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Abstract [12]. These forms of reuse exploit certain invariants to
Register integration (or just integration) is a register €nable a simple and un-obtrusive integration implementa-
renaming discipline that implements instruction reuse viation. In this paper, we present three extensions to the
physical register sharing. Initially developed to perform basic implementation that broaden integration’s applica-
squash reuse, the integration mechanism can exploiility and increase its performance impact while main-
more reuse scenarios. Here, we describe three extensiofigining simplicity and modularity. First, we extend
to the original design that expand its applicability and Ssquash reuse t@eneral reuseby allowing multiple
boost its performance impact. First, we extend squashnstruction instances to share the same register simulta-
reuse to general reuse. Whereas squash reuse maintairi¢ously. We accomplish this using a register reference
the concept of an instruction instance “owning” its out- counting scheme. General reuse enables the integration
put register, we allow multiple instructions to simulta- Of registers which are the outputs of instructions which
neously share a single register. Next, we replace the PChave been squashed, are in-flight, have retired, or have
indexing scheme with an Opcode-based indexing Schen{etire.d and been. archite_cturally overwritten. This gxten-
that exposes more integration opportunities. Finally, wesion increases thiategration rate—the number of retire-
introduce an extension called reverse integration in ment stream instructions that benefit from integration—
which we speculatively create integration entries for thefrom 2% to 9%. Next, we present apcode-based index-
inverses of operations—for instance, when renaming afng schemehat exposes more integration opportunities
add, we create an entry for the inverse subtract. Revers@&hile minimizing integration table conflicts. Opcode
integration allows us to reuse operations that the pro-indexing increases the integration rate to approximately
gram itself has not executed yet. We use reverse integral2%. Our final, and most significant, proposed extension
tion to implement speculative memory bypassing foiS reverse integrationin reverse integration, the renam-
stack-pointer based loads (register fills and restores).  ing of an operation triggers the creation of an integration
Our evaluation shows that these extensions increas@ntry for the inverse operation: an add creates an entry for
the integration rate—the number of retired instructions the complementary subtract, a store creates an entry for
that integrate older results and bypass the executiorihe complementary load, and so on. Reverse integration
engine—to an average of 15% on the SPEC2000 intege¢an achieve dataflow graph compression beyond that
benchmarks. On a 4-way superscalar processor with anhich is possible via direct (i.e., conventional, repetition-
aggressive memory system, this translates into an aveased) reuse. In this paper, we use reverse integration to
age IPC improvement of 7%. The fact that integratingimplement speculative memory bypassing [9] for stack
instructions Comp|ete|y bypass the execution enginépads—register fills and restores—essentially for free.
raises the possibility of using integration as a low-com- With the addition of reverse integration, the number of
plexity substitute for execution bandwidth and issue buffinstructions that benefit from integration rises to 15%.
ering. Our experiments show that such a trade-off is\We evaluate these extensions using cycle level simulation
possible, enabling a range of IPC/complexity designs. ©of the SPEC2000 integer benchmarks. On a 4-way super-
scalar processor with an aggressive memory system, we
1 Introduction observe average speedups of 7%, with 13% gains on sev-
Register integration (or justtegration) is a modifica- eral benchmarks. ;
Integrating instructions bypass the out-of-order exe-

tion to register renaming that implements instruction ., ion"angine raising the possibility of using integration
reuse via p_hysmallreg|ster sharing [11]. Like other reUS&; s a substitute for execution core resources. The trade-off
schemes, integration enhances performance by cuttin integration complexity for execution complexity is
observed latencies, collapsing reused dependence chaifgo yiiaiy a good one. Integration has been shown to be
reducing contention for execution bandwidth and iSSU€, 1\ opapie 1o pipelining and insensitive to pipeline latency
buffers, and accelerating branch resolution. Integratlori 3]. We show that, in terms of IPC, it can substitute for
does have one unique feature among reuse schemes:iiy, oo e tion width and scheduling window size
accomplishes all of this without reading or writing the X

. . : The next two sections recap basic register integration
registers themselves (for the rest of this paper we will usg,, 4 yrasent our extensions, respectively. Section 4 con-
the wordregisterto mearphysical register @ ucctains both limit studies and evaluations of realistic inte-

9 y 9 ptur gration configurations. Section 5 discusses related work.
scenariossquash reusgll, 13] andpre-execution reuse Our conclusions are presented in Section 6



2 Register Integration Primer tion logic forms a critical loop with register renaming.
Register integration was initially developed to imple- _ Integrating instructions bypass the out-of-order execu-
ment squash reuse [11] and pre-execution reuse [12}ON engine completely and are not allocated reservation
Since we are working in a superscalar context, we preserittations. System calls, stores (whose execution enables
our extensions assuming a base squash-reuse mechanidffd forwarding), and direct jumps (whose decode-time
specifically, its more refined second implementation [13].€xecution is essentially free) are not integrated.

We briefl i . o . o . : .
e briefly recap that mechanism here Mis-integrations. Mis-integrations—the integrations of

The integration operation. Register integration is an Incorrect results—are a rare but inevitable byproduct of
extension to pointer-based register renaming, the stylétégration. There are two kinds of mis-integrations. Load
used in MIPS R10000 [17], Alpha 21264 [6], and Pentium mls-lntegremons occur because the_ |r_1tegrat|(_)n test Is
4 [4]. Integration allows multiple dynamic instruction Purely register based. In a load mis-integrafianload
instances to use the same register instance for their sharé¥egrates despite the presence (or absence) of a conflict-
result. Reuse (sharing) is accomplished by pointer maniping store that did not (or did) exist for the original load.
ulation: the reusing instruction sets its output logical regis-Register mis-integrationsccur when new mappings coin-
ter to point to the register containing the original value.cidentally match stale IT entries. _ _
Integration identifies reuse opportunities by performing an Mis-integrating instructions may not be retired. This
operational equivalence tesin each instruction as it is directive may be implemented conservatively, by avoiding
renamed. An instruction may reuse the result of a previougotential mis-integrations a priori, or aggressively, by
instruction if it performs the same operation (heretoforedetecting mis-integrations and recovering from them.
represented by PC) on the same registers. To facilitatt/Sed by itself, neither approach is satisfactory. The con-
such a comparison, dntegration table (IT)stores<opera- ~ Servative sol_utlon requires IT invalidations and_ drastlcall_y
tion, input_pregd, input_preg2, output_preg>tuples of recent deprgsse_s integration rates. The aggressive solution
instructions. One unique feature of integration is that nejf€duires integrating instructions to be re-executed and pro-

ther the reuse operation nor the reuse test require any re§UCes many expensive mis-integrations.
ister values to be read or written. These circumstances motivate a combined approach

[13]. First, we detect all mis-integrations by re-executing
Major components and organization.Figure 1 shows integrating instructions in-order prior to retirement. This
the main components of integration and their logicalform of re-execution is both cheaper and less perfor-
placement in the pipeline. The integration components argance-critical than execution by the out-of-order core.
the integration logic (a modification to renaming), the DIVA [1] re-executes all instructions in this way to toler-
integration table (IT) the register state vectorthe load  ate many kinds of faults, including design errors. If DIVA
integration suppression predictor (LISR)Nd theDIVA  is present, it provides us with free re-execution and mis-
verifier [1]. We have already introduced the integration integration detection. Then, with re-execution ensuring
table. The register state vector maps each register to one gbrrectness, we use simple mechanisms to suppress most
three statedree, activg or squashedThe vector indicates mis-integrations while keeping integration rates high.
which registers are integration-eligible (only squashed-oad mis-integrations are functions of store-load depen-
registers may be integrated) and also acts as the free listdences, and thus are highly predictable. We suppress them

Integration is a multi-step process. A group of instruc-using a load integration suppression predictor (LISP). The

tions reads the IT to generate a group of IT entries. The ITLISP learns from past mis-integrations to suppress the
entries is internally cross-checked to determine the possfuture integration of offending loads. We suppress register
bility of integrating dependence chains. During registermis-integrations using a simple generation counting
renaming itself, the map table and register state vector arecheme which we describe in Section 3.1.
read. The information from the IT, map table, and state
vector is combined by the integration logic to make inte-3 Three Extensions
gration decisions. These are reflected by changes to the Tne extensions we propose involve only minimal and
map table and state vector and the creation of new IMpcalized modifications to the “existing” (i.e., squash
entries (for failed integrations). Of these, only the integra-reyse) integration machinery. General reuse requires

changes to the register state vector and IT. Opcode index-

FIGURE 1. Register integration implementation ing and reverse integration require IT changes only.

< 3.1 General Reuse via Multiple Integration
-rLISP map mis-integration? Squash reuse is the reuse of results that are created

during the course of (mis-)speculation; it is a function of
> speculation in the microarchitecture and the control-recon-
FU vergent nature of the program. General reuse is the reuse
of results generated by older architectural instructions and
is a function of the dynamic redundancy built into pro-
ROB| | PPVAF®  grams by compilers and programmers. in PC-based gen-
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eral reuse, instructions reuse the results generated by old&/orking example. General reuse allows combinations of
instances of themselves. Loop-invariant instructions thaactive and retired instructions to share registers. There are
were not hoisted by the compiler and program-constanalso multiple scenarios in which sharing is partially or
based instructions (e.g., loop initialization and control) inwholly dissolved. Our reference counting and resource
successive invocations of the same function are commomanagement scheme handles these cases naturally. For
fodder for PC-based general reuse. intuition, we show a few common scenarios in an exam-
The primary implementation change from squash tople. Figure 2 shows the processing of eight dynamic
general reuse is the introduction sifnultaneougegister  instructions at three relevant pipeline events: rename, com-
sharing. In squash reuse, multiple dynamic instructionsnit, and squash. From left to right, the figure shows the
share a single register output, but not simultaneously. Arevent, the instruction’s dynamic instance number (#1 to
integrating instruction (i.e., its output logical register) #8), its PC, its raw and renamed forms, and pbst-event
assumes ownership of the integrated register. There is nstates of the IT, map table, and reference vector. Map table
need to track how many times a register is mapped—thaand reference vector rows are “snapshots.” A given IT row
number is always one. Mapping (logical register) transi-shows the entry relevant to the particular operation.
tions unilaterally trigger register transitions (e.g., the free-  Our example uses three logical registdR$:-R3 and
ing of a mapping triggers the freeing of a register) withoutsix (physical) registerql-p6. R1-R3are initially mapped
checking the state vector. In general reuse, a register map pl-p3 each of which is in thé&/T state;p4—p6 are free
be simultaneously mapped by multiple logical registersand are in theQ/F state. The first six events show the
some of which may be the outputs of in-flight instructions.renaming and retirement of instructions #1-#3. Since
General reuse precludes the notion of register ownershithese do not match any IT entries, three new regispérs,
and the resulting simplifications (e.g., a register can b6, are allocated to them. In the reference vector, these reg-
reclaimed only when the last mapping to it is freed). isters transition fron®/F to 1/T; map table and reference
To facilitate simultaneous register sharing, we generalvector transitions are shown in bold. Notice, when an
ize the contents of the register state vector to referencmstruction retires, its own output register does not change
counts. Each register’s entry is the numbencfive map-  state. However, the reference count of the shadowed regis-
pingsto that register. An active mapping is either in-flight ter (the one previously mapped to the output logical regis-
or retired, but not shadowed/overwritten. In other words, itter) is decremented. For instance, in event #3, instruction
can be read by any new instruction. Mapping operations—#1’s output registe4, is unchanged whilg2, the register
allocations or integrations—increment the count. Unmap-previously mapped t&2, transitions td/T. Recall, thed/T
ping operations—squashes or overwrites—decrement it. Atate implies that the register contains a valid, integration-
register is free when its reference count is zero. Note, theligible value, but is not currently in use.
retirement of an instruction does not change the reference Events #7 and #8 are integrations. Instructions #4 and
count of its output register. #5 are new instances of thk&0 andx14 and integrate the
Our scheme requires that we distinguish between twaesults of instructions #1 and #2s4-andp5—respectively.
different zero-reference states. One corresponds to thkategrations trigger reference increments. The integration
squash reuséee state and is interpreted as “the register scenarios for instructions #4 and #5 are slightly different.
contains a garbage value.” The other corresponds to thiastruction #4 integrates a register which has been shad-
squash reussquashedtate and interpreted as “this regis- owed by the retirement of instruction #3; its count transi-
ter is currently unused but does contain a useful value antions from 0/T to 1/T. Instruction #5 integrates a register
is integration-eligible.” Ordinarily, the second state alonewhose mapping has been committed but not overwritten;
would suffice. We could allow registers that contain gar-its reference transition is fromd/T to 2/T. This is an
bage to be integrated and detect the resulting mis-integranstance of simultaneous sharing5 is shared by the
tions. However, the presence of squash reuse necessitategired mapping of instruction #2 and the active mapping
the first state. On a mis-speculation, we flush squashedf instruction #5.
instructions that have not executed from the reservation Instruction #6 (event #9) cannot integrate an existing
stations. Now, integrating instructions are not allocatedresult.p2, a0/T register, is reclaimed and allocated to it.
reservation stations under the assumption that either 1) the In event #11, instruction #5 and all subsequent instruc-
result is ready, or 2) an older in-flight instruction will write tions (here, #6) are squashed. In a conventional processor,
this register. If we allow registers from squashed un-exea squash restores the map table and free list to their state
cuted instructions to be integrated, the correspondingmmediately prior to the renaming of the oldest squashed
operation will never execute, the integrating instructioninstruction (#5 here). In a processor with integration, this
will never complete, and the processor will deadlockrecovery procedure is applied to the map table and refer-
before the offending instruction enters the re-executiorence vector. In the example, these are restored to their pre-
stage. While we can detect (and recover from) this condievent #8 state. To accommodate squash reuse, the restora-
tion, this scenario arises too frequently for such a low-pertion function is not an exact copy. Special logic is applied
formance solution. To represent two zero-reference state§y entries of registers which are completely unmapped by
we augment the reference count withiadid bit. The bitis  the squash. This logic transitions the register to @fie
set for all integration-eligible registers, i.e., all except for state if the corresponding instruction has executed, or to
unmapped registers of the first kind. the O/F state if it has not. As noted above, this is done to



Event Stream IT | Map Table Reference Vector  [count/valid]
T Event l# PC Raw Renamed PC [inp bout | |R1 [R2 [R3 pl p2 p3 p4 p5 pé
0: Initial pl | p2 | p3 UT| 2T | 1T | 0/F|O/F|O/F
1. Rename 1 x10 addgiR2,R1,1 addqi p4, p1, 1 x10 | pl | p4 pl | p4 | p3 UT | T | T | LT |OIF|O/F
2. Rename 2 x14 addqgiR3,R2,1 addgqi p5, p4, 1 x14 | p4 | p5 pl | p4 | p5 UT|UT|UT|UT|UT|OF
3: Commit 1 pl | p4 | p5 UT[OT| LT[ LT | LT |OF
4: Rename 3 x18 subgiR2,R3,1 addgqi p6, p5, 1 x18 | p5 | p6 pl | p6 | p5 Ut|om|uT|uT|ut|ur
5. Commit 2 pl | p6 | p5 UT|OT|oT | UT|UT|UT
6: Commit 3 pl | p6 | p5 UT|OT|OT|{OT|LUT LT
7: Rename 4 x10 addgiR2,R1,1 addqi p4, p1, 1 x10 | pl | p4 pl | p4 | p5 UT|OT|OT | UT|UT|UT
8 Rename 5 x14 addgiR3,R2,1 addai p5, p4, 1 x14 | p4 | p5 pl | p4 | p5 UT|OM|OT{UT|2m|UT
9: Rename 6 xlc subqiR3, R3, 2 subgi p2, p5, 1 xlc | p5 | p2 pl | p4 | p2 UT|UT|OT | UT |27 |UT
10: Commit 4 pl | p4 | p2 UT|UT|Om|uT|2m|om
11: Squash 5,6 pl | p4 | p5 UT|[O/F|OT [ LT | LT |LT
12: Rename 7 x10 addqgiR2,R1,1 addqi p4, p1, 1 x10 | pl | p4 pl | p4 | p5 UT|OF|OT | 2T |UT|UT
13: Rename 8 x14 addqiR3,R2,1 addqi p5, p4, 1 x14 | p4 | p5 pl | p4 | p5 UT|OF|OT|2T|2T|UT

FIGURE 2. General reuse reference counting example

prevent registers of un-executed squashed instructiongible entries are flushed before the right mappings can
from being integrated and causing deadlock. In our examaccidentally recur. They are frequent in general reuse,
ple, p2 transitions to thé/F state. Noticep5 (2/Tto 1/T) is  where nearly all registers are integration-eligible and
not completely unmapped by the squash; the squash doesany persist in the IT for long periods. Unlike load mis-

not destroyp5's mapping from retired instruction #2. integrations, register mis-integrations are “random” and
Events #12 and #13 are integrations of regispdrand  hence not easily predicted/avoided.
p5 by instances of instructionsl0 and x14, respectively. A complete but expensive solution to register mis-inte-

These are cases of simultaneous sharing—each reuse ragrations is to invalidate all IT entries which specify a reg-
ister has at least one active mapping at the time it idster as one of the inputs whenever that register is
reused. As shown, our mechanism handles general reuseri@allocated. A practical approximation is to attach to each
the presence of shadowing and mis-speculation. register a shortwrap-around generation countefThis
counter is incremented every time the register is reallo-
Issue: speculative reference countingVhile integration  cated, but is otherwise unmodified. The counters are stored
is a performance optimization and precise IT managemenh the map table and reference vector and are checkpointed
is unnecessary, the reference vector is the central trackingnd restored together with these structures. In the IT, regis-
mechanism for all registers. Its state must be kept preter numbers are augmented with counters which are cop-
cisely lest registers “leak.” The solution, which we alluded ied from the map-tab|e (a|0ng with the register numbers)
to in our example, parallels the handling of the free listin awhen an entry is created. To simulate invalidation, we inte-
conventional processor. The output register numbers comgrate only if both register numbemnd counter values

tained in the ROB are used to undo reference incrementgatch. We have found that 4-bit counters eliminate virtu-
serially on a mis-speculation. For faster recovery to selec|ly all register mis-integrations.

dynamic points (e.g., after conditional branches), the ref-
erence vector is checkpointed and restored monolithically3 2 More Reuse via Enhanced Opcode Indexing

| I T/ref h PC-indexing is appropriate for squash-reuse where, by
ssule_. reterence vector managemenlSqugs rguse definition, instructions integrate the results of squashed
exploits an invariant one-to-one correspondence betweepsiances of themselves. For general reuse, it is too restric-

integration-eligible registers and IT entries to manage thgye 1o establish operational equivalence, only the opcode
IT and state vector in synchrony. Joint management maxizng jnput values (registers and immediates) are needed.
mizes integration opportunity but requires transitions in

PC matching is sufficient to establish operation and imme-
g‘?liate value equivalence, but it is not strictly necessary. Dif-

e _ erent static instructions may have identical combinations
LRU IT replacement with circular (FIFO) register recla- 4

: . di q | hof opcode, immediate, and inputs (e.g., loop control
mation approximates coordinated replacement. At thg,qiyctions from different functions are nearly identical).

same time, we simplify implementation and gain the flexi- ynjer pC-indexing, instances of one cannot integrate
bility to use mulltiple IT entries per register. This flexibility rogits generated by instances of the other. To recapture
is important for implementing reverse integration. some of this lost opportunity, we “relax” IT indexing to
use opcodes rather than PCs. Although this is a stand-
?_lone extension, its primary benefit comes from enabling

the IT and reference-vector independently. Combinin

Issue: avoiding register mis-integrationsRegister mis-
integrations are rare in squash reuse, where integration-el



reverse integration (Section 3.3). to reuse future instances addqi ?, p1, 4 With this exten-
Opcode-indexing maximizes integration opportunity, sion, we can also create a reverse ertagdqi/-4, p3, -, p1>
but for realistic, low-associativity IT organizations it has a and integrate future instructions of the faaddqi ?, p3, 4
serious disadvantage. The opcode itself distributes IT The applicability of reverse integration depends on the
entries poorly, inducing conflicts which reduce the integrafrequency of operation-inverse pairs. At first, it may
tion rate, and undermining the initial motivation for using appear that such pairs are rare; after all, why would a pro-
opcode-indexing in the first place! Combining the opcodegram perform the inverse operation when it had the value
and immediate to form the index relieves this problem, butproduced by this inverse to begin with? However, there is
only slighty—many dynamic instructions have opcode/at least one common idiom that follows this pattern: mem-
immediate combinations &fq/0, addqi/1, or addg/-. ory communication, the passing of values from stores to
To truly mitigate aliasing, we augment the index in aloads. Stores and loads are trivial inverses with respect to
structured way, by mixing (XOR'’ing) an additional piece the stored value. Speculatively short-circuiting store-load
of information with the opcode/immediate. Note, only the communication—reusing the store’s data input register as
index is augmented—a minimal tag (opcode/immediate) ithe load’s data output register—is a known technique
used to maximize matches within a set. To be effective, aalledspeculative memory bypassif$j.
piece of information must generate a sufficient number of The basic reverse integration implementation is sim-
distinct patterns. Furthermore, distinct patterns shouldle: when renaming a stostq pl, 8(p2) we create the IT
group instructions that are likely to integrate one another'®ntry for the complementary loaddq/8, —, p2, p1> The
results, and each instruction within a group should be ablstructure of the reverse entry restricts the communicating
to generate the pattern easily and independently. Aftestore-load pair somewhat: the store and load must share
experimenting with several indexing additions including the same base address regispémere). Fortunately, a sig-
logical register names and high-order PC bits, we haveificant number of store-load communications follow this
found that using thecall depth—e.g., the top-of-stack more restricted pattern as well: saves and restores into the
index of the return-address-stack—yields a good distribustack-frame which use the stack-pointer as their base reg-
tion and the highest integration rates. Call depth indexingster. Speculative memory bypassing for save-restore pairs
has several nice properties. It groups instructions by funcis straightforward as long as the stack-pointer itself is not
tion (both statically and dynamically), exploiting the fact modified. However, we can make it work even across
that instructions are more closely related to, and hencstack-pointer modifications by exploiting the observation
more likely to integrate results from, other instructionsthat, by design, stack-pointer modifications themselves
from within the same function, and in particular the samealways come in nested operation-inverse pairs: Easp,
dynamic invocation. It is a dense numbering of small inte-—32(sp)andlda sp, 32(sp)(Alpha-speak forddgi sp, sp, —32
gers that generates few conflicts outside the current funcandaddgi sp, sp, 32 respectively). When a restore operation

tion. Finally, it meshes well with reverse integration. takes place, the stack-pointer always has the same value as
it did when the corresponding save executed. By using
3.3 Memory Bypassing via Reverse Integration reverse integration on the stack-pointer itself, we create

Squash and general reuse perfadirect integration  the situation in which this value is also in the same regis-
integration of results from older instructions. They exploit ter. Notice, speculative memory bypassing via reverse
passive, reactive dynamic instruction repetition, and buffeintegration meshes well with our opcode-indexing and
results in the IT under a simple temporal locality assump-entry distribution mechanisms: save-restore pairs are
tion: the operation is likely to be executed again soon.  always from the same function and stack depth, as are the

Reuse has a more aggressive, active coyseiexecu- stack-pointer decrement-increment pairs.
tion. In pre-execution, we use the execution of one opera- ] . ) )
tion to predict a different (but closely related) operation Working example. Figure 3 shows reverse register inte-
that is likely to execute in the near future, execute thagration at work, implementing speculative memory
operation speculatively, and buffer its result for laterbypassing for both a caller- and a callee- saved register.
“reuse”. In this scenario, reuse is a misnomer—the reusedhe figure shows a time series of the register renaming
operation was not previously specified by the original pro-Stage. From left to right are the raw (un-renamed) instruc-
gram. Pre-execution exploits a different locality assumpdion stream, the renamed instructions, the IT (with relevant

tion: the presence of a certain operation signals the arrivaleverse entries) and the state of the map table after the cur-
of a closely related operation. rent instruction has been renamed. Execution proceeds in
Register integration efficiently supports a restricted buthree phases. In the save sequence, the caller-saved regis-

powerful class of pre-execution idioms via a mechanismfert0 is saved (1), the called function opens a stack frame
called reverse integration In reverse integration, the by decrementing the stack pointer (3), and then saves the
renaming of an operation triggers the creation of an ITcallee-saved registef (4). For each of these three opera-
entry for the inverse operation_ To create this entry, welions, we create a reverse integration entry. For the stores
simply invert the opcode/immediate combination, andwe create load entries with the instruction’s data input reg-
reverse the roles of the output register and one input regigster as the entry’s output. For the stack-pointer decrement,
ter. For examp|e, suppose we rename the instru(ﬂmﬂqi the reverse entry contains a pOSitiVG immediate and the

p3, pl, 4 Creating the IT entryaddqi/4, p1, -, p3>allows us  input and output registers are swapped. The second phase
is of unspecified length and contains the body of the called



Dynamic Instruction Stream Reverse IT Entries Map Table
l# Raw Renamed Op/lmm |[Inl1 |[In2 JOut sp |0 s0 Comment
1 stqt0, 8(sp) stq p20, 8(p12) |dg/8 - | pl2 ] p20 pl2 | p20 | p22 create reverse entry t0
2 call function call function
3 ldasp, -32(sp) lda p31, -32(p12) lda/32 - | p31] p12 |— p3l | p20 | p22 create reverse entry sp
4 stq S0, 4(sp) stq p22, 4(p31) ldg/4 - | p31] p22 p3l | p20 | p22 create reverse entry sO

:| p3l | p4l | p44 s0 and t0 overwritten

5 Idq s0, 4(sp) ldq p22, 4(p31) ldg/4 - | p31 ] p22 p3l | p4l | p22 reverse integrate sO
6 Idasp, 32(sp) Ida p12, 32(p31) lda/32 - | p31] pl2 j&— pl2 | p4l | p22 reverse integrate sp
7 retn retn
8 Idqt0, 8(sp) ldq p20, 8(p12) ldg/8 - | pl2] p20 |« pl2 | p20 | p22 reverse integrate t0

FIGURE 3. Speculative memory bypassing via reverse integration

function in whicht0 and s0 are overwritten. The third between integration and execution core complexity (4.5).
phase takes place around function return. The callee-
restore (5) integrates the data register of the callee-sav&1 Environment
(p22) using the reverse entry created by that store. Integra- We conduct our evaluation using the SPEC2000 inte-
tion succeeds because the stack-poinigt)(is not modi-  ger benchmarks. The benchmarks are compiled for the
fied between the two instructions. The stack-pointerAlpha EV6 using the Digital UNIX V4 cc compiler with
increment (6) integrates the reverse entry of the stackthe SPEC peak optimization flags: -O3 -fast. We simulate
pointer decrement, restorirgy's pre-call mapping t@l2.  the training runs to completion with 10% cyclic sampling
This reverse integration enables the reverse integration aft a granularity of 100 million instructions per sample. Our
the caller-restore (8). simulation environment is built using the SimpleScalar
o . Alpha ISA and system modules. The simulator faithfully
Issue: non-standard stack disciplinesReverse integra- models pointer-based register renaming and register inte-

tion captures the most frequent stack idiom: FIFO pushingyration. Table 1 details our simulated configuration.
and popping of function calls. However, several idioms—

exceptions,longjmp and alloca—manipulate the stack 4.2 Primary Performance Results

pointer in non-standard ways. These do not result in incor- Performance impact of our three integration exten-
rect behavior, but do temporarily disrupt reverse integrasjons—general reuse, opcode-indexing, and speculative
tion by removing a complementary increment to anmemory bypassing—is shown in Figure 4: the top graph
existing stack-pointer decrement from the dynamicshows speedups, the bottom one details the corresponding
instruc_tion stream. Reverse integration resumes productivigtegration metrics. Each graph shows eight experiments
operation when new values are saved to (and subsequen@fouped into four barssquash(first bar from left) is the

restored from) the stack. baseline squash reuse implementation [11, 48kneral
_ adds general reuseopcodeadds opcode-indexing, and
4 Evaluation +reverse adds speculative memory bypassing. Within a

We evaluate our extensions using cycle-level simulabar, one experiment uses a realistic LISP (bottom, light
tion. We measure the impact of each extension on a 4-waRortion), and one uses oracle mis-integration suppression
superscalar processor (Section 4.2), analyze integratin%OP, dark portion). For integration rates, solid bars repre-
instructions (4.3), measure the performance of variou$ent direct integrations and striped bars reverse integra-
integration configurations (4.4), and explore the trade-offlons. Integration rates are measured at retirement to avoid

TABLE 1. Simulated processor configuration

Pipeline 4-way superscalar, dynamically scheduled processor with a 13 stage pipeline (3 fetch, 1 decode, 1 rename, 2 chedule, 2
register read, 1 execute, 1 writeback, 1 DIVA, 1 retire). Maximum of 128 instructions or 64 memory operations ip-flight.
8K-entry hybrid branch predictor with 4K-entry BTB. 40 reservation-station scheduler issues up to 4 instructfons per
cycle: 2 simple integer, 2 floating-point or complex-integer, 1 load, and 1 store. Loads issue speculatively yvith full
squash on mis-speculation. 256-entry collision history table (CHT) stalls chronically mis-speculated loads.

Memory [32KB, 32B line, 2-way primary instruction and data caches. 2MB, 64B line, 4-way, 6-cycle L2. Infinite, 80-cyclg main
System memory. 128-entry 4-way TLBs with 30 cycle hardware miss handling. 32B wide backside and memory buses cjocked at
1X and 0.25X processor frequency, respectively. Data cache access is 2 cycles and non-blocking with 16 MSHRs. Mem-
ory operations are preceded by 1-cycle address generation, minimal latency of a non-integrating load is 3 cycls.

Register [256 registers. 1K-entry, 4-way IT contains direct and reverse entries and is indexed by XOR of instruction’s jopcode,
Integration |immediate value and call-depth. 4-bit generation counters and 1K-entry, 2-way PC-indexed LISP suppress repister and
load mis-integrations, respectively. DIVA re-executes all instructions. Mis-integrations trigger a 1-cycle pipelingflush.




counting integrations by squashed instructions and doubldoes not benefit all programs uniformly. Recall, opcode
counting integrations by instructions that integrated andndexing produces a poorex priori IT distribution for
were subsequently squashed and squash reused. In the batiich we compensate using the call depth as an additional
tom graph, the number at the top of each bar is unsupindex. For this enhancement to work, a program must be
pressed mis-integrations (i.e., DIVA induced squashes) pesufficiently call-intensive and have a sufficiently deep call-
one million retired instructions. This number correspondsgraph (to produce multiple stack depth values). For most
to the realistic LISP configuration. In the top graph, thebenchmarks, this strategy breaks even and produces mod-
number under each program is its baseline IPC. est integration rate increases of around Tfafty, perl.s
andvortexhave both the requisite call structuaed multi-
Extension contribution. For squash reusesquash to  ple static instructions within the same function whose
provide benefit, the processor must control- or data- misgynamic instances can successfully integrate one another’s
speculate at a sufficient rate and execute a sufficient nunfesults. These show increases of nearly 10%. On the other
ber of instructions from the re-convergent portion of theend of the spectrumpr.r and (to a lesser degregjiphave
mis-speculated path. With our moderate pipeline depthew integration opportunities across multiple instructions
and issue width and aggressive branch and load speculgjithin the same function. For these programs, PC-index-
tion predictors, these conditions are not present. Squasfig would suffice. Unfortunately, they also has few calls.
reuse achieves a mean (arithmetic) integration rate of 2%qor IT entry distribution dominates in these benchmarks
and a mean (geometric) speedup of 1%. Higher integratiognd integration rates drop by about 2%.
rates and speedups have been measured using deeper pipe-while opcode indexing itself does not result in signifi-
lines and smaller predictors [11, 13]. As previously cant gains, it does enable reverse integratiore\erse.
reported, mis-integrations are uncommon in squash reus&peculative memory bypassing lifts the mean integration
The addition of general reusedenera) increases the rate to 15% (17% oracle) and the mean speedup to 7.3%
average integration rate to 8% (9% with oracle mis-inte-(8.3% oracle). Applying reverse integration to save-restore
gration suppression) and speedup to 2.8% (3% oraclepairs, we improve call-intensive benchmarks by integrat-
Unlike the squash integration rate, the general integratiofhg 60% of stack-loads. Not surprisingly, the same call-
rate is a function of the program and the integration conpoor programs which react adversely to opcode indexing
figuration. It is independent of the underlying microarchi- (gzip andvpr.r) also do not exploit reverse integration. On
tecture and can produce tangible speedups even with the other hand, call-intensive programs liken.k gcg
modest pipeline and accurate control speculation. Unsumerl, and vortex have reverse integration rates that
prisingly, mis-integrations increase proportionally with approach (and often surpass) 10%. Surprisingly, while
integrations. These are almost exclusively load mis-intereverse integration increases integration rates, it actually
grations; register mis-integrations are virtually eliminatedreduces the average mis-integration rate. This is an artifact
using our 4-bit generation counters. of one “outlier” program.Crafty has an unusually high
Enhanced opcode indexing-dpcodg increases the mjs-integration rate for direct integrations while its reverse
average integration rate to 11.5% (12% oracle) and thentegrations mis-integrate infrequently. Reverse entries

average speedup to 4.8% (5% oracle). Again, the increasgisplace direct entries from the IT, disproportionately cut-
in mis-integration rate is proportional to the increase inting the mis-integration rate.

integration rate. Unlike general reuse, opcode indexing

FIGURE 4. Impact of general reuse, opcode indexing, and speculative memory bypassing

15

LISP: |:| reglistic I oracle M u
g 10 = ]
o
>
i 5 s
5 _—
’ FI- I'I
. 1.93 141 1.63 1.83 0.88 152 171 1.78 158 2.68 1.73 1.38 1.69
2\0/ LISP: H realistic i oracle 3
[} sl 8 0 [42) a 3
o] 842 = i
& o o 8 55 o8 B S S ] oS 2
4 g g ™ ol I~
§ S N =@ g8 g s Y Al 9 8
s 3o 9 SOl o 2 23S of || o Sog Z
8 8| o2 g o == RN nRERNE S g
£ lgl_ p 2 S S s || o S = S
- m 1] 2
B3 B3 B3 B3 B3 B3 B3 B3 B3 B3 B3 B3 B3
%mgg %mgg %mgg %m%% %m%% %m%% %m%% %m%% %m%% %m%% %m%% %m%% %m%%
53S0 338 WLSE BUSC BRGS0 HIST WLST PGS BBST HOST H3SS BGSE BEST
+++ FF+ FFF +F+ +++ +F+ +F+ +F+ 1+ +FF £+ FF+ ¥+
eonk gap gce gzip mcf parser  perl.d perl.s twolf  vortex  vpr.p vprr  AMean




Performance diagnosticsintegration’s primary benefitis because many “lost” integrations are likely to be of the
the streamlining of the execution stream—integratingsquash reuse variety and squash reuse is impervious to
instructions bypass the execution engine. By skipping halfntegration pipelining. While the squashed and integrating
the pipeline, an integrating instruction’s lifetime is effec- instances may be separated by only ten instructions in the
tively halved. In many cases, this is the dominant term indynamic renaming stream, they are also separated by a
the integration performance equation. Integration has se@ipeline flush. Intuitively, the majority of reverse integra-
ond-order performance effects as well. Integrating instructions take place over longer instruction distances.

tions indirectly accelerate non-integrating instructions by Integration distance can also be used to measure inte-
removing themselves from scheduling contention. Integragration locality. For that, it must be defined as the distance
tion also expedites the resolution of mis-predictedbetween the instruction and the most instruction to use the
branches. Mis-prediction resolution latency, measured agegister (which is not necessarily the original creator). In
the average cycle difference between resolution (complethe next section, we investigate locality in a different but
tion) and prediction for all retired mis-predicted branches,equivalent way, by varying register file sizes.

is reduced from an average of 26 cycles to 23.5 cycles. o )

Faster mis-prediction resolution reduces the number ofntegration-time result status. The middle graph ta-
instructions fetched along mis-speculated paths and helg¥s), shows the state of the result at the time the integrating
offset some of the fetch redundancy caused by mis-inteinstruction was renamed. We distinguish between four
gration. Integration actually reduces the average numbestatesirename(the integrated register was allocated, but

of fetched instructions slightly (an average of 0.6%).  the corresponding operation has not been issuisdje
(the operation has been issuertire (the operation has
4.3 Integration Stream Analysis completed and the original instruction has retired), and

To better understand integration, we studyititegra- ~ shadow/squasliithe operation completed but the register
tion retirement streamthe stream of retiring integrating Was unmapped at the time of integration; the original
instructions. Figure 5 shows three integration streaninstruction was either squashed or shadowed, i.e., retired
breakdowns. As usual, solid bars indicate direct integra@nd overwritten)
tion and striped bars indicate reverse integration. On top of ~ This graph demonstrates two of the benefits of integra-
each benchmark name, we print the integration rate. Th&on. First, 10-20% of integrations occur before the origi-

data corresponds to our baseline configuration: a 1K-entryjal instruction has executed. These reuse opportunities
4-way IT, 256 registers, and a realistic LISP. cannot be captured by value- or name- based mechanisms

like instruction reuse (IR) [14, 15] since the reused value
Integration distance. The left graph Distance measures itself is unavailable. Second, most reverse integrations
the distance in renamed instructions between the integratake place after the instruction that created the stored value
ing instruction and the instruction that created the IT entryhas retired (sum of the bottom two striped portions). This
and result. This measure of distance indicates the numbdliustrates the importance of a bypassing implementation
of cycles that pass between the creation of an IT entry anthat can operate outside the reordering window.
its use and shows the number of integrations that would be o )
lost if integration were pipelined. Pipelining integration Integration-time reference count.The right graph Ref-
separates the IT read and write stages, preventing instru€oun) tracks reference counts at the time of integration.
tions from integra‘[ing recenﬂy allocated registers_ This breakdown illustrates both the degree of register shar-

Fewer than 10% of integrating instructions use resultgng in the program and the number of bits required for
created within the previous four instructions and feweréach reference vector entry. At the bottom of the stack are
than 20% integrate results that were created within the prestructions whose integration increments the reference
vious 16 instructions. In a 4-wide machine, integrationcountto 1, next are those whose integrations increment the
may be p|pe||ned over four stages with a maximum reducreference count to at most 3, and so on. These correspond
tion in the integration rate of 20%. Loss is capped at 20940 maximum sharing degrees enabled by 1-bit counters, 2-

FIGURE 5. Breakdowns of integration retirement stream
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bit counters, etc. The bars corresponding to a referencim ideal settings, only few (e.goerl.d) show dramatic ben-
count of 1 show integrations of squashed or shadowegfits in realistic scenarios. Mis-integrations dampen the
results. Bars corresponding to reference counts greataffects of associativity—performance improvement only
than 1 show integration of instructions which are still in- drops to 6.5% and 5.3% when associativity is reduced to
flight or are retired but not overwritten. 2-way and 1-way respectively, but only increases to 10%
Simultaneous sharing is frequent. Nearly 60% of inte-when full associativity is used.
grations occur while the original instruction is still active. Low associativity primarily reduces direct integrations.
However, fewer than 20% of integrated results are simultabirect integrations of common opcode/immediate combi-
neously shared by more than three instructions. While 4nations (e.g.ldg/0, addg/-) occur at many different degrees
bit counters capture virtually all sharing opportunities, it is of temporal locality (e.g., an integratitdg/0 instance may
not the case that 2-bit counters would preclude as many ds separated by tehlg/0 instances from the instance
20% of integrations (e.ggzip). If an instruction attempts whose register it integrates). Although it uses a limited
to integrate a register with a saturated reference countenumber of opcodeddg, ldl, Ida) and immediatesO( 4, 8,
integration fails and the instruction allocates a new registeetc.), reverse integration is surprisingly insensitive to IT
anda new IT entry. Subsequent instructions will integrateassociativity. The reason is that speculative memory

this new register, whose reference count is 1. bypassing exploits a different form of locality than reuse.
Here, there is a one-to-one correspondence between the
4.4 Impact of Integration Configuration instructions that create IT entries (stores and stack-pointer

In the previous section, we measured the performancdecrements) and those that read them (loads and stack-
impact of an aggressive but (we believe) implementablgointer increments). The stack-frame layout provides a
integration configuration: 256 registers, and a 1K-entry, 4-natural indexing of entrieddg/0, Idg/8, etc.), which elimi-
way IT. In this section, we measure the performance ofhates IT conflicts within a function. Our call-depth
both more conservative (in terms of associativity and sizenhancement extends conflict avoidance to span multiple
and more aggressive configurations. The former showsall levels [dg/0/1, I1dg/8/1, 1dg/0/2, Idq/8/2, etc.).
how much performance can be achieved at lower cost, the

latter measures the performance limits of integration.  Integration table size.The right side of Figure 6 shows
the performance of fully-associative, LRU-managed ITs of

Integration associativity. The left side of Figure 6 com- four increasing sizes: 64, 256, 1K (our default), and 4K
pares our standard 4-way configuration with 1-way, 2-wayentries. The register file size is 4K for all experiments.
and fully associative ITs. The number of IT entries is fixed These experiments measure a program’s inhendegra-

at 1K. We use 256 registers for the low-associativitytion temporal locality the dynamic instruction distances
experiments 1K registers for the fully-associative one.  across which integration takes place.

Low associativity does not significantly degrade inte-  Both direct and reverse integration are temporally local
gration’s performance impact. While low-associativity phenomena. There are occasional high integration concen-
reduces the number of integrations, it also reduces th&ations at specific long distance values (eagafty, vor-
number of mis-integrations. On the other end, full associateX. Long-range direct integrations take place within
tivity increases the number of mis-integrations. As alarge-body loops (e.g., outer loops); long range reverse
result, while most programs benefit from full associativity integrations take place across large or multiple calls.

FIGURE 6. Impact of IT associativity and size
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FIGURE 7. Impact of integration on reduced-complexity execution engines

Although not directly shown, even with a 4K-entry IT, programs (e.geon.k perl, vorte® hit hardest. Integration
at least 93% of the integrations in each benchmark are dbrings performance back to within 3% of baseline. Perfor-
results that were created or integrated within the previousnance recovery is not uniform across all benchmarks: an
256 instructions. Low associativity artificially increases integration rate of 15% cannot compensate for the loss of
this locality even more, by premature entry eviction. Theseone load/store port ireon.k (loads and stores comprise
factors motivates our baseline configuration choice of 25@15% of its dynamic instructions). Reducing the number of
registers. With our 4-way IT, increasing the register countreservation stations from 40 to 2R yields an average
from 256 to 1K yields an average speedup of only 0.5%. performance loss of 10% (our initial choice of 40 slots sits

just above the “knee” of the performance-sensitivity

4.5 Trading Integration for Execution Resources curve). Integration brings performance to within 2% of

Integration streamlines thexecutionstream. We now baseline. The combined effects of reduced issue width and
investigate whether this effect enables the use of lowerbuffering (W+RS are not additive, but neither do they
complexity execution cores. Reduced core complexitycompletely overlap. While having fewer instructions in the
could be further parlayed into increased core frequencyieservation stations translates into fewer ready-to-execute
but we do not evaluate such possibilities here. Tradingnstructions per cycle, the reduced execution bandwidth
execution resources for integration resources is not a sindecreases the rate at which instructions exit the reservation
ple case of moving complexity from one place to anotherstations, increasing the pressure on that resource. The per-
The out-of-order core is sensitive to both latency—depenformance degradation of this configuration relative to base
dent instructions execute serially—and complexity. Inte-is 18%. Integration is rarely able to compensate for drastic
gration is latency and complexity insensitive. Dependenteductions in both resources, bringing average perfor-
instructions can be integrated in parallel, and integratiormance only to within 9% of base levels. However, note
can be pipelined with hazards resulting only in lost inte-that our integration configuration streamlines the execu-
gration opportunities [13]. Our integration distance resultstion stream by an average of 15% whereas these two sim-
(Section 4.3) suggest that this cost is minimal in reality. plifications combine for a 63% reduction in resources.

Two main factors contribute to execution complexity:
1) issue widthinfluences the complexity of the scheduler 5 Related Work

and the bypass network, Bumber of reservation stations Dynamic instruction reuse (IR)L4, 15] implements

determines the complexity of scherc]jL;ling and Wake“p%gneral and squash reuse using a table that buffers recent
Integration reduces pressure on both factors. Our samp mputations. IR and direct integration are analogs. IR is

integrat;on configuration executes 15% fewer instruction§, 4y ra for microarchitectures that use value-based renam-
and hz.7A’ fewgr loads than a comparable '”te%rat'on'lﬁsﬁg—storing non-speculative results in a register file and
machine (we do not count DIVA re-executions here). Thejn fjight results in the ROB—like Intel’'s PentiumPro. Inte-

average reservation station occupaneythe per-cycle P :
: gration is natural for processors that use pointer-based
number of busy slots—is reduced by 139%, from 31 10 27. o4 ming—storing all results in large uniform pool of

Figure 7 shows the results of four experimerBase v qjcal registers—Intel's Pentium4 [4]. Integration lever-

(left bar) is our base configuration: 4-way issue with 405405 the natural advantages of the pointer-based style,
reservation station®kS(second) is a 4-way issue configu- avoiding actual data movement in favor of map table

ration with 20 reservation station8W (third) is an asym-  \aninyiations. The single-assignment form of this style
metric configuration with a 4-wide in-order section and 3-54 ajlows integration to implement dependence-tracking
way issue with a single load/store issue pb+RS(1ast) napyrally. Other instruction-granularity reuse implementa-
has both reduced issue capabilities and fewer reservatiof,\s includeinstruction-level reusd8], which tests for
stations. The bars show speedups relative thHEe con- o5 at hoth rename and issdgnamic control-indepen-

figuration without integrationObviously, without integra-  jance (DCI) buffef2], which uses a shadow ROB to per-
tion, IW, RS andlW+RSshow negative speedups. form squash reuse, and functional unit memoization [3].

Reducing issue width from 4 to 3W) degrades per- " pified renaming5] uses map table manipulations to
formance by an average of 12%, with load/store-intensive



implement register sharing and reference counting as itshow that using a 1K-entry, 4-way IT, these extensions
sharing discipline. While integration uses dataflow equivaincrease the integration rate, the number of retired instruc-
lence to find sharing opportunities, unified renaming col-tions that bypass the execution engine, to an average of
lapses identity instruction sequences like register move45%. On a 4-wide processor this translates into a 7% aver-
(detected non-speculatively) and communicating storeage speedup. Speedups of 5% and 6% can be achieved
load pairs (detected via a memory dependence predictor)with simpler, direct-mapped and 2-way tables, respec-
The originalspeculative memory bypassiongeration tively. Higher speedups can be achieved with more accu-
[9] uses address-based dependence prediction and succesgte mis-integration suppression.
fully connects a load-consumer with a store-producer if  Since integration reduces execution engine load, its
both instructions are simultaneously active and if thepresence allows the use of lower-complexity out-of-order
store-producer output register is still mapped when theore designs. This is not a case of simply moving com-
load is renamed. Unified renaming [5] assimilates thisplexity from one part of the pipeline to another. The execu-
functionality. The value address association structure tion core is latency-sensitive, it must execute dependent
(VAAS)[10] tags registers with reference addresses andhains of operations serially. Integration is latency-insensi-
implements bypassing (among other optimizations) usingdive, chains of dependent operations can be integrated in
associative address matching at the data-cache accesarallel. We show that a 1K-entry, 4-way integration con-
stage.Speculative memory cloakirig], also calledmem-  figuration can compensate for a 25% reduction in issue
ory renaming[16], is a sub-component of bypassing in width or a 50% reduction in issue buffering.
which a store-load pair is transformed into a register move
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