs rather than ALU Pipelines. External and internal serialization constraints

160

Isolating Mini-Graph Benefits:
1 benefit per experiment

0.8

0.85

0.9

0.95

1

1.05

1.1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

78 benchmarks, sorted worst to best

R
el

at
iv

e
IP

C

3-wide

Only OoO b/w ampl.(-0.3)

Only In-Order b/w ampl. (-0.8)

Only ROB/regfile ampl.(-2.3)

Only Insn$ ampl. (-2.3)

Only IssueQ ampl.(-2.7)

No Benefits (-2.7)
(min=0.84)

(max=1.138)

Figure 4.1: Lone Contributors of Mini-Graph Performance.

161

are still respected. When all mini-graph processing benefits are removed, perfor-

mance improvement drops from drops from 17.6% to a 2.7% average performance

loss over a 3-wide, non-mini-graph baseline processor (black line). This small average

performance loss is analyzed briefly in the section following this one.

Figure 4.1 also simulates a series of mini-graph processors in which only a single

benefit of mini-graph processing is enabled. In isolation, the most useful mini-graph

benefit is out-of-order bandwidth amplification (black circle). Enabling out-of-order

bandwidth amplification improves the “no-benefit” mini-graph processor, bringing

its performance essentially back to the performance of the baseline non-mini-graph

processor. Amplifying in-order pipeline stages (grey triangle) is the second most use-

ful benefit, yielding a 2% performance improvement over the “no-benefit” mini-graph

processor. Capacity amplification benefits make almost no performance impact when

enabled in isolation.

When in- and out-of-order amplification benefits are combined, however, (i.e.,

all pipeline stages are amplified) they yield an average 2.5% performance improve-

ment over a baseline processor (not shown). In other words, although bandwidth

amplification is the most useful benefit of mini-graph processing, supporting only

bandwidth amplification does not approach the performance improvement seen by a

fully-functional mini-graph processor. Conversely, when all forms of bandwidth am-

plification are disabled, all forms of capacity amplification combined yield an average

1.8% performance loss over a baseline processor.

Each mini-graph benefit in isolation pales in comparison to the full benefit) mini-

graph processor which yields an average 17.6% performance improvement. In fact,

no single benefit produces a performance improvement over the baseline non-mini-

graph processor. This experiment shows that the performance gains of mini-graph

processing cannot be attributed to the amplification of a single resource. Further-

more, although bandwidth amplification is more beneficial in isolation than capacity

amplification, neither is sufficient by itself.

162

Isolating Mini-Graph Benefits:
Removing 1 benefit per experiment

0.8

0.9

1

1.1

1.2

1.3

1.4

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

78 benchmarks, sorted worst to best

R
el

at
iv

e
IP

C

All benefits (+17.6)

No Insn$ ampl. (+17.0)

No IssueQ ampl. (+9.6)

No ROB/regfile ampl. (+6.6)

No OoO b/w ampl. (+5.3)

No In-Order b/w ampl. (+1.6)

3-wide

 (max = 1.45)

Figure 4.2: Isolating Components of Mini-Graph Performance Contributions.

163

Each benefit is necessary. The next set of experiments show the extent to

which each individual resource amplification is necessary for the mini-graph proces-

sor performance. In Figure 4.2, each experiment shows a single mini-graph benefit

disabled. The fourth experiment, for example, (no OoO b/w ampl., black circle)

shows the performance improvement of a mini-graph processor where all structures

and stages are amplified except schedule and execute. In this case, over two-thirds

of the performance improvement is lost because the scheduling and execution stages

are not amplified. These stages become the new performance bottleneck.

The data in Figure 4.2 indicate that in-order bandwidth is the strongest perfor-

mance limiter; i.e., it is the resource that must be amplified before any other resource

amplification can translate to performance improvement. This is unsurprising. If the

in-order front-end cannot supply the out-of-order core with an increased number of

instructions, the amplified out-of-order core cannot be utilized. Out-of-order band-

width is the next most important contributor to performance. Capacity is once again

a secondary contributor.

Instruction cache capacity amplification has a minimal effect on average. This

is also unsurprising, considering that most of the benchmarks have low instruction

cache miss rates in the first place (see Tables 4.3 and 4.4 of Section 4.1). One notable

exception to this trend is the MI Bench program network.patricia, which normally has

a 1.32% instruction cache miss rate. By amplifying only the instruction cache, the

instruction cache miss rate decreases to 0.74%, yielding a performance improvement

of 13.8%. Section 4.4 revisits the benefits of instruction cache capacity amplification

by considering mini-graph processors with smaller instruction caches.

Analysis of “no-benefit” mini-graph processing. This section analyzes

the 2.7% performance loss of the “no-benefit” processor shown in Figure 4.1. Once

again, a “no-benefit” mini-graph processor schedules and commits mini-graph con-

stituents atomically, but the constituents themselves are not represented by handles

164

Analyzing the "No Benefit"
Mini-Graph Processor

0.8

0.85

0.9

0.95

1

1.05

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

78 benchmarks, sorted worst to best

R
el

at
iv

e
IP

C

3-wide

No mgs, reordered binary (-0.2%)

No benefits, serialization-free mini-graphs (-1.4)

No Benefits, no load replay penalty (-2.4)

No Benefits (-2.7)

Figure 4.3: Analyzing the “No Benefit” Mini-Graph Processor.

165

and therefore offer no capacity or bandwidth amplification. Scheduling and com-

mitting constituents atomically has several negative performance consequences that

explain the observed performance loss. Before addressing the performance implica-

tions of atomic scheduling and commit, however, this section first rules out several

secondary performance effects—other plausible but in practice not culpable perfor-

mance limiters associated with the “no-benefit” mini-graph processor.

Figure 4.3 shows a series of experiments, all relative to a 3-wide non-mini-graph

baseline (black line). The first experiment shows the “no-benefit” mini-graph pro-

cessor from Figure 4.1, in which all amplification benefits are disabled (black circle).

The remaining three s-curves, in grey, rule out three possible causes of the perfor-

mance loss.

The first possible performance effect is that of reordering the static instructions to

make mini-graph constituents contiguous. Static reordering changes both instruction

cache placement and dynamic instruction order. Creating or removing a potential

instruction cache conflict within a frequently executed section of code can lead to

performance loss or gain. Implicitly prioritizing or de-prioritizing critical instructions

can similarly alter the performance of a program. The reordered binary s-curve of

Figure 4.3 (grey circle) shows the performance effect of reordering each program

binary to make mini-graph constituents contiguous but then running the binary

without mini-graphs on the non-mini-graph baseline processor. Although individual

benchmarks show performance variation from 5.7% loss to 4.6% gain, the effect of

instruction reordering on average is minimal, yielding a 0.2% performance loss over

a baseline processor.

The second possible performance effect is the requirement that when a non-

terminal load in a mini-graph misses in the data cache, the entire mini-graph must

be replayed. Because mini-graphs are atomic, there is no way to replay only some of

the mini-graph constituents. The no load replay penalty s-curve of Figure 4.3 (grey

triangle) artificially removes this requirement in order to see the extent to which this

166

penalty contributes to the performance loss of the no-benefit mini-graph processor.

Once again, a few benchmarks improve markedly (mcf, for example, goes from a 16%

performance loss to a 9% performance loss), but on average, performance improves

only slightly from a 2.7% loss to a 2.4% loss.

A third possible performance effect is serialization. Serialization does stem from

the restriction that mini-graph constituents be scheduled atomically, but the mini-

graphs shown in these experiments are selected with the serialization-aware selec-

tion algorithm (SlackProfile). SlackProfile heuristically removes harmful—but not all—

serializing mini-graphs, and should therefore remove the serialization penalty associ-

ated with atomic scheduling. To support the claim that serialization is not the cause

of the observed performance loss, Figure 4.3 shows a serialization-free mini-graph s-

curve (grey square) that uses mini-graphs selected with StructNone. StructNone is a se-

lection algorithm that forbids all forms of serialization in mini-graphs. The processor

remains at its no-benefit configuration. The result is a 1% performance improvement

over the original no-benefit processor using mini-graphs selected by SlackProfile. This

s-curve still shows an average 1.4% performance loss over a baseline processor; seri-

alization cannot be the sole reason for the performance loss. Furthermore, because

both performance loss and mini-graph coverage drop by approximately 40%, in all

likelihood, performance improves not because harmful serialization is removed, but

because the number of mini-graphs in play decreases when using the more restrictive

selection algorithm.

As a side note, the average 2.7% performance loss substantiates the claim that

serialization-aware mini-graph selection is effective: even when mini-graph processing

offers no amplification benefits whatsoever, performance loss is minimal.

Once instruction ordering, load replay penalties, and serialization are ruled out

as possible causes of the performance degradation, the two actual causes remain.

First, scheduling and committing multiple instructions atomically increases struc-

ture occupancy and reduces effective capacity. Second, reserving future scheduling

167

slots without increasing scheduling bandwidth yields a scheduling priority inversion.

In both cases, the “no-benefit” mini-graph processor incurs the overhead of fusion

without any of the benefits of fusion.

Increased structure occupancy and pipeline hiccups. The capacity of

structures that hold instructions is effectively reduced because mini-graph instruc-

tions are still allocated and freed en masse. A 4-instruction mini-graph, for instance,

not only requires the allocation of four ROB entries (because ROB amplification is

disabled) but also holds onto these four entries for a longer period of time. Only after

all four instructions are completed can all four ROB entries be freed. This creates

a “bursty” occupancy of structures that can translate to increased congestion which

degrades performance.

Atomic processing also creates pipeline stalls. The most significant example

of this occurs between the rename and issue stages. Typically, instructions pass

through each pipeline stage atomically; they are renamed in one cycle and ready

for scheduling in the following cycle (modulo the rename latency). A 4-operation

mini-graph traveling down a 3-wide pipeline with no amplification benefits, however,

cannot be renamed in its entirety in a single cycle. The fourth instruction will

be renamed in the cycle after the first three instructions. Meanwhile, mini-graph

constituents wait until all constituents are renamed before scheduling can take place.

The same effect occurs for smaller mini-graphs that simply happen to “straddle” the

pipeline width boundaries. This additional pipeline stall is the primary cause of

performance degradation.

Figure 4.4 shows an example of how both structure capacity and pipeline stalls

are affected by no-benefit mini-graph processing. Figure 4.4a shows a sequence of six

instructions, A-F. Instructions B-E are dependent on one another in a chain as shown

by the abstract dataflow graph. In later parts of this figure, instructions B-D are

fused into a mini-graph; in Figure 4.4, however, they remain singletons. Instructions

168

S

S

X

X

S XR

R

S R

S

(a) Singleton mini-graph dataflow graph & execution schedule

0 1 2 3 4 5 6 7 8

F A S X W C

F A R X C

singleton

independent singleton

dependent singleton

singleton

singleton

R X W C

F A S R X W C

(b) "no-benefit" mini-graph dataflow graph & execution schedule

independent singleton F A R X W

F A

S

F A S X W C
C

D

B

0 1 2 3 4 5 6 7 8

F A S X W

F A R X W

constituent1

independent singleton

dependent singleton

constituent2

constituent3

W C

F A X W C

independent singleton F A R X

F A

R

S

F A S X CR

9 10

A:

(c) "no-benefit" execution: schedule pathology

0 1 2 3 4 5

constituent1

long latency ld

constituent2

constituent3

R

S

S

constituent1

constituent2

constituent3

constituent1

constituent2

constituent3

constituent4 XS R

dependent on ld

B:

C:

D:

E:

F:

A:

B:

C:

D:

E:

F:

E

A

F

C

D

B

E

A

F

X

X

R

S R

S

XS R

cycle1: load

returns from

memory

constituent4 XS R

X

X

S XR

R

S R

SA

A

A

stalled

cycles 2 & 3: stalled

instruction stalls 2 more

cycles because all 3

scheduling slots are

already reserved!

9

instructions stay

in the ROB longer

constituents

stalled until all

can be scheduled

stall propagates

to dependent

instructions

3-way issue

processor:
Fetch

rename/Alloc

Schedule

register Read

eXecute

register Write

Commit, free

cycle 0: two mini-

graphs scheduled

(4 slots reserved)

cycle 1: third

mini-graph

scheduled

(3 slots reserved)

X XS XR

0 1 2 3 4 5

mg1

long latency ld

mg2

mg3

X

dependent on ld

X XRS X

cycle1: load

returns from

memory

X

X XS XRA

stalled

cycle 2: stalled

instruction is

scheduled

cycle 0: two mini-

graphs scheduled

(1 slot per mg

reserved)

cycle 1: third

mini-graph

scheduled

(1 slot reserved)

(d) mini-graph execution

C

W

R

S

S

R

C

C

C

X

W

S

W

R

Figure 4.4: “No Benefit” Mini-graph Overhead

169

A and F are completely independent of all instructions shown. The processor has a 3-

wide pipeline; instructions A-C are fetched first, followed by D-F. The entire sequence

finishes execution at cycle 7 and all instructions commit by cycle 9.

Figure 4.4b shows the same six instructions, but with instructions B-Dplaced in a

mini-graph. Because this is a no-benefit mini-graph processor, each constituent still

consumes bandwidth and structure slots. Furthermore, the mini-graph constituents

must be scheduled as a unit. At cycle 2, the mini-graph cannot be scheduled because

instruction D is not yet renamed. This stall delays all dependent instructions. At

cycle 3, D has been renamed, and the three constituents are scheduled. The sequence

previously completed execution at cycle 7; it now completes execution at cycle 8.

The structures also experience increased and bursty occupancy. Instructions B-F

previously left the ROB over a period of 4 cycles, committing from cycle 6 to 9.

These same instructions now remain in the ROB for longer and leave the ROB in a

large burst at cycles 9 and 10.

Scheduling inversions. The second reason why the performance of the no-

benefit mini-graph processor is sub-baseline is due to a scheduling priority inversion

that occurs in benchmarks with high mini-graph coverage. As shown in Figure 4.4b,

when a mini-graph is scheduled (at cycle 3), future scheduling slots are consumed for

each constituent. When many mini-graphs are scheduled, these future reservations

can actually use up all available scheduling slots for a particular future cycle. Older

instructions that finally have inputs ready are not given the age priority they nor-

mally would because younger instructions “beat them” to the scheduling resources.

Unfortunately, it is these old instructions waiting for inputs that tend to be the crit-

ical instructions of a program. Delaying them–even by just one or two cycles—very

quickly degrades performance.

Figure 4.4c shows an example of this scheduling pathology. The first instruction

is a long-latency load to memory. The second instruction depends on this load

and is waiting to be scheduled. In cycle 1, a 3-instruction mini-graph is scheduled,

170

consuming three scheduling slots. Between these three mini-graphs all available

scheduling slots for cycles 2 and 3 have been consumed. When the load returns

from memory at cycle 1, the instruction dependent on it must wait until cycle 4 to

be scheduled. Note that this pathology only happens on the no-benefit mini-graph

processor. In an actual mini-graph processor where each mini-graph consumes only

one scheduling slot, the dependent instruction faces no such scheduling delay (see

Figure 4.4d).

Both of the above problems—scheduling delays and priority inversions—are felt

more acutely the more mini-graphs there are. Unsurprisingly, the with the worst no-

benefit performance are those with the highest mini-graph coverage. The MI Bench

program consumer.tiff, for example, is the worst-performing benchmark (-13%) on

the no-benefit processor and is also one of only two benchmarks with coverage higher

than 50%. Both of these problems are specific to the “no-benefit” mini-graph pro-

cessor. They prevent a no-benefit mini-graph processor from yielding baseline per-

formance, but they in no way affect the performance of a mini-graph processor in

which amplification does take place.

Summary: Purpose of these analyses. It is important to note that analyzing

the performance loss associated with a no-benefit mini-graph processor is motivated

by the desire to understand the results and any insights they may offer into possibly

unknown effects of mini-graph processing. The “no-benefit” mini-graph processor

exists only as an investigational tool; this dissertation proposes the mini-graph pro-

cessor, not the no-benefit version thereof.

Similarly, teasing out the amplification benefits of mini-graph processing is an

investigational endeavor geared at understanding how different forms of amplification

translate and contribute to performance improvement. It is not motivated by trying

to decide which stages or structures a mini-graph processor should amplify. A mini-

graph processor that does not amplify the ROB, issue queue, and most pipeline

stages, would have to operate on constituents rather than handles. A mini-graph

171

processor that does not amplify the physical register file would have to rename at

a constituent granularity in order to allocate more than one output register. Any

of these modifications would require fundamental changes to the hardware. The

only forms of amplification for which this is not the case are instruction cache or

execution stage amplification. It would be possible to use a different mini-graph

encoding scheme which does not create instruction cache capacity amplification.

Similarly, a mini-graph processor could be created without ALU Pipelines.

4.3 In-Order Performance Analysis

This section analyzes mini-graph performance improvement on an in-order machine.

In a dynamically scheduled processor, both capacity and bandwidth amplification

play an important role in performance improvement. An in-order processor, however,

has different resource limitations and performance characteristics. Schedule and

execute—the out-of-order stages on a dynamically scheduled processor—are in-order.

Some out-of-order structures—e.g., the issue queue, ROB, and (rename) register

file—do not exist in an in-order processor.

Figure 4.5 shows mini-graph performance for an out-of-order processor (left) and

an in-order processor (right). The in-order processor matches the now-familiar out-

of-order processor in all common components (3-wide, same memory hierarchy, same

branch predictor, etc.). The out-of-order machine has an 80% performance advantage

over its in-order counterpart (not shown). Each graph uses the respective non-mini-

graph processor for its baseline. The out-of-order mini-graph processor shows an

average 17.6% performance improvement. The in-order mini-graph processor shows

an average 15.0% performance improvement.

Figures 4.6 and 4.7 repeat the experiments of Figures 4.1 and 4.2—in which only

one mini-graph processing benefit is active, followed by each benefit being removed

one at a time—for an in-order processor. Issue queue and ROB/register amplification

172

Out-of-Order Mini-Graph Performance

0.9

1

1.1

1.2

1.3

1.4

1.5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

78 benchmarks, sorted worst to best

R
el

at
iv

e
IP

C
+ mg (+ 17.6%)

OoO Baseline

(max=1.45)

In-Order Mini-Graph Performance

0.9

1

1.1

1.2

1.3

1.4

1.5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

78 benchmarks, sorted worst to best

R
el

at
iv

e
IP

C

+ mg (+ 15.0%)

In-Order Baseline

(max=1.80)

Figure 4.5: Mini-graph performance in out-of-order (left) and in order (right) con-
texts.

are no longer shown because their capacities play no performance role in an in-order

machine. Instruction cache capacity amplification remains. Whereas the previous

section makes an in-order versus out-of-order distinction between the various pipeline

stages, this section simply distinguishes between the front-end pipeline stages (fetch

and decode) and the issue and execute pipeline stages.

As in the previous section, instruction cache capacity amplification continues to

have limited utility at the present processor configuration. In the in-order processor,

fetch and decode bandwidth amplification is the strongest effect. Amplifying these

front-end stages in isolation (shown in Figure 4.6) yields a 12.5% performance im-

provement over an in-order, non-mini-graph processor. The same is not true of the

out-of-order processor in which amplifying the scheduling and execution bandwidth

is most beneficial in isolation. In an in-order processor, the issue and execution

stages are more tightly coupled with the front-end. Instructions do not pool in an

issue queue awaiting dynamic scheduling as they do in an out-of-order processor.

173

Isolating Mini-Graph Benefits
of an In-Order Processor:
1 benefit per experiment

0.9

1

1.1

1.2

1.3

1.4

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77
78 benchmarks, sorted worst to best

R
el

at
iv

e
IP

C

Only front-end b/w ampl. (+12.5)

Only issue & execute b/w ampl.(+6.6)

Only Insn$ capacity ampl. (+6.3)

No Benefits (+6.1)

3-wide, in order

(max = 1.76)

Figure 4.6: Lone Contributors of In-Order Mini-Graph Performance

174

Isolating Mini-Graph Benefits
of an In-Order Processor:

Removing 1 benefit per experiment

0.9

1

1.1

1.2

1.3

1.4

1.5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77
78 benchmarks, sorted worst to best

R
el

at
iv

e
IP

C

All Benefits (+15.0)

No Insn$ capacity ampl. (+14.7)

No issue & execute b/w ampl.(+12.8)

No front-end b/w ampl. (+6.8)

3-wide, in order

(max = 1.80)

Figure 4.7: Isolating Components of In-Order Mini-Graph Performance

175

Not amplifying fetch and decode (shown in Figure 4.6) has the most debilitating

effect on the in-order mini-graph processor. This phenomenon is also seen on the

out-of-order processor (shown in Figure 4.2). Not amplifying the front-end stages

of any processor limits throughput by effectively pinching beginning of an otherwise

amplified pipeline.

A major difference between the in-order and out-of-order experiments shown here

is that the “all-or-nothing” amplification-to-performance behavior no longer applies.

In the out-of-order processor, amplifying as many structures and stages as possible is

critical to achieving the 17.6% performance improvement. In an in-order processor,

simply amplifying front-end bandwidth achieves a 12.5% speedup—almost 80% of

the performance improvement offered by a full benefit) in-order mini-graph processor.

In other words, a single benefit—front-end bandwidth amplification—is sufficient by

itself to achieve good performance improvement. This is decidedly not the case for

the out-of-order processor.

Forgoing all mini-graph benefits. The most surprising result in Figure 4.6

is the performance of the “no-benefit” in-order mini-graph processor. For the out-

of-order machine, removing all amplification benefits yields a 2.7% performance loss

over a baseline processor. For an in-order machine, “no-benefit” mini-graph pro-

cessing still achieves a 6.1% performance gain. What this exposes is a subtle and

intrinsic benefit of mini-graph execution that proves especially helpful to an in-order

processor. The benefit can best be described as local, out-of-order execution.

The in-order processor’s main bottleneck is its strict adherence to program order

at the issue stage. A mini-graph, however, is treated as a single instruction with

respect to issue. Chains of instructions statically fused into mini-graphs are issued

as a unit and executed back-to-back in the following cycles. Surrounding instructions

are issued in order with respect to the handle, but they have the potential to execute

out of order with respect to the mini-graph constituents.

Figure 4.8 shows an example. Figure 4.8a shows six instructions executed as

176

(a) Singleton dataflow graph & execution schedule on an in-order machine

0 1 2 3 4 5 6 7 8 9

F D S R X W C

F D S R X W C

F D S R X W C

singleton

independent singleton

independent singleton

singleton

singleton

S R X W C

F D S R X W C

(b) "No-benefit" mini-graph dataflow graph & execution schedule on an in-order machine

3-way issue

processor:

F

B

C E

A

independent singleton F D S R X W C

A:

B:

C:

D:

E:

F:

F D

D

0 1 2 3 4 5 6 7 8 9

F D S R X W C

F D S R X W C

F D

F D S R W C

F D

X

Fetch

Decode

iSsue

register Read

eXecute

register Write

Retire (C)

(c) Mini-graph execution schedule on an in-order machine

0 1 2 3 4 5 6 7 8 9

F D S R X W

F D S R X

mini-graph

independent singleton

independent singleton

X X

independent singleton F D S R W C

ABC:

D:

E:

F: X

W

F

B

C E

A

D

singleton

independent singleton

independent singleton

singleton

singleton

independent singleton

A:

B:

C:

D:

E:

F:

S R X W C

S R X W C

F D S R X W

F D S R X W C

C

C

C

Figure 4.8: Local Out-of-Order Execution Effect of Mini-graphs

177

singletons on a 3-wide, in-order processor. Instructions A, B, and C are dependent

on one another and can be placed in a mini-graph. Instructions D, E, and F are

independent of all other instructions shown. All instructions execute in a single

cycle. The instructions are fetched in two batches of three instructions each. The

dependences between instructions A, B, and C introduce issue stalls. The entire

sequence takes 9 cycles to complete.

Figure 4.8b shows these same six instructions executed on a “no-benefit” in-order

mini-graph processor. Instructions A, B, and C are formed into a mini-graph, but the

only benefit they offer is the local, out-of-order execution phenomenon being de-

scribed here. At cycle 2, instructions A, B, and C are issued, consuming issue slots

for cycles 2, 3, and 4; there is no issue amplification on the no-benefit processor.

Issuing all three constituents at once is a task only possible on the mini-graph pro-

cessor; the non-mini-graph processor can only issue each instruction as its inputs

become available. As a result, as early as cycle 3, the next three instructions can

also be issued. The local, out-of-order execution effect is outlined in cycles 5 and 6.

Although they are issued after instruction C, instructions D and E actually execute

before instruction C. Although the entire sequence completes in the same number of

cycles as in Figure 4.8a, instructions D, E, and F all finish execution 1 cycle earlier.

On a (full-benefit) mini-graph processor, the benefit is even greater because all

pipeline stages are amplified by virtue of operating on handles and executing on

ALU Pipelines. This is shown in Figure 4.8c. Here, instructions D, E, and F all

finish 2 cycles earlier than they do in the singleton execution of Figure 4.8a. The

local, out-of-order execution effect of mini-graphs is the same one produces by vec-

torization: multiple operations are fused into a single instruction which take up fewer

pipeline resources and around which execution reordering can take place. An in-order

mini-graph processor benefits particularly from this effect because it is normally so

constrained by instruction order.

It could be argued that the instruction sequence seen in Figure 4.8a—constructed

178

as an easy-to-follow example—would never be produced by a compiler targeting an

in-order processor. A compiler that targets an in-order processor will interleave

the dependent instructions with the independent ones. While it is true that the

baseline in-order performance might be aided by a different compiler, it is not true

that a compiler can match the local, out-of-order execution effect of mini-graphs.

Static instruction reordering cannot achieve the same results as dynamic instruction

reordering. For example, if instructions A-C are in a different basic block than in-

structions D-F, a compiler would produce exactly that instruction sequence because

interleaving would require basic block merging or predication or the like. When there

are not enough independent instructions, a dependence chain will still produce the

stalls shown in Figure 4.8a.

As a side note, the local, out-of-order execution effect of an in-order mini-graph

processor implicitly amplifies the execution stages; this is an effect that cannot be

“turned off.” This helps explain why the “all-or-nothing” performance of amplifi-

cation (measured in Figure 4.6) seems not to apply to the in-order processor. The

s-curve that only amplifies the front-end (grey triangle) in fact does amplify all

pipeline stages to some extent due to the presence of the local, out-of-order execu-

tion effect. Similarly, the seeming ineffectiveness of amplifying only the issue and

execution stages (black circle) is because the “no-benefit” processor already has a

substantial amplification of both issue and execution in the first place.

The performance loss of a “no-benefit” out-of-order mini-graph processor (Sec-

tion 4.2) is due to the combination of not amplifying certain pipeline stages but still

requiring mini-graphs to proceed through those stages atomically. These artifacts

disappear on a mini-graph processor that amplifies the usual stages and structures.

In contrast, the performance benefit of the “no-benefit” in-order mini-graph pro-

cessor is real. Local out-of-order execution would exist on an in-order (full-benefit)

mini-graph processor and contributes significantly to its performance gains.

179

4.4 Exploiting Instruction Cache Amplification

All experiments so far use a 32 KB, 32-byte line-size, 4-way associative instruction

cache. As shown in Tables 4.3 and 4.4, this configuration yields an instruction

cache miss rate of less than 0.01%. As a consequence, the performance contribution

of instruction cache capacity amplification in mini-graph processing is small. As

shown in Figure 4.2, removing instruction cache capacity amplification decreases the

performance improvement from 17.6% only to 17.0%.

In this section, we explore the potential of using mini-graph processing to compen-

sate for reduced instruction cache capacity. If mini-graphs enable reduced instruction

cache capacity in a robust way, then the instruction cache can be physically reduced

to save area. If the enabled reduction is less robust, then techniques like selective

cache ways [3] can be used to opportunistically reduce power.

In order to explore instruction cache amplification, this section separates the

SPEC suite from the other three suites (MediaBench, Comm Bench, and MI Bench,

hereafter referred to as the MCM suite) and maintains two separate baseline instruc-

tion cache sizes for each suite. This separation is motivated by the instruction cache

miss rates shown in Figure 4.4. The SPEC suite requires a larger instruction cache

than the MCM suite. An instruction cache sized for SPEC will be so over-provisioned

for MCM that amplification will have no effect. An instruction cache sized for MCM

will create such instruction cache pressure for SPEC that the amplification benefits

of mini-graph processing will be unfairly inflated.

Figure 4.9 shows the result of shrinking the instruction cache size from 32 KB

to 8KB by reducing the number of sets in the cache while holding line size and

associativity constant. The data motivate using 32 KB as the default instruction

cache size for SPEC and 24 KB as the default size for MCM.

180

SPEC's Sensitivity to I$ Size

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

16 benchmarks, sorted worst to best

R
el

at
iv

e
IP

C

32 KB I$

24KB I$ (-3.2%)

16 KB I$ (-8.0%)

8KB I$ (-22.3%)

"MCM" Suite's Sensitivity to I$ Size

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

62 benchmarks, sorted worst to best

R
el

at
iv

e
IP

C

32 KB I$

24KB I$ (-0.6%)

16KB I$ (-1.5%)

8 KB I$ (-6.3%)

Figure 4.9: Instruction Cache Behavior Differences. Performance degradation asso-
ciated with shrinking the instruction cache from 32 KB to 8 KB in 8 KB increments.
Left: SPEC benchmarks. Right: “MCM” benchmarks (MediaBench, CommBench,
and MI Bench)

181

4.4.1 Instruction Cache Amplification for SPEC

Figure 4.10 begins with a 3-wide non-mini-graph baseline (the y = 1 axis) and (for

reference) a 4-wide non-mini-graph performance curve that shows a 10.1% perfor-

mance improvement for the SPEC benchmark suite. Three mini-graph experiments

(diamonds) show the 3-wide mini-graph performance across three different instruc-

tion cache sizes: 32 KB (dark), 24 KB (medium), and 16 KB (light). The 32 KB

instruction cache (dark diamond, 8.8%) is the configuration used in all mini-graph

experiments previous to this section and plots the data shown in Table 4.3 for SPEC.

The 3-wide mini-graph processor with the 32 KB instruction cache yields a 8.8%

performance improvement—just 1.3% shy of the 10.1% speedup of the 4-wide proces-

sor. By shrinking the instruction cache by 8 KB (from 32 to 24 KB) a 6.2% speedup

is still achieved. Furthermore, only one of the sixteen benchmarks experiences a

new performance slowdown over the 3-wide 32 KB instruction cache baseline. (This

does not count mcf, which experiences a slowdown on all mini-graph configurations

because SlackProfile does not incorporate load miss predictions.) Compare this to the

SPEC graph on the left of Figure 4.9 which shows that decreasing the instruction

cache size to 24 KB yields slowdowns in half the benchmarks. However, once the

instruction cache is reduced to 16 KB (light diamond) almost half the benchmarks

experience slowdowns over the baseline configuration.

Using some of the hardware budget of the instruction cache for the MGT intro-

duces a loss of 2.6% to 5.8%, depending on the reduction to the instruction cache.

For SPEC, instruction cache capacity amplification is not robust enough to enable

physical reduction and area savings.

4.4.2 Instruction Cache Amplification for MCM

Figure 4.11 repeats the experiments shown in Figure 4.10, but for the MCM suite,

with a 24 KB instruction cache baseline. The performance trend seen here is like

that of Figure 4.10: each mini-graph processor with a smaller instruction cache

182

IPC Relative to baseline with 32 KB Instruction Cache
SPEC Suite

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

78 benchmarks, sorted worst to best

R
el

at
iv

e
IP

C

4-wide, 32 KB I$ (+10.1%)

3-wide, 32 KB I$ +mg (+8.8%)

3-wide, 24 KB I$ + mg (+ 6.2%)

3-wide, 16 KB I$ + mg (+ 3.0%)

3-wide, 32 KB I$

Figure 4.10: Mini-Graph Performance with Various Instruction Cache Sizes, SPEC.
IPC relative to a 3-wide baseline processors with 32 KB instruction cache.

183

performs slightly worse, achieving performance improvements of 19.9%, 19.3%, and

14.8% for instruction cache sizes of 24, 16, and 8 KB, respectively, over the 3-wide

non-mini-graph baseline.

Compared to the SPEC results, the MCM performance cost of a reduced instruc-

tion cache is smaller. Whereas the performance benefits of mini-graph processing

for SPEC decrease by over 50% when the instruction cache is reduced from 32 to

16 KB, the benefits for MCM are reduced by only 25% when the instruction cache

is reduced from 24 to 8 KB. Even more importantly, only a few MCM benchmarks

experience a slowdown over the baseline processor when the instruction cache capac-

ity is reduced. It should also be noted that two of the three mini-graph processor

configurations out-perform the 4-wide non-mini-graph processor. This is because

the MCM suite has more parallelism and higher coverage and benefits more from

mini-graph processing in the first place.

For MCM, instruction cache capacity amplification effects do enable physical

reduction and area savings. In the reduced instruction cache configurations of Figure

4.11, the mini-graph processors would have a 16 KB and 8 KB SRAM budget for the

MGT. As will be seen in the next section, performance improvements comparable

to and even better than a 4-wide processor can be achieved starting at MGT sizes

of just 2 KB.

4.5 MGT Configuration and Area Analysis

This section explores the coverage and performance implications of various MGT

configurations. Specifically, the coverage and performance “knee” of possible MGT

configurations argues for the support of 3-stage ALU Pipelines and an area budget

of between 1 KB and 6 KB, depending on the processor’s benchmark targets and

performance goals. Section 2.1 briefly discusses the implementation and coverage

impact of reducing the number of MGT banks from seven to five. This section

184

IPC Relative to baseline with 24 KB Instruction Cache
"MCM" Suite

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

78 benchmarks, sorted worst to best

R
el

at
iv

e
IP

C

3-wide, 24 KB I$ +mg (+19.9%)

3-wide, 16KB I$ + mg (+ 19.3%)

4-wide, 24 KB I$ (+16.2%)

3-wide, 8KB I$ + mg (+ 14.8%)

3-wide, 24 KB I$

 (min = 0.64)

 (max = 1.46)

Figure 4.11: Mini-Graph Performance with Various Instruction Cache Sizes, MCM.
IPC relative to a 3-wide baseline processors with 24 KB instruction cache.

185

discusses not only the number of MGT banks supported, but also the number of

entries, as well as the the length and composition of the mini-graphs supported. The

size of each MGT entry remains a constant 4 bytes.

The MGT’s size is determined by both the number of banks and entries that

it has. Also, for the mini-graph processor to be properly configured, the MGT

must have enough banks to support the length of the ALU Pipeline. A mini-graph

processor with a 2-stage ALU Pipeline, for example, can have anywhere from two to

six banks. Six banks supports a mini-graph comprised of two integer operations, a

3-cycle load, and a conditional branch. Although technically the MGT is a cache and

can support any number of mini-graph templates independent of MGT size, MGT

misses are expensive [13], and therefore knowing a priori how many templates the

MGT can hold without conflict helps performance. Because the software tool in this

dissertation selects only as many templates as will fit in the MGT, the number of

MGT entries determines how many mini-graph templates are supported.

Coverage. Figure 4.12 shows the configuration of every possible 8- to 512-

entry MGT that supports a 2-stage ALU Pipeline. The x-axis shows MGT size

in KB (num entries × banks × sizeof(one bank′s entry)) and the y-axis shows

coverage. For any given number of MGT entries, more banks usually translates to

more coverage and always translates to greater MGT size. Increasing the number of

banks usually offers diminishing returns; for example, for an MGT with 512 entries

(black squares), the difference in coverage between 2 and 3 banks is greater than the

difference between 5 and 6. This is because coverage is determined by both length

and frequency; although 6-cycle mini-graphs are longer than 3-cycle mini-graphs,

3-cycle mini-graphs are far more frequent. Supporting mini-graphs of 3 cycles in

length greatly increases the number of possible mini-graphs; this is not the case for

6-cycle mini-graphs.

Points with the same x value are two different configurations that have the same

MGT size in KB. For example, the points labeled “6 banks, 256 entries” and “3

186

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16

C
o

v
e

ra
g

e
 (

%
)

MGT Size (KB)

Coverage vs. MGT Size (2,3,4,5,6 banks), with 2-stage ALU Pipelines

number of MGT entries
2 banks

3 banks,
512 entries

4 banks

5 banks
6 banks6 banks,

256 entries

pareto-optimal curve

Figure 4.12: MGT Coverage vs. Size in KB

banks, 512 entries” both have 6 KB MGTs. The former has 28% coverage, the latter

22%. Assuming both configurations have comparable MGT cost, the configuration

with the greater coverage if preferable. With this in mind, the graph sketches the

pareto-optimal curve—the line along which an MGT of a particular size offers the

best coverage. These configurations maximize coverage at minimal cost.

Figure 4.13 extends Figure 4.12, showing the pareto-optimal plots for 2-, 3-, and

4-stage ALU Pipelines. The graph offers two important pointers for designing a

mini-graph processor. First, there is a diminishing return in supporting ever-longer

ALU Pipelines. Increasing from 2- to 3-stages increases coverage by several percent.

The increase from 3- to 4-stages is approximately only 1%. Depending on what

the additional percent yields performance-wise, a 3-stage ALU Pipeline is likely the

best cost-benefit tradeoff. Second, there are diminishing returns in supporting ever-

more numbers of MGT entries. The coverage gain from 128 to 256 entries is a few

187

percent, and the subsequent gain in supporting 512 entries is again about a percent,

depending on the number of banks.

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16

C
o

v
e

ra
g

e
 (

%
)

MGT Size (KB)

Coverage vs. MGT Size, with 2-, 3-, and 4-stage ALU Pipelines

Figure 4.13: Pareto-Optimal MGT Sizes for 2-, 3-, and 4-stage ALU Pipelines

Performance. As discussed in Section 4.2, it is not always obvious how coverage

translates to performance. The graph in Figure 4.14 shows performance relative to

a 3-wide baseline for four different MGT configurations. These are pareto-optimal

configurations with 3-stage ALU Pipelines with MGT sizes of 1, 3, 6, and 12 KB.

(MGT sizes of 2 and 4 KB happen to lie just under the pareto-optimal curve.) These

configurations achieve speedups of 14.4%, 16.3%, 17.2%, and 17.5%, respectively.

Each curve is a unique MGT/ALU Pipeline configuration for which mini-graphs are

specifically chosen: an MGT with n banks, m template entries, and p-stage ALU

Pipelines.

188

IPC Relative to baseline with pareto-optimal
1, 3, 6, and 12 KB MGT configurations

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

78 benchmarks, sorted worst to best

R
el

at
iv

e
IP

C

12 KB: 512 entry, 6 bank (+17.5%)

6 KB: 256 entry, 6 bank (+17.2%)

3 KB: 128 entry, 6 bank (16.3%)

4-wide (+15.0%)

1 KB: 64 entry, 4 bank (+14.4%)

3-wide

 (max = 1.45)

 (min = 0.96)

Figure 4.14: Mini-Graph performance with pareto-optimal MGT configurations of
1, 3, 6, and 12 KB in size. All support 3-stage ALU Pipelines.

189

For reference, the final s-curve (bold, grey) plots the 15% performance improve-

ment of a 4-wide processor over the 3-wide baseline. In order to achieve this per-

formance with a 3-wide mini-graph processor, one might assume coverage needs to

be 33%. Figure 4.14 shows this assumption to be slightly conservative. The 1 KB

configuration (black x) with only 24% coverage comes close to the 15% gain with

a 14.4% improvement. The 3 KB configuration (grey circle) with only 29% cover-

age surpasses the 15% gain with a 16.3% improvement. That 33% coverage is not

needed is intuitive; 33% coverage is needed only if you have sustained 4-wide ILP,

which rarely happens in practice. This graph indicates that a smaller MGT in the

range of 1 to 3 KB offers adequate performance. Furthermore MGT sizes past 6

KB do not offer a good return on investment; doubling the MGT from 6 KB (grey

triangle) to 12 KB (black diamond) improves performance by a mere 0.3%.

Alternative, dense MGT organization. As explained in the introduction

to Chapter 2, if a mini-graph does not execute a new constituent at a particular

cycle, the corresponding bank’s entry in the MGT remains empty. For example, a

mini-graph beginning with a 3-cycle load followed by an add uses the MGT entries

in banks 1 and 4 only. At cycles 2 and 3, no new constituent is executed.

While the 1-to-1 banks-to-cycle assumption of this sparse design simplifies the

interface logic of the MGT, it does so at the expense of area efficiency. Every non-

terminal, multi-cycle operation inside a mini-graph effectively wastes MGT entries.

By adding latches to delay the output of MGT entries the appropriate number of

cycles, the MGT could be packed more densely. A load-add mini-graph, for example,

would read the load from the first bank of the MGT at cycle 1, read the add from the

second bank of the MGT at cycle 2, and then latch the add for 2 cycles until the load

completes. Mini-graphs with non-terminal loads would fit into MGTs with 2 fewer

banks. This could greatly improve the coverage of MGTs with fewer banks. It has

the added benefit of making the MGT configuration independent of the execution

latency of mini-graph constituents.

190

The experiments of Section 4.4 suggest that mini-graph processing can free up

to 8 KB of real-estate by exploiting instruction cache amplification to support re-

duced instruction cache capacity. This section shows that an 8 KB budget is in-

deed adequate to configure a good return-on-investment MGT. Performance gains

comparable—and often superior—to those associated with increasing the superscalar

width and window capacity can be achieved with an MGT requiring just 1 to 6 KB

in size.

191

Chapter 5

Related Work

Mini-graph processing is first and foremost a form of instruction fusion that targets

capacity and bandwidth amplification, although it also supports a limited form of

latency reduction. Instruction fusion techniques are many in number and approach.

Most, however, do not target amplification as mini-graphs do. Section 5.1 discusses

these related fusion techniques and how they compare to mini-graph processing with

regards to both objectives and execution.

Additionally, there are many non-fusion techniques that do target capacity

and/or bandwidth amplification. These works take an entirely different approach

from that of mini-graph processing, but achieve similar amplification results. These

related works are discussed in Section 5.2.

5.1 Fusion Techniques

CISC/RISC. Historically, high granularity instructions have been associated with

Complex Instruction Set Computers (CISC). CISC instructions take many inputs,

perform several operations, and produce several outputs. Although CISC programs

have a low instruction count, executing CISC instructions on out-of-order processors

192

requires sophisticated algorithms. The decode logic supports many opcodes and mul-

tiple addressing modes; the issue stage coordinates many inputs per instruction; and

execution logic supports highly-specialized, complex operations throughout which

precise state is also maintained. Store-load forwarding and memory disambiguation

can also be particularly difficult. The bookkeeping and coordination costs of com-

plex instructions prevent a CISC processor from scaling efficiently. Consequently,

the superscalar processors that support the x86 architecture require that the CISC

instructions be broken into micro-operations.

RISC (Reduced Instruction Set Computer) instructions perform a single operation

on a few register inputs and produce a single output. Although they can be executed

on simpler (faster, smaller) hardware, RISC ISAs are often associated with higher

dynamic instruction counts [9]. Bookkeeping expenses soar not because of the per-

instruction costs but because of the large number of instructions. The hardware

algorithms for instruction coordination are simpler, but the on-chip structures that

support them are physically larger.

Mini-Graphs are neither CISC nor RISC instructions. They have the multiple

operations and corresponding low instruction count of CISC and the simple interface

and corresponding low per-instruction costs of RISC. Mini-graph processing emulates

a high granularity instruction set architecture with low per-instruction bookkeeping

costs. Mini-graphs reduce a program’s instruction count but can be executed with

simple coordination.

Micro-op fusion and macro fusion. Intel’s Pentium M [38, 51] fuses

load/execute and store-address/store-data micro-op pairs, reducing the number of

micro-ops that are renamed, scheduled, and retired and amplifying issue queue and

reorder buffer capacity. Micro-op fusion also reduces the number of x86 instructions

that decode into multiple micro-ops, allowing the Pentium M to achieve high

decoding bandwidth with a single complex decoder.

Macro fusion fuses test/branch and compare/branch pairs of macro instructions

193

prior to decode, similarly amplifying pipeline stages including decode and both the

issue queue and reorder buffer capacity. Macro fusion further exploits latency re-

duction by executing these pairs on a modified branch unit that can execute both

instructions in a single cycle. Simple extensions to the x86 ISA for fusing dependent

instruction pairs have also been proposed [47, 48].

AMD’s Athlon and Opteron processors [1] support de facto fusion of load-execute

instructions by simply not splitting them into micro operations in the first place.

Instead, these integer instructions remain as macro instructions throughout the

pipeline. The instruction is renamed and issued as a single instruction, offering

an amplification effect similar to micro-op fusion.

Mini-graph processing extends the benefits micro-op and macro fusion from se-

lect stages to the entire pipeline and from limited instruction pairs to more general

instruction groups. Unlike the above techniques, mini-graph processing forms in-

struction groups offline and targets each application individually, supporting many

application-specific idioms rather than a few general ones.

Macro-op scheduling and Dynamic Strands. Macro-op scheduling [58] tem-

porarily and micro-architecturally fuses dependent instructions in order to boost

effective scheduling capacity and hide scheduling loop latency [11, 98]. Macro-op

scheduling is completely transparent, but does not amplify the bandwidths or ca-

pacities of any other structures. Whereas mini-graph processing amplifies all pipeline

stages for the purpose of amplification, macro-op scheduling amplifies the schedul-

ing stage for the sole purpose of overcoming the performance penalty of a 2-cycle

pipelined scheduler. Mini-graph processing’s amplification benefits can also help

compensate for the penalty of a 2-cycle scheduler, but to a lesser degree because

mini-graphs are more restricted that macro-ops.

Dynamic strands [89] extend macro-op scheduling beyond pair-wise fusion, dy-

namically fusing chains of up to three instructions and executing these chains on

194

closed-loop ALUs. Like macro-op scheduling—and many dynamic fusion schemes—

dynamic strands can also cross basic block boundaries. Dynamic strands are spec-

ulative in two ways. First, unlike macro-op scheduling, a dynamic strand processor

speculatively detects transience within a strand. Second the presence of the strand

itself is speculatively detected. Whereas macro-op scheduling actively fuses instruc-

tions as the constituents are identified in the dynamic instruction stream, dynamic

strands identify the beginning of a possible strand and a dispatch engine injects the

entire strand into the instruction stream from the strand cache, possibly before all

of the constituents are even fetched. In this respect, dynamic strands resemble data-

driven multi-threading [17, 24, 86]. Mis-speculation occurs either when an assumed

transient value is needed external to the strand or when an incorrect strand is dis-

patched. Recovery from both cases of mis-speculation rely on a hardware roll-back.

Static strands. Static strands [90] is the fusion technique perhaps most similar

to mini-graphs. Static strands are chains of dependent instructions that, like mini-

graphs, can be processed at as a single instruction at many pipeline stages. As

with mini-graphs, various combinations of inputs and strand lengths are possible.

Unlike mini-graphs, strands must be dependent and their focus—both in the strand

processor description and coverage rates—is ALU-only sequences.

The chief difference between static strands and mini-graphs is their amplification

benefits. By focusing on dependent ALU instructions, strands offer less coverage than

mini-graphs. Strands also differ in the number of stages amplified. Static strands

lie between mini-graphs and micro-op fusion on the pipeline amplification spectrum.

This is as a result of the differences in the encoding schemes. Although both static

strands and mini-graphs leverage binary compatible annotations to indicate each

instance of an aggregate, mini-graph encoding uses the mini-graph handle itself as

the pre-aggregate annotation. Strands are tagged, but not with a meaningful han-

dle; their interface is generated dynamically with each occurrence. Furthermore, the

strand encoding scheme performs annotation but not outlining. As a consequence,

195

strands do not amplify instruction cache capacity or fetch or decode bandwidth. On

the contrary, the annotations in the strand binary effectively decreases the instruc-

tion cache capacity and the fetch and decode bandwidth. Although this does not

pose a performance liability within the embedded context in which static strands

are studied, initial studies indicate that this would incur a performance hit within

the context of dynamically scheduled, superscalar processors in which mini-graph

processing is studied [13].

Static strands do not use an MGT to store aggregate templates. Instead, a

strand processor generates a compressed representation for every dynamic aggre-

gate into a strand accumulation buffer (STAB), and then copies that compressed

representation into the issue queue which is modified to support a more complex

issue queue entry format. The STAB—designed to hold in-flight strands—acts as

a strand ROB, whereas the MGT—designed to hold all mini-graph templates for

a given binary—acts as a mini-graph instruction cache. Whereas mini-graphs exe-

cute on ALU Pipelines which inherently amplify execution bandwidth, static strands

execute on closed-loop ALUs. Closed-loop ALUs double execution bandwidth only

when “double-pumped.”

The differences between mini-graphs and static strands illuminate the differences

in their design goals. Mini-graph processing is first and foremost an amplification

technique which targets dynamically scheduled superscalar processors. Static strands

target power efficiency in embedded processors. That the STAB is smaller than the

MGT makes it more appropriate for embedded processors. Conversely, that static

strands do not technically amplify execution bandwidth and “pinch” the front of

the pipeline is more acceptable for embedded processors. The IBM PowerPC [27],

for example, has a fetch bandwidth twice that of its dispatch width, significantly

mitigating the “pinching” effect of static strands.

CCA Graphs and MECIs. Rather than targeting amplification, Configurable

Compute Accelerator (CCA) [19, 21, 23] graphs target performance improvement via

196

custom or pseudo-custom acceleration. CCA research pre-dates mini-graph process-

ing by one year, but the two approaches are essentially concurrent. Compared to

mini-graph processing, the CCA approach offers more performance improvement at

a higher implementation cost. The CCA is a 4-input, 2-output functional unit as

many as 7 operations deep. The CCA supports the execution of ALU instructions

and simple logical operations only, forgoing the coverage benefits as well as the im-

plementation costs of supporting memory and control instructions. Supporting only

limited functionality at each CCA stage limits the levels of logic required and enables

multiple operations to be executed in a single cycle.

Within a CCA binary, sequences selected to run on CCAs are delineated by two

new instructions in the ISA which mark the beginning and the end of each sequence,

respectively. The start instruction indicates the location of the sequence outputs and

the depth of the sequence. The end instruction serves as a simple flag. As for the

encoding of static strand and mini-graph binaries, these ISA extensions are assumed

to be interpreted as nopsin the case where CCA code is run on a processor that does

not support CCA.

When a rePLay pipeline [78] is not present, sequences selected to run on CCAs

can be removed from the binary at decode. As with static strands, however, these

sequences must be analyzed in order to generate the necessary control bits for CCA

execution. This analysis introduces added latency for which CCA execution must

compensate. One proposal to overcome this challenge is to store the control bits in

the binary and then load them into a translation table at runtime. This solution is

akin to the original DISE-based encoding scheme for mini-graphs [12]. As with the

mini-graphs and the MGT, the number of subgraphs in a CCA binary is limited by

the size of the translation table.

There are many variations of the CCA proposals, including both static and dy-

namic subgraph discovery as well as VLIW and superscalar processor targets. On a

VLIW, CCA graphs consume an integer issue slot. On a superscalar, CCA graphs

197

consume two rename and issue slots.

Similar to the CCA approach are Multi-Exit Custom Instructions (MECIs) [74],

which execute on a reconfigurable matrix of functional units that have the novel

capability of conditional execution. By definition, mini-graphs terminate at any

control instruction. MECIs, on the other hand, can contain both instruction paths

following a branch. Both inputs to and outputs from the MECI are conditioned

upon branch outcomes.

The CCA does not execute branches, and neither CCA nor MECIs perform mem-

ory operations. Both also incur reconfiguration penalties whenever a new instruction

group is encountered and the configurable functional units are dynamically recon-

figured accordingly. These limitations are acceptable when execution latency reduc-

tions can compensate for the reduction in issue bandwidth, particularly for workloads

that are computation intensive and have fewer memory instructions in the first place.

Because mini-graphs target bandwidth amplification and offer minimal latency re-

duction, however, limiting coverage to integer operations only and incurring regular

reconfiguration penalties are untenable barriers.

Interlock-collapsing ALUs. A simple approach to latency reduction are

Interlock-collapsing ALUs (ICALUs) [65, 82]. ICALUs can execute 2 interlocked

(i.e., dependent) integer operations (usually arithmetic) in a single cycle. Obviously,

ICALUs are more restricted in scope than FPGA approaches. That said, they fit

more seamlessly into existing processor designs, acting as a standard functional

unit rather than a special purpose piece of hardware. Additionally, they incur no

reconfiguration penalty. Many fusion techniques [89, 91, 112] leverage ICALUs as

the functional unit of choice for accelerating the execution of two fused instructions.

One such technique not discussed here is RENOCP [81], which generally falls under

the category of non-fusion and is therefore discussed in Section 5.2.

Fine-grain reconfigurable accelerators. Beyond the CCA framework and

ICALUs lie fine-grain reconfigurable accelerators. Hardware that executes more than

198

two fused operations often utilizes FPGAs which can be programmed to perform

more arbitrary computations of, say, n operations in less than n cycles. Examples of

these approaches are GARP [45], OneChip [16], PRISC [83], DISC [107], and PRISM

[6]. In order to be effective, however, the speedup of the FPGA compensates for both

the added time it takes to configure the unit—which may add as many as 1-2 cycles

prior to each use—and the longer latency of execution; FPGA’s are considerably

slower than their microprocessor or ASIC counterparts. Once again, these timing

penalties are invariably overcome for techniques that specifically target latency re-

duction in the first place, but would be infeasible for amplification techniques like

mini-graph processing to overcome.

Many of the proposed techniques for reducing the execution latency of arithmetic

operations target scalar in-order pipelines that can more easily accommodate multi-

ple register inputs and outputs [45, 109, 112]. Mini-graphs, on the other hand, target

dynamically-scheduled superscalar processors.

Extensible processors. In order to achieve the goal of small changes to the

baseline processor and pipeline, mini-graphs conservatively execute on existing hard-

ware. Although ALU Pipelines are technically novel, they have the same interface as

existing ALUs, can process simple non-mini-graph instructions, and can be “dropped

into” existing processor designs. Furthermore, they are general purpose in function

and are programmed at runtime only insofar as standard ALUs are programmed.

Many other forms of fusion rely on custom hardware that can execute richer instruc-

tion groups. For this, however, they have a much higher implementation cost.

There is considerable work aimed at discovering and exploiting graphs of arith-

metic operations whose latency can be reduced via custom hardware. This work

usually falls under the category of the (automatic) generation of application specific

instruction set extensions [5, 15, 21, 23].

One commercial effort to support application specific ISA extensions is Tensil-

ica’s Xtensa [41]. As a synthesizable processor [40], Xtensa does not match the

199

raw frequency of traditional processors, but in the context of target applications,

customization and configurability enables the Xtensa processor’s high throughput

to compensate for the reduced frequency, achieving speedups as high as a factor of

11. Rather than tuning the processor to the (high-ILP) application, mini-graph pro-

cessing focuses on tuning the mini-graph templates to the application, enabling it

to execute mini-graph-prepared binaries faster, while still supporting all other forms

of general purpose (non-mini-graph aware) binaries. Furthermore, as a software

approach, mini-graphs enable post-synthesis customization.

VLIW and EPIC. Very Long Instruction Word (VLIW) and its descendent

Explicitly Parallel Instruction Computing (EPIC) offer a different form of fusion in

which multiple, independent operations are encoded in a single instruction. This

approach does not amplify processor resources as mini-graph processing does, but it

does simplify both fetch and dispatch stages by placing the burden of determining

independence on the compiler rather than the out-of-order engine. IBM’s POWER5

[37, 93] has a similar simplification (rather than amplification) effect by dynamically

grouping consecutive instructions after fetch and performing decode, dispatch, and

commit en masse.

5.2 Non-Fusion Techniques

Capacity and bandwidth amplification. Many non-fusion techniques achieve

the amplification effects similar to those of mini-graph processing but do so in alter-

native and/or complementary ways of mini-graph processing.

Unified renaming [54], Instruction Reuse [95], Register Integration [80], RENO

[81], and NoSQ [92] all use physical register sharing and map table short-circuiting

to simulate the execution of register writing instructions without actually execut-

ing them, achieving amplification in the out-of-order core, specifically register file

200

and issue queue capacity, and schedule, register read/write, and execution band-

width. NoSQ targets stores as well as loads that forward from stores. RENO tar-

gets redundant loads and register-immediate add instructions. Whereas RENO and

NoSQ target specific instructions, mini-graphs target all instructions. RENO and

NoSQ amplify out-of-order execution bandwidth, particularly load and store exe-

cution bandwidth. Mini-graphs, on the other hand, amplify ROB and instruction

cache capacity and the in-order front-end and back-end bandwidth. These disjoint

targets—both in terms of instructions and pipeline stages—suggest that RENO and

NoSQ could be synergistic with mini-graphs.

Continuous Optimization [30] and chained in-order/out-of-order double-core ar-

chitecture [79] both prepend the out-of-order core with a simple one or two stage

in-order execution engine that executes instructions whose inputs are ready. Both

techniques amplify the out-of-order execution engine much like RENO and NoSQ.

Their approach, however, is one of pre-execution rather than simulated execution,

and as a consequence they do not amplify register file capacity or bandwidth as both

RENO and NoSQ do.

Mini-graphs amplify the register file by keeping transient values alive only within

the bypass network; transient values are simply never written to or read from regis-

ters. Many other techniques target a similar effect but through alternative means.

Early Physical Register Release [29], Physical Register Inlining [62], and Simple Phys-

ical Register Sharing [103] use aggressive reclamation to amplify physical register

capacity. Virtual Physical Registers [39] uses delayed allocation to do the same.

Checkpoint Processing and Recovery (CPR) [2] uses a combination of aggressive

reclamation and checkpointing.

The Waiting Instruction Buffer (WIB) [59] uses forward slicing to amplify issue

queue capacity in the shadow of an L2 miss. Continual flow pipelines (CFP) [97] is a

non-blocking architecture that uses the same technique to amplify both issue queue

and register file capacity. Checkpointed Early Resource Recycling (Cherry) [66] uses

201

checkpointing and aggressive reclamation to amplify register file, ROB, and load and

store queue capacities. By reordering instructions before they enter the issue buffer,

Dataflow Pre-scheduling [68] amplifies the issue queue capacity.

Classic outlining [28, 61, 99], or “code factoring,” is a compiler technique for code

compression, i.e., instruction cache capacity amplification. Classic outlining com-

presses the program binary by outlining large, unrestricted, redundant sequences of

code and mapping multiple jumps to the same outlined code. Although annotated

outlining actually enlarges a program binary—outlined code is not shared—it ac-

tually compresses the instruction cache footprint because the outlined code never

even enters the instruction cache in the first place. Furthermore, once the outlining

jump has been overwritten with a handle in the instruction cache, the mini-graph

binary is no longer outlined as far as the processor is concerned. In contrast, classic

outlining continues to execute all the outlined jumps as it assumes no on-chip facility

for storing the outlined code.

Horizontal clustering. Clustered Microarchitectures divide processor resources

into logical groups (or clusters) and introduce an hierarchical communication between

the clusters. They improve IPC by physically amplifying processor resources that un-

der a non-clustered organization would normally be too latency-sensitive to increase

without impacting clock frequency or the pipeline. Intra-cluster communication is

fast and high-bandwidth. Inter-cluster communication is slow and low-bandwidth.

Ideally, instructions are steered to clusters where most of their communication will

be local.

Broadly speaking, there are two forms of clustering techniques which can be

distinguished by how they divide the instruction stream. Horizontal clustering has a

single fetch stream and divides the instructions at dispatch. Commercially, the best

known horizontal clustering architecture is the Alpha 21264 [44, 56], which fetches

instructions and then sends them to one of two integer execution clusters, each with

a distinct register file.

202

The chief differences between horizontal clustering techniques is whether the

steering occurs statically or dynamically, and the extent to which hierarchical com-

munication is exposed in the ISA. There are many non-commercial examples of hor-

izontal clustering, beginning as far back as 1982, with the Decoupled Access/Execute

Architecture [94]. In 1995, Palacharla and Smith proposed Decoupled Integer Ex-

ecution [75], which augments often under-utilized floating-point units in order to

support an optional integer execution cluster. The MultiCluster Architecture [31]

uses a static register allocation and scheduling algorithm to balance workloads across

clusters that have replicated register files, issue queues, and functional units. One of

many MultiCluster descendants is RingScalar [104], a uni-directional ring of clusters

with a distributed—not replicated—register file.

The PEWs [55] architecture performs steering dynamically, simply attempting to

place each instruction in the cluster where its inputs are produced. Narayanasamy

et al. [70] proposed a Clustered EPIC architecture with a 3-, 2-, and 1-wide pipeline

combination as a complexity-effective alternative to a monolithic 6-wide design.

Their clustered architecture executes statically identified dependency chains. In-

struction Level Distributed Processing (ILDP) [57] consists of a common pipelined

front-end, followed by a number of distributed, in-order processing elements (PEs).

ILDP is an example of static clustering with ISA support for communication. Chains

of dependent instructions are recognized by the microarchitecture from the instruc-

tion set itself and steered to PEs for execution. A clustered trace cache processor [10]

combines clustered execution with an instruction trace cache, supporting dynamic

cluster assignments optimized at retire-time.

There is extensive work on the role of efficient interconnects [77], communication

latencies and pipeline depth [8], dynamic tuning [7], and steering policies [88] in

increasing the performance and efficiency of clustered architectures.

Finally, one popular cluster-like approach that is currently gaining interest in the

advent of multi-core research is the concept of the reconfigurable CMP. Core Fusion

203

[53] and Federated Cores [101], for example, both propose simple cores that can be

dynamically fused into larger, high-performance, clustered cores on demand.

Vertical clustering. Vertical clustering has multiple fetch contexts and lever-

ages offline steering—either in the compiler or in a trace cache. The Multi Scalar

Architecture [34] of the early 1990’s charges the compiler with splitting a program

into tasks, then executing them on parallel processing elements. By performing

this split prior to runtime, the compiler keeps the majority of communication on

the decentralized processing elements. By identifying “hot” segments of code, trace

processors [85] perform compiler optimizations dynamically. The PARROT Archi-

tecture [84] similarly finds hot traces of code and applies compiler optimizations

dynamically to remove instructions, resulting in a more power-efficient processor.

There are many similarities between mini-graph processing and clustering; in

most cases, the common benefits are seen at a finer granularity for mini-graphs.

For example, mini-graphs leverage the locality of value communication between con-

stituents in a mini-graphs. Transient values require neither global bypass nor to be

written to the register file. The same effect is seen in clustering on a higher level;

intra-cluster communication remains local to the cluster and need not be broadcast to

the rest of the processor. Both techniques also effectively amplify processor resources

without the clock penalties normally associated with making latency-sensitive struc-

tures larger (and consequently slower). This applies to the register file, issue queues,

and bypassing logic.

Mini-graphs can achieve amplification rates of 30-40%. Horizontal clustering can

theoretically achieve much higher rates, but contends with global communication

delays and scale front-end bandwidth to match the amplification seen after dispatch.

Ultimately, although they share benefits, mini-graphs are orthogonal to both forms

of clustering; these techniques could easily be used in conjunction with one another.

Dataflow. Mini-graph processing focuses on exploiting dataflow graphs in the

context of conventional ISAs and superscalar microarchitectures. Much previous

204

work leverages the dataflow patterns of a program holistically using new instruction

sets and new microarchitectures. An entire research body on dataflow machines be-

ginning in the 1980’s [73, 87, 105] does precisely this. Several early examples include

MIT’s Tagged-Token Dataflow Architecture (TTDA) [4] and Monsoon/Explicit To-

ken Store (ETS) Architecture [76]; more modern examples include Grid Processor

(TRIPS) [69] and WaveScalar [67, 100]. Regardless of implementation, dataflow

machines attempt to achieve more scalable single-thread execution by distribut-

ing computation and communication via direct producer-consumer communication.

Mini-graphs achieve this as well, but on a much smaller scale (i.e., within each

mini-graph).

205

Chapter 6

Conclusions

Mini-graph processing is a unique form of instruction fusion that targets bandwidth

and capacity amplification throughout the entire pipeline, from fetch to commit.

By performing certain actions once per aggregate instead of on a per-instruction

basis, structure bandwidth and capacity is allocated to other instructions, creating

an amplification effect. This wholesale amplification enables either improved IPC

throughput at a fixed resource point or, alternatively, fixed (or better) IPC with

fewer resources. Experiments show that across four benchmark suites, the addition

of mini-graph processing allows a dynamically scheduled 3-wide superscalar processor

to match the IPC of a 4-wide superscalar machine.

Mini-graphs are aggregates with the external appearance of singleton RISC in-

structions. Mini-graphs are designed to maximize amplification both from a dynamic

instruction standpoint and from the standpoint of number of structures and pipeline

stages amplified. This dissertation focuses on two types of mini-graphs: integer

mini-graphs, which contain only single-cycle ALU operations and integer-memory

mini-graphs which can also contain, stores, loads, and conditional branches. These

definitions—combined with the restriction of atomicity—minimize the number of

pipeline stages that are explicitly mini-graph aware, changes to the ISA, and the

involvement of the operating system. In other words, mini-graphs maximize their

206

amplification impact while minimizing their implementation costs.

A mini-graph processor requires three new structures over an existing superscalar

processor. The first structure is the Mini-Graph Table (MGT), an on-chip cache for

mini-graph templates. The second is the Mini-Graph Pre-Processor, a finite state

machine that programs the MGT. Finally, a mini-graph processor greatly benefits

from—but does not strictly require—ALU Pipelines, multi-cycle functional units on

which the integer components of mini-graphs execute.

A mini-graph processor also requires that some standard superscalar structures

be slightly modified. The instruction decoder recognizes the new, reserved mini-

graph opcode. The scheduler of an integer-memory mini-graph processor schedules

multiple cycles into the future, performing resource reservations up to the maximum

number of cycles of mini-graph execution. The issue queue’s entries explicitly store

the output latency of mini-graph handles for writeback reservations. The register file

has a single, dedicated input bus used for non-initial mini-graph inputs. Functional

units on which mini-graphs may execute receive control signals and immediate values

from the MGT; they also have latches for both non-initial mini-graph inputs as well

as mini-graph internal inputs.

That said, the vast majority of a mini-graph processor—the instruction and data

caches, the branch predictor, the floating-point units, as well as more complicated

entities such as the decoder, the load/store queue, register renaming, as well as the

register and memory schedulers—is identical to its corresponding non-mini-graph

counterpart.

The benefit of mini-graph processing is proportional to its dynamic coverage,

the percent of dynamic instructions embedded into mini-graphs. Coverage measures

the resource amplification introduced by mini-graph processing. Mini-graph cover-

age rates across 78 benchmarks is consistently above 30% across several mini-graph

criteria and selection algorithms. Structures and pipeline stages which process han-

dles are amplified—effectively one-third larger. This is achieved without physically

207

increasing capacity or bandwidths.

Once potential performance problem associated with mini-graph processing is

called serialization, the introduction of an artificial dependence between two in-

structions by virtue of being placed in a mini-graph. This dependence can delay the

execution of instructions found within a mini-graph, making them execute later than

they normally do in singleton (i.e., non-mini-graph) form. Serialization can degrade

IPC, even to the point of overwhelming the benefits of mini-graph processing.

Although serialization is common, harmful (i.e., performance-degrading) serial-

ization is the exception. This dissertation develops three serialization-aware selec-

tion schemes that identify and reject mini-graphs with harmful serialization only

in order to maintain high coverage rates and robust performance. The most effec-

tive serialization-aware selection algorithm, SlackProfile, uses local slack profiles to

reject mini-graphs whose estimated delay cannot be absorbed by the rest of the pro-

gram. SlackProfile virtually eliminates serialization-induced slowdowns while main-

taining high amplification rates.

Given the prevalence of the x86 instruction set, the next logical step in the

development of the mini-graph processor is a thorough investigation of mini-graph

processing within this realm. As discussed in Section 2.7, mini-graph processing

is possible at both the macro-op and micro-op level. The increasing number of

instances of non-mini-graph micro-op and macro-op fusion techniques bodes well for

the utility of mini-graph processing for the x86 processor.

The mini-graph processor arrives at the computer architecture scene during a

time when single-thread performance is critically important, but subject to increas-

ingly strict area and power budgets. Classic performance-improvement techniques

(increasing frequencies, deep pipelining, instruction window scaling, etc.) introduce

new power concerns and/or show diminishing returns on investment. As indus-

try targets multi-core designs for the foreseeable future, the performance efficiency

208

of the individual core will become a matter of paramount importance. Support-

ing mini-graph processing allows a narrower core with a smaller window to provide

the single-thread performance that would otherwise be achieved with a wider-issue,

larger-instruction window superscalar processor. As such, the mini-graph processor

is a good candidate for contemporary processor designs.

209

Bibliography

[1] Advanced Micro Devices, Inc. Software Optimization Guide for AMD64 Pro-

cessors, Sept. 2005.

[2] H. Akkary, R. Rajwar, and S. Srinivasan. Checkpoint Processing and Recovery:

Towards Scalable Large Instruction Window Processors. In Proc. 36th Int’l

Symposium on Microarchitecture, Dec. 2003.

[3] D. Albonesi. Selective Cache Ways: On Demand Cache Resource Allocation.

In Proc. 32nd Int’l Symposium on Microarchitecture, pages 248–259, Nov. 1999.

[4] Arvind and R. Nikhil. Executing a Program on the MIT Tagged-Token

Dataflow Architecture. IEEE Transactions on Computers, 39(3), Mar. 1990.

[5] K. Atasu, L. Pozzi, and P. Ienne. Automatic Application Specific Instruction

Set Extensions Under Microarchitectural Constraints. In Proc. 40th Design

Automation Conference, Jun. 2003.

[6] P. Athanas and H. Silverman. Processor Reconfiguration Through Instruction

Set Metamorphosis. IEEE Computer, Mar. 1993.

[7] R. Balasubramonian, S. Dwarkadas, and D. Albonesi. Dynamically Managing

the Communication-Parallelism Trade-off in Future Clustered Processors. In

Proc. 30th Int’l Symposium on Computer Architecture, pages 275–286, Jun.

2003.

210

[8] A. Baniasadi and A. Moshovos. Instruction Distribution Heuristics for Quad-

Cluster, Dynamically-Scheduled, Superscalar Processors. In Proc. 33rd Int’l

Symposium on Microarchitecture, pages 337–347, Dec. 2000.

[9] Dileep Bhandarkar and Douglas W. Clark. Performance from Architecture:

Comparing a RISC and a CISC with Similar Hardware Organization. In Proc.

Int’l Conference on Architectural Support for Programming Languages and Op-

erating Systems, pages 310–319, Oct. 2002.

[10] R. Bhargava and L. John. Improving dynamic cluster assignment for clustered

trace cache processors. In In Proceedings of the International Symposium on

Computer Architecture, June 2003.

[11] E. Borch, E. Tune, S. Manne, and J. Emer. Loose Loops Sink Chips. In Proc.

8th Int’l Symposium on High Performance Computer Architecture, Jan. 2002.

[12] A. Bracy, P. Prahlad, and A. Roth. Dataflow Mini-Graphs: Amplifying Su-

perscalar Capacity and Bandwidth. In Proceedings of the 37th International

Symposium on Microarchitecture, pages 18–29, Dec. 2004.

[13] A. Bracy and A. Roth. Encoding Mini-Graphs with Handle Prefix Outlining.

Technical Report TR-CIS-06-11, University of Pennsylvania, Aug. 2006.

[14] A. Bracy and A. Roth. Serialization Aware Mini-Graphs. In Proceedings of

the 39th International Symposium on Microarchitecture, Dec. 2006.

[15] P. Brisk, A. Kaplan, R. Kastner, and M. Sarrafzadeh. Instruction Generation

and Regularity Extraction for Reconfigurable Processors. In Proc. Int’l Con-

ference on Compilers, Architecture, and Synthesis for Embedded Systems, Oct.

2002.

211

[16] J. E. Carrillo and P. Chow. The effect of reconfigurable units in superscalar

processors. In In Proceedings of the 2001 ACM/SIGDA FPGA, pages 141–150.

ACM Press, Feb. 2001.

[17] R.S. Chappell, J. Stark, S.P. Kim, S.K. Reinhardt, and Y.N. Patt. Simultane-

ous Subordinate Microthreading (SSMT). In Proc. 26th Int’l Symposium on

Computer Architecture, May 1999.

[18] G. Chrysos and J. Emer. Memory Dependence Prediction using Store Sets.

In Proc. 25th Int’l Symposium on Computer Architecture, pages 142–153, Jun.

1998.

[19] N. Clark. Customizing the Compuation Capabilities of Microprocessors. PhD

thesis, The University of Michigan, 2007.

[20] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and K. Flautner. An archi-

tecture framework for transparent instruction set customization in embedded

processors. In Proc. 32nd Int’l Symposium on Computer Architecture, June

2005.

[21] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner. Application-

Specific Processing on a General-Purpose Core via Transparent Instruction

Set Customization. In Proc. 37th Int’l Symposium on Microarchitecture, pages

30–40, Dec. 2004.

[22] N. Clark, W. Tang, and S. Mahlke. Automatically generating custom instruc-

tion set extensions. In Proc. 36th Int’l Symposium on Microarchitecture, pages

94–101, Nov. 2002.

[23] N. Clark, H. Zhong, and S. Mahlke. Processor Acceleration through Automated

Instruction Set Customization. In Proc. 36th Int’l Symposium on Microarchi-

tecture, pages 129–140, Dec. 2003.

212

[24] J. Collins, D. Tullsen, H. Wang, and J. Shen. Dynamic Speculative Precom-

putation. In Proc. 34th Int’l Symposium on Microrchitecture, pages 306–317,

Dec. 2001.

[25] M. Corliss, E Lewis, and A. Roth. A DISE Implementation of Dynamic Code

Decompression. In Proc. 2003 Conference on Languages Compilers and Tools

for Embedded Systems, pages 232–243, Jun. 2003.

[26] M. Corliss, A. Roth, and E. Lewis. DISE: A Programmable Macro-Engine

for Customizing Applications. In Proc. 30th Int’l Symposium on Computer

Architecture, pages 362–373, Jun. 2003.

[27] IBM Corporation. PowerPC 750 RISC Microprocessor Technical Summary.

http://www.ibm.com.

[28] S. Debray, W. Evans, R. Muth, and J. De Sutter. Compiler Techniques for Code

Compression. ACM Transactions on Programming Languages and Systems,

22(2):378–415, Mar. 2000.

[29] O. Ergin, D. Balkan, D. Ponomarev, and K. Ghose. Increasing Processor

Performance Through Early Register Release. In Proc. 22nd IEEE Int’l Con-

ference on Computer Design, Oct. 2004.

[30] Brian Fahs, Todd Rafacz, Sanjay J. Patel, and Steven S. Lumetta. Continuous

optimization. In Proceedings of the 32nd Annual International Symposium on

Computer Architecture, pages 86–97, 2005.

[31] K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic. The Multicluster Architecture:

Reducing Cycle Time Through Partitioning. In Proc. 30th Int’l Symposium on

Microarchitecture, pages 149–159, Dec. 1997.

213

[32] B. Fields, R. Bodik, and M. Hill. Slack: Maximizing Performance under Tech-

nological Constraints. In Proc. 29th Int’l Symposium on Computer Architec-

ture, pages 47–58, May 2002.

[33] B. Fields, S. Rubin, and R. Bodik. Focusing Processor Policies via Critical Path

Prediction. In Proc. 27th Annual Int’l Symposium on Computer Architecture,

pages 74–85, Jul. 2001.

[34] M. Franklin. The Multiscalar Architecture. PhD thesis, University of

Wisconsin-Madison, Nov. 1993.

[35] Freescale Semiconductor. AltiVec Technology Pro-

gramming Environments Manual, Version 3, 2006.

http://www.freescale.com/files/32bit/doc/ref manual/ALTIVECPEM.pdf.

[36] P. Glaskowsky. Pentium 4 (Partially) Previewed. Microprocessor Report, 14(8),

Aug. 2000.

[37] P. Glaskowsky. IBM Raises Curtain on Power5. Microprocessor Report,

17(10):13–14, Oct. 2003.

[38] S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, A. Naveh, A. Saeed,

Z. Sperber, and R. Valentine. The Intel Pentium M processor: Microarchitec-

ture and performance. Intel Technology Journal, 7(2), 2003.

[39] A. Gonzalez, J. Gonzalez, and M. Valero. Virtual-Physical Registers. In HPCA

’98: Proceedings of the 4th International Symposium on High-Performance

Computer Architecture, 1998.

[40] Ricardo E. Gonzalez. Xtensa — A Configurable and Extensible Processor.

IEEE Micro, 20(2):60–70, /2000.

214

[41] D. Goodwin and D. Petkov. Automatic Generation of Application Specific

Processors. In Proc. Int’l Conference on Compilers, Architecture, and Synthesis

for Embedded Systems, Oct. 2003.

[42] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown.

MiBench: A Free, Commercially Representative Embedded Benchmark Suite.

In 4th Workshop on Workload Characterization, Dec. 2001.

[43] L. Gwenapp. Digital 21264 sets new standard. Microprocesor Report, 10(14),

Oct. 1996.

[44] L. Gwennap. Digital 21264 sets new standard. Microprocessor Report,

10(14):11–16, Oct. 1996.

[45] J. Hauser and J. Wawrzynek. Garp: A MIPS Processor with a Reconfigurable

Coprocessor. In Proc. 1997 IEEE Symposium on Field-Programmable Custom

Computing Machines, Apr. 1997.

[46] Hewlett-Packard Company. PA-RISC 1.1 Architecture and Instruction Set

Reference Manual, Feb. 1994.

[47] S. Hu, I. Kim, M Lipasti, and J. Smith. An Approach for Implementing

Efficient Superscalar CISC Processors. In Proc. 12th Int’l Symposium on High-

Performance Computer Architecture, pages 41–52, Jan. 2006.

[48] S. Hu and J. Smith. Using Dynamic Binary Translation to Fuse Dependent

Instructions. In Proc. 2nd Int’l Symposium on Code Generation and Optimiza-

tion, Mar. 2004.

[49] Intel Corporation. Getting Started with SSE/SSE2

for the Intel Pentium 4 Processor. http://cache-

www.intel.com/cd/00/00/01/77/17741 getting started.pdf.

215

[50] Intel Corporation. Intel Itanium 2 Processor Hardware Developer’s Manual,

July 2002.

[51] Intel Corporation. Mobile Intel Pentium 4 M-Processor Datasheet, Jun. 2003.

http://www.intel.com/design/mobile/datashts/250686.htm.

[52] Intel Corporation. Intel 64 and IA-32 Architec-

tures Optimization Reference Manual, May 2007.

http://developer.intel.com/design/processor/manuals/248966.pdf.

[53] Engin Ipek, Meyrem Kirman, Nevin Kirman, and Jose F. Martinez. Core Fu-

sion: accommodating software diversity in chip multiprocessors. In Proceedings

of the 34th Annual International Symposium on Computer Architecture, pages

186–197, Jun. 2007.

[54] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar, and A. Yoaz. A Novel Re-

naming Scheme to Exploit Value Temporal Locality Through Physical Register

Reuse and Unification. In Proc. 31st Int’l Symposium on Microarchitecture,

pages 216–225, Dec. 1998.

[55] G. Kemp and M. Franklin. PEWs: A Decentralized Dynamic Scheduler for

ILP Processing. In Proc. 1996 Int’l Conference on Parallel Processing, pages

239–246, 1996.

[56] R. Kessler. The Alpha 21264 Microprocessor. IEEE Micro, 19(2), Mar./Apr.

1999.

[57] H-S. Kim and J. Smith. An Instruction Set and Microarchitecture for Instruc-

tion Level Distributed Processing. In Proc. 29th Int’l Symposium on Computer

Architecture, pages 71–81, May 2002.

216

[58] I. Kim and M. Lipasti. Macro-op Scheduling: Relaxing Scheduling Loop Con-

straints. In Proc. 36th Int’l Symposium on Microarchitecture, pages 277–288,

Dec. 2003.

[59] A. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and E. Rotenberg. A Large,

Fast Instruction Window for Tolerating Cache Misses. In Proc. 29th Int’l

Symposium on Computer Architecture, May 2002.

[60] C. Lee, M. Potkonjak, and W. Mangione-Smith. MediaBench: A Tool for

Evaluating and Synthesizing Multimedia and Communications Systems. In

Proc. 30th Int’l Symposium on Microarchitecture, Dec. 1997.

[61] S. Liao, S. Devadas, and K. Keutzer. A Text-Compression-Based Method for

Code Size Minimization in Embedded Systems. ACM Transactions on Design

Automation of Electronic Systems, 4(1):12–38, 1999.

[62] M.H. Lipasti, B.R. Mestan, and E. Gunadi. Physical Register Inlining. In

Proceedings of the 31st Annual International Symposium on Computer Archi-

tecture, 2004.

[63] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Ge-

off Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:

building customized program analysis tools with dynamic instrumentation. In

PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on Program-

ming language design and implementation, pages 190–200, New York, NY,

USA, 2005. ACM Press.

[64] Andrew Makhorin. GNU Linear Programming Kit Reference Manual, Version

4.9. Free Software Foundation, Inc., Jan. 2006.

[65] N. Malik, R. Eickemeyer, and S. Vassiliadis. Interlock Collapsing ALU for

Increased Instruction-Level Parallelism. In Proc. 25th Int’l Symposium on

Microarchitecture, Dec. 1992.

217

[66] J. Martinez, J. Renau, M. Huang, M. Prvulovic, and J. Torrellas. Cherry:

Checkpointed Early Resource Recycling in Out-of-Order Microprocessors. In

Proc. 35th Int’l Symposium on Microarchitecture, Nov. 2002.

[67] M. Mercaldi, S. Swanson, A. Petersen, A. Putnam, A. Schwerin, M. Oskin,

and S. Eggers. Instruction Scheduling for Tiled Dataflow Architectures. In

Proc. 12th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS-XII), Oct. 2006.

[68] Pierre Michaud and Andre Seznec. Data-Flow Prescheduling for Large Instruc-

tion Windows in Out-of-Order Processors. In Proc. 7th Int’l Symposium on

High Performance Computer Architecture, pages 27–36, Jan. 2001.

[69] R. Nagarajan, K. Sankaralingam, D. Burger, and S. Keckler. A Design Space

Evaluation of Grid Processor Architectures. In Proc. 34th Int’l Symposium on

Microarchitecture, Dec. 2001.

[70] S. Narayanasamy, H. Wang, P. Wang, J. Shen, and B. Calder. A Dependency

Chain Clustered Microarchitecture. In Proc. 19th IEEE International Parallel

and Distributed Processing Symposium, April 2005.

[71] Naveen Neelakantam, Ravi Rajwar, Suresh Srinivas, Uma Srinivasan, and

Craig B. Zilles. Hardware atomicity for reliable software speculation. In Proc.

34th Int’l Symposium on Computer Architecture, pages 174–185, May 2007.

[72] Khang Nguyen. Preparing Applications for Intel Core Microarchitecture. Tech-

nology @ Intel Magazine, June 2006.

[73] R. Nikhil and Arvind. Can Dataflow Subsume von Neumann Computing? In

Proc. 16th Int’l Symposium on Computer Architecture, pages 262–272, May

1989.

218

[74] H. Noori, F. Mehdipour, K. Murakami, K. Inoue, and M. Goudarzi. Generat-

ing and Executing Multi-Exit Custom Instructions for an Adaptive Extensible

Processor. In Design, Automation and Test in Europe Conference and Expo-

sition, pages 325–330. ACM, Apr. 2007.

[75] S. Palacharla and J. Smith. Decoupling integer execution in superscalar pro-

cessors. In Proc. 28th Annual International Symposium on Microarchitecture,

pages 285–290, Nov. 1995.

[76] G. Papadopoulos and D. Culler. Monsoon: An Explict Token-Store Architec-

ture. In Proc. 17th Int’l Symposium on Computer Architecture, pages 82–91,

Jul. 1990.

[77] J-M. Parcerisa and A. Gonzalez. The Synergy of Multithreading and Ac-

cess/Execute Decoupling. In Proc. 5th Int’l Symposium on High-Performance

Computer Architecture, pages 59–63, Jan. 1999.

[78] S. Patel and S. Lumetta. rePLay: a Hardware Framework for Dynamic Opti-

mization. IEEE Transactions on Computers, Jun. 2001.

[79] Miquel Pericas, Ruben Gonzlez, Adrian Cristal, Daniel A. Jimenez, and Ma-

teo Valero. Chained In-Order/Out-of-Order Double Core Architecture. In

Proceedings of the 17th Intl Symposium on Computer Architecture and High

Performance Computing., Feb. 2005.

[80] V. Petric, A. Bracy, and A. Roth. Three Extensions to Register Integration.

In Proc. 35th Int’l Symposium on Microarchitecture, pages 37–47, Nov. 2002.

[81] V. Petric, T. Sha, and A. Roth. RENO: A Rename-Based Instruction Opti-

mizer. In Proc. 32nd Int’l Symposium on Computer Architecture, pages 98–109,

Jun. 2005.

219

[82] J. Phillips and S. Vassiliadis. High-Performance 3-1 Interlock Collapsing ALUs.

IEEE Transactions on Computers, 1994.

[83] R. Razdan and M. Smith. A High-Performance Microarchitecture with Hard-

ware Programmable Function Units. In Proc. 27th Int’l Symposium on Mi-

croarchitecture, Dec. 1994.

[84] Roni Rosner, Yoav Almog, Micha Moffie, Naftali Schwartz, and Avi Mendelson.

Power awareness through selective dynamically optimized traces. In Proc. 31st

Int’l Symposium on Computer Architecture, 2004.

[85] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith. Trace Processors. In

Proc. 30th Int’l Symposium on Microarchitecture, pages 138–148, Dec. 1997.

[86] A. Roth and G. Sohi. Speculative Data-Driven Multithreading. In Proc. 7th

Int’l Symposium on High-Performance Computer Architecture, pages 37–48,

Jan. 2001.

[87] S. Sakai, Y. Yamaguchi, K. Hiraki, Y. Kodama, and T. Yuba. An Architecture

of a Dataflow Single Chip Processor. In Proc. 16th Annual Int’l Symposium

on Computer Architecture, pages 46–53, May 1989.

[88] Pierre Salverda and Craig B. Zilles. A Criticality Analysis of Clustering in

Superscalar Processors. In Proc. 38th Annual International Symposium on

Microarchitecture, pages 55–66, Nov. 2005.

[89] P. Sassone and D. Wills. Dynamic Strands: Collapsing Speculative Dependence

Chains for Reducing Pipeline Communication. In Proc. 37th Int’l Symposium

on Microarchitecture, pages 7–17, Dec. 2004.

[90] P. Sassone, D. Wills, and G. Loh. Static Strands: Safely Exposing Dependence

Chains for Increasing Embedded Power Efficiency. In Proc. 2005 Conference

on Languages, Compilers, and Tools for Embedded Systems, Jun. 2005.

220

[91] Y. Sazeides, S. Vassiliadis, and J. Smith. The Performance Potential of Data

Dependence Speculation and Collapsing. In Proc. 29th Int’l Symposium on

Microarchitecture, Dec. 1996.

[92] T. Sha, M. Martin, and A. Roth. NoSQ: Store-Load Communication without

a Store Queue. In Proc. 39th Int’l Symposium on Microarchitecture, Dec. 2006.

[93] B. Sinharoy, R. Kalla, J. Tendler, R. Eickemeyer, and J. Joyner. POWER5 Sys-

tem Microarchitecture. IBM Journal of Research and Development, 49(4/5),

May 2005.

[94] J. Smith. Decoupled Access/Execute Computer Architecture. In Proc. 9th

Int’l Symposium on Computer Architecture, Jul. 1982.

[95] A. Sodani and G. Sohi. Dynamic Instruction Reuse. In Proc. 24th Int’l Sym-

posium on Computer Architecture, Jun 1997.

[96] F. Spadini, M. Fertig, and S. Patel. Characterization of Repeating Dynamic

Code Fragments. Technical report, University of Illinois, Center for Reliable

and High-Performance Computing, 2002.

[97] S. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton. Continual

Flow Pipelines. In Proc. 11th Int’l Conference on Architectural Support for

Programming Languages and Operating Systems, Oct. 2004.

[98] J. Stark, M. Brown, and Y. Patt. On Pipelining Dynamic Instruction Schedul-

ing Logic. In Proc. 33rd Int’l Symposium on Microarchitecture, Dec. 2000.

[99] B. De Sutter, H. Vandierendonck, B. DeBus, and K. DeBosschere. On the

side-effects of code abstraction. In LCTES ’03: Proceedings of the 2003 ACM

SIGPLAN conference on Language, compiler, and tool for embedded systems,

pages 244–253, Jun. 2003.

221

[100] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. WaveScalar. In Proc.

36th Int’l Symposium on Microarchitecture, Dec. 2003.

[101] D. Tarjan, M. Boyer, and K. Skadron. Federation: Out-of-Order Execution

using Simple In-Order Cores. Technical Report CS-2007-11, University of Vir-

ginia Department of Computer Science, Aug. 2007.

[102] X. Tian, E. Su, D. Kreitzer, H. Saito, R. Krishnaiyer, A. Kanhere, J. Ng,

C. Lim, and S. Ghosh. Inside the Intel 10.1 Compilers: New Threadizer and

New Vectorizer for Intel Core2 Processors. Intel Technology Journal, 11(4),

2007.

[103] L. Tran, N. Nelson, F. Ngai, S. Dropsho, and M. Huang. Dynamically Reducing

Pressure on the Physical Register File through Simple Register Sharing. In

Proc. IEEE Int’l Symp. Performance Analysis of Systems and Software, 2004.

[104] Jessica H. Tseng and Krste Asanovic. RingScalar: A Complexity-Effective

Out-of-Order Superscalar Microarchitecture. Technical Report MIT-CSAIL-

TR-2006-066, Massachusetts Institute of Technology, CSAIL, Sept. 2006.

[105] A. Veen. Dataflow Machine Architecture. ACM Computing Surveys, 18(4):365–

396, Dec. 1986.

[106] Ofri Wechsler. Inside Intel Core Microarchitecture: Setting New Standards for

Energy-Efficient Performance. Technology @ Intel Magazine, March 2006.

[107] M. J. Wirthlin and B. L. Hutchings. DISC: The dynamic instruction set com-

puter. In In Field Programmable Gate Arrays for Fast Board Development and

Reconfigurable Computing, pages 92–103, 1995.

[108] T. Wolf and M. Franklin. CommBench: A Telecommunications Benchmark for

Network Processors. Technical Report WUCS-99-29, University of Washington

in St. Louis, Nov. 1999.

222

[109] Z. Ye, A. Moshovos, S. Hauck, and P. Banerjee. CHIMAERA: A High-

Performance Architecture with a Tightly-Coupled Reconfigurable Functional

Unit. In Proc. 27th Int’l Symposium on Computer Architecture, Jun. 2000.

[110] K. Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE Micro, Apr.

1996.

[111] S. Yehia, N. Clark, S. Mahlke, and K. Flautner. Exploring the design space of

LUT-based transparent accelerators. In Proceedings of the 2005 International

Conference on Compilers, Architecture, and Synthesis for Embedded Systems

(CASES), pages 159–170, Sept. 2005.

[112] S. Yehia and O. Temam. From Sequences of Dependent Instructions to Func-

tions: A Complexity-Effective Approach for Improving Performance without

ILP or Speculation. In Proc. 31st Int’l Symposium on Computer Architecture,

pages 159–170, Jun. 2004.

223

