
o
ta-
he
a-
-

lta-
ce
tion
h
ve

n-

s

ly
on
-
n
for
for
ion
at
-
to

k
e.
f
.

ion
er-
we
ev-

e-
n
-off

be
cy
r

on
on-
-
rk.

Three Extensions To Register Integration
Vlad Petric, Anne Bracy, and Amir Roth

Department of Computer and Information Science
University of Pennsylvania

{vladp, bracy, amir}@cis.upenn.edu
Abstract
Register integration (or just integration) is a register

renaming discipline that implements instruction reuse via
physical register sharing. Initially developed to perform
squash reuse, the integration mechanism can exploit
more reuse scenarios. Here, we describe three extensions
to the original design that expand its applicability and
boost its performance impact. First, we extend squash
reuse to general reuse. Whereas squash reuse maintains
the concept of an instruction instance “owning” its out-
put register, we allow multiple instructions to simulta-
neously share a single register. Next, we replace the PC-
indexing scheme with an opcode-based indexing scheme
that exposes more integration opportunities. Finally, we
introduce an extension called reverse integration in
which we speculatively create integration entries for the
inverses of operations—for instance, when renaming an
add, we create an entry for the inverse subtract. Reverse
integration allows us to reuse operations that the pro-
gram itself has not executed yet. We use reverse integra-
tion to implement speculative memory bypassing for
stack-pointer based loads (register fills and restores).

Our evaluation shows that these extensions increase
the integration rate—the number of retired instructions
that integrate older results and bypass the execution
engine—to an average of 15% on the SPEC2000 integer
benchmarks. On a 4-way superscalar processor with an
aggressive memory system, this translates into an aver-
age IPC improvement of 7%. The fact that integrating
instructions completely bypass the execution engine
raises the possibility of using integration as a low-com-
plexity substitute for execution bandwidth and issue buff-
ering. Our experiments show that such a trade-off is
possible, enabling a range of IPC/complexity designs.

1 Introduction
Register integration (or justintegration) is a modifica-

tion to register renaming that implements instruction
reuse via physical register sharing [11]. Like other reuse
schemes, integration enhances performance by cutting
observed latencies, collapsing reused dependence chains,
reducing contention for execution bandwidth and issue
buffers, and accelerating branch resolution. Integration
does have one unique feature among reuse schemes: it
accomplishes all of this without reading or writing the
registers themselves (for the rest of this paper we will use
the wordregister to meanphysical register).

Integration was initially designed to capture two reuse
scenarios:squash reuse[11, 13] andpre-execution reuse

[12]. These forms of reuse exploit certain invariants t
enable a simple and un-obtrusive integration implemen
tion. In this paper, we present three extensions to t
basic implementation that broaden integration’s applic
bility and increase its performance impact while main
taining simplicity and modularity. First, we extend
squash reuse togeneral reuseby allowing multiple
instruction instances to share the same register simu
neously. We accomplish this using a register referen
counting scheme. General reuse enables the integra
of registers which are the outputs of instructions whic
have been squashed, are in-flight, have retired, or ha
retired and been architecturally overwritten. This exte
sion increases theintegration rate—the number of retire-
ment stream instructions that benefit from integration—
from 2% to 9%. Next, we present anopcode-based index-
ing schemethat exposes more integration opportunitie
while minimizing integration table conflicts. Opcode
indexing increases the integration rate to approximate
12%. Our final, and most significant, proposed extensi
is reverse integration. In reverse integration, the renam
ing of an operation triggers the creation of an integratio
entry for the inverse operation: an add creates an entry
the complementary subtract, a store creates an entry
the complementary load, and so on. Reverse integrat
can achieve dataflow graph compression beyond th
which is possible via direct (i.e., conventional, repetition
based) reuse. In this paper, we use reverse integration
implement speculative memory bypassing [9] for stac
loads—register fills and restores—essentially for fre
With the addition of reverse integration, the number o
instructions that benefit from integration rises to 15%
We evaluate these extensions using cycle level simulat
of the SPEC2000 integer benchmarks. On a 4-way sup
scalar processor with an aggressive memory system,
observe average speedups of 7%, with 13% gains on s
eral benchmarks.

Integrating instructions bypass the out-of-order ex
cution engine raising the possibility of using integratio
as a substitute for execution core resources. The trade
of integration complexity for execution complexity is
potentially a good one. Integration has been shown to
amenable to pipelining and insensitive to pipeline laten
[13]. We show that, in terms of IPC, it can substitute fo
both execution width and scheduling window size.

The next two sections recap basic register integrati
and present our extensions, respectively. Section 4 c
tains both limit studies and evaluations of realistic inte
gration configurations. Section 5 discusses related wo
Our conclusions are presented in Section 6.

u-
on
les
e

of
d

is

ict-
.

s
g
y
.

n-
ly
ion
ro-

ch
g
s
r-
e.
-

is-
g
ost

h.
n-
em

he
he
ter
g

d
h
res
ex-

ted
f
n-
use
nd
-
en-
FIGURE 1. Register integration implementation

fetch rename

map
table

RS

DIVA

mis-integration?

integrate

ROB

RF

state
vec

FU

IT

LISP
2 Register Integration Primer
Register integration was initially developed to imple

ment squash reuse [11] and pre-execution reuse [1
Since we are working in a superscalar context, we pres
our extensions assuming a base squash-reuse mechan
specifically, its more refined second implementation [13
We briefly recap that mechanism here.

The integration operation.Register integration is an
extension to pointer-based register renaming, the st
used in MIPS R10000 [17], Alpha 21264 [6], and Pentiu
4 [4]. Integration allows multiple dynamic instruction
instances to use the same register instance for their sha
result. Reuse (sharing) is accomplished by pointer man
ulation: the reusing instruction sets its output logical regi
ter to point to the register containing the original value
Integration identifies reuse opportunities by performing a
operational equivalence teston each instruction as it is
renamed. An instruction may reuse the result of a previo
instruction if it performs the same operation (heretofo
represented by PC) on the same registers. To facilit
such a comparison, anintegration table (IT)stores<opera-
tion, input_preg1, input_preg2, output_preg> tuples of recent
instructions. One unique feature of integration is that ne
ther the reuse operation nor the reuse test require any r
ister values to be read or written.

Major components and organization.Figure 1 shows
the main components of integration and their logic
placement in the pipeline. The integration components a
the integration logic (a modification to renaming), the
integration table (IT), the register state vector, the load
integration suppression predictor (LISP)and theDIVA
verifier [1]. We have already introduced the integratio
table. The register state vector maps each register to on
three states:free, active, or squashed. The vector indicates
which registers are integration-eligible (only squashe
registers may be integrated) and also acts as the free li

Integration is a multi-step process. A group of instruc
tions reads the IT to generate a group of IT entries. The
entries is internally cross-checked to determine the pos
bility of integrating dependence chains. During regist
renaming itself, the map table and register state vector
read. The information from the IT, map table, and sta
vector is combined by the integration logic to make inte
gration decisions. These are reflected by changes to
map table and state vector and the creation of new
entries (for failed integrations). Of these, only the integr
tion logic forms a critical loop with register renaming.
Integrating instructions bypass the out-of-order exec

tion engine completely and are not allocated reservati
stations. System calls, stores (whose execution enab
load forwarding), and direct jumps (whose decode-tim
execution is essentially free) are not integrated.

Mis-integrations. Mis-integrations—the integrations of
incorrect results—are a rare but inevitable byproduct
integration. There are two kinds of mis-integrations. Loa
mis-integrations occur because the integration test
purely register based. In a load mis-integration, a load
integrates despite the presence (or absence) of a confl
ing store that did not (or did) exist for the original load
Register mis-integrationsoccur when new mappings coin-
cidentally match stale IT entries.

Mis-integrating instructions may not be retired. Thi
directive may be implemented conservatively, by avoidin
potential mis-integrations a priori, or aggressively, b
detecting mis-integrations and recovering from them
Used by itself, neither approach is satisfactory. The co
servative solution requires IT invalidations and drastical
depresses integration rates. The aggressive solut
requires integrating instructions to be re-executed and p
duces many expensive mis-integrations.

These circumstances motivate a combined approa
[13]. First, we detect all mis-integrations by re-executin
integrating instructions in-order prior to retirement. Thi
form of re-execution is both cheaper and less perfo
mance-critical than execution by the out-of-order cor
DIVA [1] re-executes all instructions in this way to toler
ate many kinds of faults, including design errors. If DIVA
is present, it provides us with free re-execution and m
integration detection. Then, with re-execution ensurin
correctness, we use simple mechanisms to suppress m
mis-integrations while keeping integration rates hig
Load mis-integrations are functions of store-load depe
dences, and thus are highly predictable. We suppress th
using a load integration suppression predictor (LISP). T
LISP learns from past mis-integrations to suppress t
future integration of offending loads. We suppress regis
mis-integrations using a simple generation countin
scheme which we describe in Section 3.1.

3 Three Extensions
The extensions we propose involve only minimal an

localized modifications to the “existing” (i.e., squas
reuse) integration machinery. General reuse requi
changes to the register state vector and IT. Opcode ind
ing and reverse integration require IT changes only.

3.1 General Reuse via Multiple Integration
Squash reuse is the reuse of results that are crea

during the course of (mis-)speculation; it is a function o
speculation in the microarchitecture and the control-reco
vergent nature of the program. General reuse is the re
of results generated by older architectural instructions a
is a function of the dynamic redundancy built into pro
grams by compilers and programmers. In PC-based g

-
2].
ent
ism;
].

yle
m

red
ip-
s-
.
n

us
re
ate

i-
eg-

al
re

n
e of

d
st.
-
IT
si-

er
are
te
-
the
IT
a-

f
are
r
ce
For
-

ic
m-
e
to

ble
w

ce

eg-

n
ge
gis-
is-
on

n-

nd

on
t.

ad-
i-
r
n;

g

g

c-
sor,
tate
ed
is
er-
re-

tora-
d
by

to
to
eral reuse, instructions reuse the results generated by older
instances of themselves. Loop-invariant instructions that
were not hoisted by the compiler and program-constant
based instructions (e.g., loop initialization and control) in
successive invocations of the same function are common
fodder for PC-based general reuse.

The primary implementation change from squash to
general reuse is the introduction ofsimultaneousregister
sharing. In squash reuse, multiple dynamic instructions
share a single register output, but not simultaneously. An
integrating instruction (i.e., its output logical register)
assumes ownership of the integrated register. There is no
need to track how many times a register is mapped—that
number is always one. Mapping (logical register) transi-
tions unilaterally trigger register transitions (e.g., the free-
ing of a mapping triggers the freeing of a register) without
checking the state vector. In general reuse, a register may
be simultaneously mapped by multiple logical registers,
some of which may be the outputs of in-flight instructions.
General reuse precludes the notion of register ownership
and the resulting simplifications (e.g., a register can be
reclaimed only when the last mapping to it is freed).

To facilitate simultaneous register sharing, we general-
ize the contents of the register state vector to reference
counts. Each register’s entry is the number ofactive map-
pingsto that register. An active mapping is either in-flight
or retired, but not shadowed/overwritten. In other words, it
can be read by any new instruction. Mapping operations—
allocations or integrations—increment the count. Unmap-
ping operations—squashes or overwrites—decrement it. A
register is free when its reference count is zero. Note, the
retirement of an instruction does not change the reference
count of its output register.

Our scheme requires that we distinguish between two
different zero-reference states. One corresponds to the
squash reusefree state and is interpreted as “the register
contains a garbage value.” The other corresponds to the
squash reusesquashedstate and interpreted as “this regis-
ter is currently unused but does contain a useful value and
is integration-eligible.” Ordinarily, the second state alone
would suffice. We could allow registers that contain gar-
bage to be integrated and detect the resulting mis-integra-
tions. However, the presence of squash reuse necessitates
the first state. On a mis-speculation, we flush squashed
instructions that have not executed from the reservation
stations. Now, integrating instructions are not allocated
reservation stations under the assumption that either 1) the
result is ready, or 2) an older in-flight instruction will write
this register. If we allow registers from squashed un-exe-
cuted instructions to be integrated, the corresponding
operation will never execute, the integrating instruction
will never complete, and the processor will deadlock
before the offending instruction enters the re-execution
stage. While we can detect (and recover from) this condi-
tion, this scenario arises too frequently for such a low-per-
formance solution. To represent two zero-reference states,
we augment the reference count with avalid bit. The bit is
set for all integration-eligible registers, i.e., all except for
unmapped registers of the first kind.

Working example.General reuse allows combinations o
active and retired instructions to share registers. There
also multiple scenarios in which sharing is partially o
wholly dissolved. Our reference counting and resour
management scheme handles these cases naturally.
intuition, we show a few common scenarios in an exam
ple. Figure 2 shows the processing of eight dynam
instructions at three relevant pipeline events: rename, co
mit, and squash. From left to right, the figure shows th
event, the instruction’s dynamic instance number (#1
#8), its PC, its raw and renamed forms, and thepost-event
states of the IT, map table, and reference vector. Map ta
and reference vector rows are “snapshots.” A given IT ro
shows the entry relevant to the particular operation.

Our example uses three logical registers,R1–R3, and
six (physical) registers,p1–p6. R1–R3 are initially mapped
to p1–p3, each of which is in the1/T state;p4–p6 are free
and are in the0/F state. The first six events show the
renaming and retirement of instructions #1–#3. Sin
these do not match any IT entries, three new registers,p4–
p6, are allocated to them. In the reference vector, these r
isters transition from0/F to 1/T; map table and reference
vector transitions are shown in bold. Notice, when a
instruction retires, its own output register does not chan
state. However, the reference count of the shadowed re
ter (the one previously mapped to the output logical reg
ter) is decremented. For instance, in event #3, instructi
#1’s output register,p4, is unchanged whilep2, the register
previously mapped toR2, transitions to0/T. Recall, the0/T
state implies that the register contains a valid, integratio
eligible value, but is not currently in use.

Events #7 and #8 are integrations. Instructions #4 a
#5 are new instances of thex10 andx14 and integrate the
results of instructions #1 and #2—p4 andp5—respectively.
Integrations trigger reference increments. The integrati
scenarios for instructions #4 and #5 are slightly differen
Instruction #4 integrates a register which has been sh
owed by the retirement of instruction #3; its count trans
tions from 0/T to 1/T. Instruction #5 integrates a registe
whose mapping has been committed but not overwritte
its reference transition is from1/T to 2/T. This is an
instance of simultaneous sharing:p5 is shared by the
retired mapping of instruction #2 and the active mappin
of instruction #5.

Instruction #6 (event #9) cannot integrate an existin
result.p2, a0/T register, is reclaimed and allocated to it.

In event #11, instruction #5 and all subsequent instru
tions (here, #6) are squashed. In a conventional proces
a squash restores the map table and free list to their s
immediately prior to the renaming of the oldest squash
instruction (#5 here). In a processor with integration, th
recovery procedure is applied to the map table and ref
ence vector. In the example, these are restored to their p
event #8 state. To accommodate squash reuse, the res
tion function is not an exact copy. Special logic is applie
to entries of registers which are completely unmapped
the squash. This logic transitions the register to the0/T
state if the corresponding instruction has executed, or
the 0/F state if it has not. As noted above, this is done

an
e,
d
-
d

e-
-
is

ch

lo-
red
ted
is-

op-
s)
e-

u-

by
ed
ric-
de
ed.
e-
if-
ns
ol
).
te
ure

nd-
ng
prevent registers of un-executed squashed instructions
from being integrated and causing deadlock. In our exam-
ple,p2 transitions to the0/F state. Notice,p5 (2/T to 1/T) is
not completely unmapped by the squash; the squash does
not destroyp5’s mapping from retired instruction #2.

Events #12 and #13 are integrations of registersp4 and
p5 by instances of instructionsx10 and x14, respectively.
These are cases of simultaneous sharing—each reuse reg-
ister has at least one active mapping at the time it is
reused. As shown, our mechanism handles general reuse in
the presence of shadowing and mis-speculation.

Issue: speculative reference counting.While integration
is a performance optimization and precise IT management
is unnecessary, the reference vector is the central tracking
mechanism for all registers. Its state must be kept pre-
cisely lest registers “leak.” The solution, which we alluded
to in our example, parallels the handling of the free list in a
conventional processor. The output register numbers con-
tained in the ROB are used to undo reference increments
serially on a mis-speculation. For faster recovery to select
dynamic points (e.g., after conditional branches), the ref-
erence vector is checkpointed and restored monolithically.

Issue: IT/reference vector management.Squash reuse
exploits an invariant one-to-one correspondence between
integration-eligible registers and IT entries to manage the
IT and state vector in synchrony. Joint management maxi-
mizes integration opportunity but requires transitions in
one structure to perform lookups in the other. We manage
the IT and reference-vector independently. Combining
LRU IT replacement with circular (FIFO) register recla-
mation approximates coordinated replacement. At the
same time, we simplify implementation and gain the flexi-
bility to use multiple IT entries per register. This flexibility
is important for implementing reverse integration.

Issue: avoiding register mis-integrations.Register mis-
integrations are rare in squash reuse, where integration-eli-

gible entries are flushed before the right mappings c
accidentally recur. They are frequent in general reus
where nearly all registers are integration-eligible an
many persist in the IT for long periods. Unlike load mis
integrations, register mis-integrations are “random” an
hence not easily predicted/avoided.

A complete but expensive solution to register mis-int
grations is to invalidate all IT entries which specify a reg
ister as one of the inputs whenever that register
reallocated. A practical approximation is to attach to ea
register a shortwrap-around generation counter. This
counter is incremented every time the register is real
cated, but is otherwise unmodified. The counters are sto
in the map table and reference vector and are checkpoin
and restored together with these structures. In the IT, reg
ter numbers are augmented with counters which are c
ied from the map-table (along with the register number
when an entry is created. To simulate invalidation, we int
grate only if both register numbersand counter values
match. We have found that 4-bit counters eliminate virt
ally all register mis-integrations.

3.2 More Reuse via Enhanced Opcode Indexing
PC-indexing is appropriate for squash-reuse where,

definition, instructions integrate the results of squash
instances of themselves. For general reuse, it is too rest
tive. To establish operational equivalence, only the opco
and input values (registers and immediates) are need
PC matching is sufficient to establish operation and imm
diate value equivalence, but it is not strictly necessary. D
ferent static instructions may have identical combinatio
of opcode, immediate, and inputs (e.g., loop contr
instructions from different functions are nearly identical
Under PC-indexing, instances of one cannot integra
results generated by instances of the other. To recapt
some of this lost opportunity, we “relax” IT indexing to
use opcodes rather than PCs. Although this is a sta
alone extension, its primary benefit comes from enabli
FIGURE 2. General reuse reference counting example

Event Stream IT Map Table Reference Vector [count/valid]
T Event I# PC Raw Renamed PC Inp Out R1 R2 R3 p1 p2 p3 p4 p5 p6
0: Initial p1 p2 p3 1/T 1/T 1/T 0/F 0/F 0/F
1: Rename 1 x10 addqi R2, R1, 1 addqi p4, p1, 1 x10 p1 p4 p1 p4 p3 1/T 1/T 1/T 1/T 0/F 0/F
2: Rename 2 x14 addqi R3, R2, 1 addqi p5, p4, 1 x14 p4 p5 p1 p4 p5 1/T 1/T 1/T 1/T 1/T 0/F
3: Commit 1 p1 p4 p5 1/T 0/T 1/T 1/T 1/T 0/F
4: Rename 3 x18 subqi R2, R3, 1 addqi p6, p5, 1 x18 p5 p6 p1 p6 p5 1/T 0/T 1/T 1/T 1/T 1/T
5: Commit 2 p1 p6 p5 1/T 0/T 0/T 1/T 1/T 1/T
6: Commit 3 p1 p6 p5 1/T 0/T 0/T 0/T 1/T 1/T
7: Rename 4 x10 addqi R2, R1, 1 addqi p4, p1, 1 x10 p1 p4 p1 p4 p5 1/T 0/T 0/T 1/T 1/T 1/T
8: Rename 5 x14 addqi R3, R2, 1 addqi p5, p4, 1 x14 p4 p5 p1 p4 p5 1/T 0/T 0/T 1/T 2/T 1/T
9: Rename 6 x1c subqi R3, R3, 2 subqi p2, p5, 1 x1c p5 p2 p1 p4 p2 1/T 1/T 0/T 1/T 2/T 1/T

10: Commit 4 p1 p4 p2 1/T 1/T 0/T 1/T 2/T 0/T
11: Squash 5,6 p1 p4 p5 1/T 0/F 0/T 1/T 1/T 1/T
12: Rename 7 x10 addqi R2, R1, 1 addqi p4, p1, 1 x10 p1 p4 p1 p4 p5 1/T 0/F 0/T 2/T 1/T 1/T
13: Rename 8 x14 addqi R3, R2, 1 addqi p5, p4, 1 x14 p4 p5 p1 p4 p5 1/T 0/F 0/T 2/T 2/T 1/T

e
y
ro-
ue
is
-

to
to
d
as
e

-

ng
are

is
the
eg-
irs
ot
ss
n
es

n
e as
ng
te

is-
se
d
re
the

-
y
ter.
ng
c-
nt
ur-
in

gis-
e

the
-
res
g-
nt,

the
ase
ed
reverse integration (Section 3.3).
Opcode-indexing maximizes integration opportunity,

but for realistic, low-associativity IT organizations it has a
serious disadvantage. The opcode itself distributes IT
entries poorly, inducing conflicts which reduce the integra-
tion rate, and undermining the initial motivation for using
opcode-indexing in the first place! Combining the opcode
and immediate to form the index relieves this problem, but
only slightly—many dynamic instructions have opcode/
immediate combinations ofldq/0, addqi/1, or addq/–.

To truly mitigate aliasing, we augment the index in a
structured way, by mixing (XOR’ing) an additional piece
of information with the opcode/immediate. Note, only the
index is augmented—a minimal tag (opcode/immediate) is
used to maximize matches within a set. To be effective, a
piece of information must generate a sufficient number of
distinct patterns. Furthermore, distinct patterns should
group instructions that are likely to integrate one another’s
results, and each instruction within a group should be able
to generate the pattern easily and independently. After
experimenting with several indexing additions including
logical register names and high-order PC bits, we have
found that using thecall depth—e.g., the top-of-stack
index of the return-address-stack—yields a good distribu-
tion and the highest integration rates. Call depth indexing
has several nice properties. It groups instructions by func-
tion (both statically and dynamically), exploiting the fact
that instructions are more closely related to, and hence
more likely to integrate results from, other instructions
from within the same function, and in particular the same
dynamic invocation. It is a dense numbering of small inte-
gers that generates few conflicts outside the current func-
tion. Finally, it meshes well with reverse integration.

3.3 Memory Bypassing via Reverse Integration
Squash and general reuse performdirect integration:

integration of results from older instructions. They exploit
passive, reactive dynamic instruction repetition, and buffer
results in the IT under a simple temporal locality assump-
tion: the operation is likely to be executed again soon.

Reuse has a more aggressive, active cousin:pre-execu-
tion. In pre-execution, we use the execution of one opera-
tion to predict a different (but closely related) operation
that is likely to execute in the near future, execute that
operation speculatively, and buffer its result for later
“reuse”. In this scenario, reuse is a misnomer—the reused
operation was not previously specified by the original pro-
gram. Pre-execution exploits a different locality assump-
tion: the presence of a certain operation signals the arrival
of a closely related operation.

Register integration efficiently supports a restricted but
powerful class of pre-execution idioms via a mechanism
called reverse integration. In reverse integration, the
renaming of an operation triggers the creation of an IT
entry for the inverse operation. To create this entry, we
simply invert the opcode/immediate combination, and
reverse the roles of the output register and one input regis-
ter. For example, suppose we rename the instruction:addqi
p3, p1, 4. Creating the IT entry<addqi/4, p1, –, p3>allows us

to reuse future instances ofaddqi ?, p1, 4. With this exten-
sion, we can also create a reverse entry<addqi/-4, p3, –, p1>
and integrate future instructions of the formaddqi ?, p3, –4.

The applicability of reverse integration depends on th
frequency of operation-inverse pairs. At first, it ma
appear that such pairs are rare; after all, why would a p
gram perform the inverse operation when it had the val
produced by this inverse to begin with? However, there
at least one common idiom that follows this pattern: mem
ory communication, the passing of values from stores
loads. Stores and loads are trivial inverses with respect
the stored value. Speculatively short-circuiting store-loa
communication—reusing the store’s data input register
the load’s data output register—is a known techniqu
calledspeculative memory bypassing [9].

The basic reverse integration implementation is sim
ple: when renaming a storestq p1, 8(p2), we create the IT
entry for the complementary load<ldq/8, –, p2, p1>. The
structure of the reverse entry restricts the communicati
store-load pair somewhat: the store and load must sh
the same base address register (p2 here). Fortunately, a sig-
nificant number of store-load communications follow th
more restricted pattern as well: saves and restores into
stack-frame which use the stack-pointer as their base r
ister. Speculative memory bypassing for save-restore pa
is straightforward as long as the stack-pointer itself is n
modified. However, we can make it work even acro
stack-pointer modifications by exploiting the observatio
that, by design, stack-pointer modifications themselv
always come in nested operation-inverse pairs: e.g.,lda sp,
–32(sp)and lda sp, 32(sp)(Alpha-speak foraddqi sp, sp, –32
andaddqi sp, sp, 32, respectively). When a restore operatio
takes place, the stack-pointer always has the same valu
it did when the corresponding save executed. By usi
reverse integration on the stack-pointer itself, we crea
the situation in which this value is also in the same reg
ter. Notice, speculative memory bypassing via rever
integration meshes well with our opcode-indexing an
entry distribution mechanisms: save-restore pairs a
always from the same function and stack depth, as are
stack-pointer decrement-increment pairs.

Working example.Figure 3 shows reverse register inte
gration at work, implementing speculative memor
bypassing for both a caller- and a callee- saved regis
The figure shows a time series of the register renami
stage. From left to right are the raw (un-renamed) instru
tion stream, the renamed instructions, the IT (with releva
reverse entries) and the state of the map table after the c
rent instruction has been renamed. Execution proceeds
three phases. In the save sequence, the caller-saved re
ter t0 is saved (1), the called function opens a stack fram
by decrementing the stack pointer (3), and then saves
callee-saved registers0 (4). For each of these three opera
tions, we create a reverse integration entry. For the sto
we create load entries with the instruction’s data input re
ister as the entry’s output. For the stack-pointer decreme
the reverse entry contains a positive immediate and
input and output registers are swapped. The second ph
is of unspecified length and contains the body of the call

).

e-
he

te
g
r
r

y
te-

n-
tive
h
ing

nts

a
ht
ion
e-
ra-
oid
function in which t0 and s0 are overwritten. The third
phase takes place around function return. The callee-
restore (5) integrates the data register of the callee-save
(p22) using the reverse entry created by that store. Integra-
tion succeeds because the stack-pointer (p31) is not modi-
fied between the two instructions. The stack-pointer
increment (6) integrates the reverse entry of the stack-
pointer decrement, restoringsp’s pre-call mapping top12.
This reverse integration enables the reverse integration of
the caller-restore (8).

Issue: non-standard stack disciplines.Reverse integra-
tion captures the most frequent stack idiom: FIFO pushing
and popping of function calls. However, several idioms—
exceptions,longjmp, and alloca—manipulate the stack
pointer in non-standard ways. These do not result in incor-
rect behavior, but do temporarily disrupt reverse integra-
tion by removing a complementary increment to an
existing stack-pointer decrement from the dynamic
instruction stream. Reverse integration resumes productive
operation when new values are saved to (and subsequently
restored from) the stack.

4 Evaluation
We evaluate our extensions using cycle-level simula-

tion. We measure the impact of each extension on a 4-way
superscalar processor (Section 4.2), analyze integrating
instructions (4.3), measure the performance of various
integration configurations (4.4), and explore the trade-off

between integration and execution core complexity (4.5

4.1 Environment
We conduct our evaluation using the SPEC2000 int

ger benchmarks. The benchmarks are compiled for t
Alpha EV6 using the Digital UNIX V4 cc compiler with
the SPEC peak optimization flags: -O3 -fast. We simula
the training runs to completion with 10% cyclic samplin
at a granularity of 100 million instructions per sample. Ou
simulation environment is built using the SimpleScala
Alpha ISA and system modules. The simulator faithfull
models pointer-based register renaming and register in
gration. Table 1 details our simulated configuration.

4.2 Primary Performance Results
Performance impact of our three integration exte

sions—general reuse, opcode-indexing, and specula
memory bypassing—is shown in Figure 4: the top grap
shows speedups, the bottom one details the correspond
integration metrics. Each graph shows eight experime
grouped into four bars:squash(first bar from left) is the
baseline squash reuse implementation [11, 13],+general
adds general reuse,+opcodeadds opcode-indexing, and
+reverse adds speculative memory bypassing. Within
bar, one experiment uses a realistic LISP (bottom, lig
portion), and one uses oracle mis-integration suppress
(top, dark portion). For integration rates, solid bars repr
sent direct integrations and striped bars reverse integ
tions. Integration rates are measured at retirement to av
FIGURE 3. Speculative memory bypassing via reverse integration

Dynamic Instruction Stream Reverse IT Entries Map Table
I# Raw Renamed Op/Imm In1 In2 Out sp t0 s0 Comment
1 stq t0, 8(sp) stq p20, 8(p12) ldq/8 - p12 p20 p12 p20 p22 create reverse entry t0
2 call function call function
3 lda sp, -32(sp) lda p31, –32(p12) lda/32 - p31 p12 p31 p20 p22 create reverse entry sp
4 stq s0, 4(sp) stq p22, 4(p31) ldq/4 - p31 p22 p31 p20 p22 create reverse entry s0

... ...

... ... p31 p41 p44 s0 and t0 overwritten

... ...
5 ldq s0, 4(sp) ldq p22, 4(p31) ldq/4 - p31 p22 p31 p41 p22 reverse integrate s0
6 lda sp, 32(sp) lda p12, 32(p31) lda/32 - p31 p12 p12 p41 p22 reverse integrate sp
7 retn retn
8 ldq t0, 8(sp) ldq p20, 8(p12) ldq/8 - p12 p20 p12 p20 p22 reverse integrate t0
TABLE 1. Simulated processor configuration
Pipeline 4-way superscalar, dynamically scheduled processor with a 13 stage pipeline (3 fetch, 1 decode, 1 rename, 2 schedule, 2

register read, 1 execute, 1 writeback, 1 DIVA, 1 retire). Maximum of 128 instructions or 64 memory operations in-flight.
8K-entry hybrid branch predictor with 4K-entry BTB. 40 reservation-station scheduler issues up to 4 instructions per
cycle: 2 simple integer, 2 floating-point or complex-integer, 1 load, and 1 store. Loads issue speculatively with full
squash on mis-speculation. 256-entry collision history table (CHT) stalls chronically mis-speculated loads.

Memory
System

32KB, 32B line, 2-way primary instruction and data caches. 2MB, 64B line, 4-way, 6-cycle L2. Infinite, 80-cycle main
memory. 128-entry 4-way TLBs with 30 cycle hardware miss handling. 32B wide backside and memory buses clocked at
1X and 0.25X processor frequency, respectively. Data cache access is 2 cycles and non-blocking with 16 MSHRs. Mem-
ory operations are preceded by 1-cycle address generation, minimal latency of a non-integrating load is 3 cycles.

Register
Integration

256 registers. 1K-entry, 4-way IT contains direct and reverse entries and is indexed by XOR of instruction’s opcode,
immediate value and call-depth. 4-bit generation counters and 1K-entry, 2-way PC-indexed LISP suppress register and
load mis-integrations, respectively. DIVA re-executes all instructions. Mis-integrations trigger a 1-cycle pipeline flush.

e

nal
be
ll-
st
od-

e
er’s
her

s
x-

s.
ks

-

on
3%
re
t-

ll-
ng
n

t
ile
lly

act

e
es
t-
counting integrations by squashed instructions and double
counting integrations by instructions that integrated and
were subsequently squashed and squash reused. In the bot-
tom graph, the number at the top of each bar is unsup-
pressed mis-integrations (i.e., DIVA induced squashes) per
one million retired instructions. This number corresponds
to the realistic LISP configuration. In the top graph, the
number under each program is its baseline IPC.

Extension contribution. For squash reuse (squash) to
provide benefit, the processor must control- or data- mis-
speculate at a sufficient rate and execute a sufficient num-
ber of instructions from the re-convergent portion of the
mis-speculated path. With our moderate pipeline depth
and issue width and aggressive branch and load specula-
tion predictors, these conditions are not present. Squash
reuse achieves a mean (arithmetic) integration rate of 2%
and a mean (geometric) speedup of 1%. Higher integration
rates and speedups have been measured using deeper pipe-
lines and smaller predictors [11, 13]. As previously
reported, mis-integrations are uncommon in squash reuse.

The addition of general reuse (+general) increases the
average integration rate to 8% (9% with oracle mis-inte-
gration suppression) and speedup to 2.8% (3% oracle).
Unlike the squash integration rate, the general integration
rate is a function of the program and the integration con-
figuration. It is independent of the underlying microarchi-
tecture and can produce tangible speedups even with a
modest pipeline and accurate control speculation. Unsur-
prisingly, mis-integrations increase proportionally with
integrations. These are almost exclusively load mis-inte-
grations; register mis-integrations are virtually eliminated
using our 4-bit generation counters.

Enhanced opcode indexing (+opcode) increases the
average integration rate to 11.5% (12% oracle) and the
average speedup to 4.8% (5% oracle). Again, the increase
in mis-integration rate is proportional to the increase in
integration rate. Unlike general reuse, opcode indexing

does not benefit all programs uniformly. Recall, opcod
indexing produces a poorera priori IT distribution for
which we compensate using the call depth as an additio
index. For this enhancement to work, a program must
sufficiently call-intensive and have a sufficiently deep ca
graph (to produce multiple stack depth values). For mo
benchmarks, this strategy breaks even and produces m
est integration rate increases of around 1%.Crafty, perl.s,
andvortexhave both the requisite call structureandmulti-
ple static instructions within the same function whos
dynamic instances can successfully integrate one anoth
results. These show increases of nearly 10%. On the ot
end of the spectrumvpr.r and (to a lesser degree)gziphave
few integration opportunities across multiple instruction
within the same function. For these programs, PC-inde
ing would suffice. Unfortunately, they also has few call
Poor IT entry distribution dominates in these benchmar
and integration rates drop by about 2%.

While opcode indexing itself does not result in signifi
cant gains, it does enable reverse integration (+reverse).
Speculative memory bypassing lifts the mean integrati
rate to 15% (17% oracle) and the mean speedup to 7.
(8.3% oracle). Applying reverse integration to save-resto
pairs, we improve call-intensive benchmarks by integra
ing 60% of stack-loads. Not surprisingly, the same ca
poor programs which react adversely to opcode indexi
(gzip, andvpr.r) also do not exploit reverse integration. O
the other hand, call-intensive programs likeeon.k, gcc,
perl, and vortex have reverse integration rates tha
approach (and often surpass) 10%. Surprisingly, wh
reverse integration increases integration rates, it actua
reduces the average mis-integration rate. This is an artif
of one “outlier” program.Crafty has an unusually high
mis-integration rate for direct integrations while its revers
integrations mis-integrate infrequently. Reverse entri
displace direct entries from the IT, disproportionately cu
ting the mis-integration rate.
FIGURE 4. Impact of general reuse, opcode indexing, and speculative memory bypassing

10

20

30

In
te

gr
at

io
n

R
at

e
(%

)

oraclerealistic

sq
ua

sh

sq
ua

sh

sq
ua

sh

sq
ua

sh

sq
ua

sh

sq
ua

sh

sq
ua

sh

sq
ua

sh

sq
ua

sh

sq
ua

sh

sq
ua

sh

sq
ua

sh

sq
ua

sh

sq
ua

sh

sq
ua

sh

+
ge

ne
ra

l

+
ge

ne
ra

l

+
ge

ne
ra

l

+
ge

ne
ra

l

+
ge

ne
ra

l

+
ge

ne
ra

l

+
ge

ne
ra

l

+
ge

ne
ra

l

+
ge

ne
ra

l

+
ge

ne
ra

l

+
ge

ne
ra

l

+
ge

ne
ra

l

+
ge

ne
ra

l

+
ge

ne
ra

l

+
ge

ne
ra

l

+
op

co
de

+
op

co
de

+
op

co
de

+
op

co
de

+
op

co
de

+
op

co
de

+
op

co
de

+
op

co
de

+
op

co
de

+
op

co
de

+
op

co
de

+
op

co
de

+
op

co
de

+
op

co
de

+
op

co
de

+
re

ve
rs

e

+
re

ve
rs

e

+
re

ve
rs

e

+
re

ve
rs

e

+
re

ve
rs

e

+
re

ve
rs

e

+
re

ve
rs

e

+
re

ve
rs

e

+
re

ve
rs

e

+
re

ve
rs

e

+
re

ve
rs

e

+
re

ve
rs

e

+
re

ve
rs

e

+
re

ve
rs

e

+
re

ve
rs

e

bzip2 crafty eon.k gap gcc gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r AMean

0.
10 0.

23

0.
08

0.
23 2.

00 0.
09

0.
06 0.
32

0.
11

0.
12

0.
22

0.
07

0.
23

0.
27

0.
280.

02 2.
33

0.
04

0.
14 2.

96

0.
03

0.
04

0.
18

0.
03

0.
01

0.
10

0.
09

0.
11

0.
09

0.
40

0.
02

10
.6

5

0.
07

0.
13 3.

65

0.
04

0.
03

0.
17

0.
06

0.
03

0.
09

0.
12

0.
19

0.
13

0.
98

0.
02

2.
67

0.
16

0.
22 5.

80 0.
03

0.
04

0.
56 0.
08

0.
03

0.
14

1.
60

0.
19

0.
15

0.
78

LISP:

0

5

10

15

Sp
ee

du
p

(%
)

oraclerealistic

2.42 2.01 1.93 1.41 1.63 1.83 0.88 1.52 1.71 1.78 1.58 2.68 1.73 1.38 1.69

LISP:

e
to

g
the
y a
-

te-
ce
the
In
t

ng
ur
t

d
r
al
red

a-
i-
ies
sms
e
ns
lue
is
on

n.
ar-
r
re
ce
the
ond
2-
Performance diagnostics.Integration’s primary benefit is
the streamlining of the execution stream—integrating
instructions bypass the execution engine. By skipping half
the pipeline, an integrating instruction’s lifetime is effec-
tively halved. In many cases, this is the dominant term in
the integration performance equation. Integration has sec-
ond-order performance effects as well. Integrating instruc-
tions indirectly accelerate non-integrating instructions by
removing themselves from scheduling contention. Integra-
tion also expedites the resolution of mis-predicted
branches. Mis-prediction resolution latency, measured as
the average cycle difference between resolution (comple-
tion) and prediction for all retired mis-predicted branches,
is reduced from an average of 26 cycles to 23.5 cycles.
Faster mis-prediction resolution reduces the number of
instructions fetched along mis-speculated paths and helps
offset some of the fetch redundancy caused by mis-inte-
gration. Integration actually reduces the average number
of fetched instructions slightly (an average of 0.6%).

4.3 Integration Stream Analysis
To better understand integration, we study theintegra-

tion retirement stream: the stream of retiring integrating
instructions. Figure 5 shows three integration stream
breakdowns. As usual, solid bars indicate direct integra-
tion and striped bars indicate reverse integration. On top of
each benchmark name, we print the integration rate. The
data corresponds to our baseline configuration: a 1K-entry,
4-way IT, 256 registers, and a realistic LISP.

Integration distance.The left graph (Distance) measures
the distance in renamed instructions between the integrat-
ing instruction and the instruction that created the IT entry
and result. This measure of distance indicates the number
of cycles that pass between the creation of an IT entry and
its use and shows the number of integrations that would be
lost if integration were pipelined. Pipelining integration
separates the IT read and write stages, preventing instruc-
tions from integrating recently allocated registers.

Fewer than 10% of integrating instructions use results
created within the previous four instructions and fewer
than 20% integrate results that were created within the pre-
vious 16 instructions. In a 4-wide machine, integration
may be pipelined over four stages with a maximum reduc-
tion in the integration rate of 20%. Loss is capped at 20%

because many “lost” integrations are likely to be of th
squash reuse variety and squash reuse is impervious
integration pipelining. While the squashed and integratin
instances may be separated by only ten instructions in
dynamic renaming stream, they are also separated b
pipeline flush. Intuitively, the majority of reverse integra
tions take place over longer instruction distances.

Integration distance can also be used to measure in
gration locality. For that, it must be defined as the distan
between the instruction and the most instruction to use
register (which is not necessarily the original creator).
the next section, we investigate locality in a different bu
equivalent way, by varying register file sizes.

Integration-time result status.The middle graph (Sta-
tus), shows the state of the result at the time the integrati
instruction was renamed. We distinguish between fo
states:rename(the integrated register was allocated, bu
the corresponding operation has not been issued),issue
(the operation has been issued),retire (the operation has
completed and the original instruction has retired), an
shadow/squash(the operation completed but the registe
was unmapped at the time of integration; the origin
instruction was either squashed or shadowed, i.e., reti
and overwritten)

This graph demonstrates two of the benefits of integr
tion. First, 10–20% of integrations occur before the orig
nal instruction has executed. These reuse opportunit
cannot be captured by value- or name- based mechani
like instruction reuse (IR) [14, 15] since the reused valu
itself is unavailable. Second, most reverse integratio
take place after the instruction that created the stored va
has retired (sum of the bottom two striped portions). Th
illustrates the importance of a bypassing implementati
that can operate outside the reordering window.

Integration-time reference count.The right graph (Ref-
count) tracks reference counts at the time of integratio
This breakdown illustrates both the degree of register sh
ing in the program and the number of bits required fo
each reference vector entry. At the bottom of the stack a
instructions whose integration increments the referen
count to 1, next are those whose integrations increment
reference count to at most 3, and so on. These corresp
to maximum sharing degrees enabled by 1-bit counters,
FIGURE 5. Breakdowns of integration retirement stream

0

20

40

60

80

100
64+

< 64

< 16

< 4

9.3 13.0 13.9 14.0 10.8
bzip2 eon.k gcc parser twolf

Distance
rename issue

retireshadow/squash

9.3 13.0 13.9 14.0 10.8
bzip2 eon.k gcc parser twolf

Status
< 15

< 7

< 3

1

9.3 13.0 13.9 14.0 10.8
bzip2 eon.k gcc parser twolf

Refcount

he
ly
to
%

.
i-

d

T
ry
e.
the
ter
ck-
a

ple

of
K
s.

al
en-

n
se
bit counters, etc. The bars corresponding to a reference
count of 1 show integrations of squashed or shadowed
results. Bars corresponding to reference counts greater
than 1 show integration of instructions which are still in-
flight or are retired but not overwritten.

Simultaneous sharing is frequent. Nearly 60% of inte-
grations occur while the original instruction is still active.
However, fewer than 20% of integrated results are simulta-
neously shared by more than three instructions. While 4-
bit counters capture virtually all sharing opportunities, it is
not the case that 2-bit counters would preclude as many as
20% of integrations (e.g.,gzip). If an instruction attempts
to integrate a register with a saturated reference counter,
integration fails and the instruction allocates a new register
anda new IT entry. Subsequent instructions will integrate
this new register, whose reference count is 1.

4.4 Impact of Integration Configuration
In the previous section, we measured the performance

impact of an aggressive but (we believe) implementable
integration configuration: 256 registers, and a 1K-entry, 4-
way IT. In this section, we measure the performance of
both more conservative (in terms of associativity and size)
and more aggressive configurations. The former shows
how much performance can be achieved at lower cost, the
latter measures the performance limits of integration.

Integration associativity.The left side of Figure 6 com-
pares our standard 4-way configuration with 1-way, 2-way
and fully associative ITs. The number of IT entries is fixed
at 1K. We use 256 registers for the low-associativity
experiments 1K registers for the fully-associative one.

Low associativity does not significantly degrade inte-
gration’s performance impact. While low-associativity
reduces the number of integrations, it also reduces the
number of mis-integrations. On the other end, full associa-
tivity increases the number of mis-integrations. As a
result, while most programs benefit from full associativity

in ideal settings, only few (e.g.,perl.d) show dramatic ben-
efits in realistic scenarios. Mis-integrations dampen t
effects of associativity—performance improvement on
drops to 6.5% and 5.3% when associativity is reduced
2-way and 1-way respectively, but only increases to 10
when full associativity is used.

Low associativity primarily reduces direct integrations
Direct integrations of common opcode/immediate comb
nations (e.g.,ldq/0, addq/–) occur at many different degrees
of temporal locality (e.g., an integratingldq/0 instance may
be separated by tenldq/0 instances from the instance
whose register it integrates). Although it uses a limite
number of opcodes (ldq, ldl , lda) and immediates (0, 4, 8,
etc.), reverse integration is surprisingly insensitive to I
associativity. The reason is that speculative memo
bypassing exploits a different form of locality than reus
Here, there is a one-to-one correspondence between
instructions that create IT entries (stores and stack-poin
decrements) and those that read them (loads and sta
pointer increments). The stack-frame layout provides
natural indexing of entries (ldq/0, ldq/8, etc.), which elimi-
nates IT conflicts within a function. Our call-depth
enhancement extends conflict avoidance to span multi
call levels (ldq/0/1, ldq/8/1, ldq/0/2, ldq/8/2, etc.).

Integration table size.The right side of Figure 6 shows
the performance of fully-associative, LRU-managed ITs
four increasing sizes: 64, 256, 1K (our default), and 4
entries. The register file size is 4K for all experiment
These experiments measure a program’s inherentintegra-
tion temporal locality, the dynamic instruction distances
across which integration takes place.

Both direct and reverse integration are temporally loc
phenomena. There are occasional high integration conc
trations at specific long distance values (e.g.,crafty, vor-
tex). Long-range direct integrations take place withi
large-body loops (e.g., outer loops); long range rever
integrations take place across large or multiple calls.
FIGURE 6. Impact of IT associativity and size

0

10

20

30

40

50

60

In
te

gr
at

io
n

R
at

e
(%

) oraclereal

0.
59

0.
10

0.
13 0.

03

0.
40 0.

02 0.
32

0.
11

0.
73

0.
13

0.
18

0.
03

0.
51 0.

03 1.
30

0.
14

2.
67

0.
16

0.
22

0.
03

0.
56 0.
03

1.
60

0.
15

43
.8

9

0.
19

0.
31 0.

03 0.
83

0.
03

4.
84

0.
17

1-
w

ay

1-
w

ay

1-
w

ay

1-
w

ay

1-
w

ay

1-
w

ay

1-
w

ay

1-
w

ay

2-
w

ay

2-
w

ay

2-
w

ay

2-
w

ay

2-
w

ay

2-
w

ay

2-
w

ay

2-
w

ay

4-
w

ay

4-
w

ay

4-
w

ay

4-
w

ay

4-
w

ay

4-
w

ay

4-
w

ay

4-
w

ayFA FA FA FA FA FA FA FA

crafty eon.k gap gzip parser perl.s vortex vpr.r

LISP:

0.
16

0.
07 0.

17

0.
02

0.
37 0.
02

0.
11

0.
10

4.
67

0.
16 0.
25

0.
03

0.
65

0.
03

1.
56

0.
14

43
.8

9

0.
19

0.
31 0.

03 0.
83

0.
03

4.
84

0.
17

22
0

0.
21 0.
32 0.
06 0.

92

0.
03

12
.5

0.
23

64 64 64 64 64 64 64 6425
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

1K 1K 1K 1K 1K 1K 1K 1K4K 4K 4K 4K 4K 4K 4K 4K

crafty eon.k gap gzip parser perl.s vortex vpr.r

0

5

10

15

20

25

30

Sp
ee

du
p

(%
)

oraclereal

2.01 1.93 1.41 1.83 1.52 1.78 2.68 1.38

LISP:

2.01 1.93 1.41 1.83 1.52 1.78 2.68 1.38

r-
an
of

of

ts
y
f
nd

e
ute
th

tion
per-
se
tic
r-

te
u-
im-

cent
is
m-
d

-
ed
f
r-
yle,
le
le
ng
a-

-

Although not directly shown, even with a 4K-entry IT,
at least 93% of the integrations in each benchmark are of
results that were created or integrated within the previous
256 instructions. Low associativity artificially increases
this locality even more, by premature entry eviction. These
factors motivates our baseline configuration choice of 256
registers. With our 4-way IT, increasing the register count
from 256 to 1K yields an average speedup of only 0.5%.

4.5 Trading Integration for Execution Resources
Integration streamlines theexecutionstream. We now

investigate whether this effect enables the use of lower-
complexity execution cores. Reduced core complexity
could be further parlayed into increased core frequency,
but we do not evaluate such possibilities here. Trading
execution resources for integration resources is not a sim-
ple case of moving complexity from one place to another.
The out-of-order core is sensitive to both latency—depen-
dent instructions execute serially—and complexity. Inte-
gration is latency and complexity insensitive. Dependent
instructions can be integrated in parallel, and integration
can be pipelined with hazards resulting only in lost inte-
gration opportunities [13]. Our integration distance results
(Section 4.3) suggest that this cost is minimal in reality.

Two main factors contribute to execution complexity:
1) issue widthinfluences the complexity of the scheduler
and the bypass network, 2)number of reservation stations
determines the complexity of scheduling and wakeup.
Integration reduces pressure on both factors. Our sample
integration configuration executes 15% fewer instructions
and 27% fewer loads than a comparable integration-less
machine (we do not count DIVA re-executions here). The
average reservation station occupancy—the per-cycle
number of busy slots—is reduced by 13%, from 31 to 27.

Figure 7 shows the results of four experiments.Base
(left bar) is our base configuration: 4-way issue with 40
reservation stations.RS(second) is a 4-way issue configu-
ration with 20 reservation stations.IW (third) is an asym-
metric configuration with a 4-wide in-order section and 3-
way issue with a single load/store issue port.IW+RS(last)
has both reduced issue capabilities and fewer reservation
stations. The bars show speedups relative to thebase con-
figuration without integration. Obviously, without integra-
tion, IW, RS, andIW+RS show negative speedups.

Reducing issue width from 4 to 3 (IW) degrades per-
formance by an average of 12%, with load/store-intensive

programs (e.g.,eon.k, perl, vortex) hit hardest. Integration
brings performance back to within 3% of baseline. Perfo
mance recovery is not uniform across all benchmarks:
integration rate of 15% cannot compensate for the loss
one load/store port ineon.k (loads and stores comprise
45% of its dynamic instructions). Reducing the number
reservation stations from 40 to 20 (RS) yields an average
performance loss of 10% (our initial choice of 40 slots si
just above the “knee” of the performance-sensitivit
curve). Integration brings performance to within 2% o
baseline. The combined effects of reduced issue width a
buffering (IW+RS) are not additive, but neither do they
completely overlap. While having fewer instructions in th
reservation stations translates into fewer ready-to-exec
instructions per cycle, the reduced execution bandwid
decreases the rate at which instructions exit the reserva
stations, increasing the pressure on that resource. The
formance degradation of this configuration relative to ba
is 18%. Integration is rarely able to compensate for dras
reductions in both resources, bringing average perfo
mance only to within 9% of base levels. However, no
that our integration configuration streamlines the exec
tion stream by an average of 15% whereas these two s
plifications combine for a 63% reduction in resources.

5 Related Work
Dynamic instruction reuse (IR)[14, 15] implements

general and squash reuse using a table that buffers re
computations. IR and direct integration are analogs. IR
natural for microarchitectures that use value-based rena
ing—storing non-speculative results in a register file an
in-flight results in the ROB—like Intel’s PentiumPro. Inte
gration is natural for processors that use pointer-bas
renaming—storing all results in large uniform pool o
physical registers—Intel’s Pentium4 [4]. Integration leve
ages the natural advantages of the pointer-based st
avoiding actual data movement in favor of map tab
manipulations. The single-assignment form of this sty
also allows integration to implement dependence-tracki
naturally. Other instruction-granularity reuse implement
tions includeinstruction-level reuse[8], which tests for
reuse at both rename and issue,dynamic control-indepen-
dence (DCI) buffer[2], which uses a shadow ROB to per
form squash reuse, and functional unit memoization [3].

Unified renaming[5] uses map table manipulations to
FIGURE 7. Impact of integration on reduced-complexity execution engines

-30

-20

-10

0

10

20
Sp

ee
du

ps
 (

%
)

no integrationrealistic LISPoracle LISP

ba
se

ba
se

ba
se

ba
se

ba
se

ba
se

ba
se

ba
se

ba
se

ba
se

ba
se

ba
se

ba
se

ba
se

ba
seR
S

R
S

R
S

R
S

R
S

R
S

R
S

R
S

R
S

R
S

R
S

R
S

R
S

R
S

R
S

 I
W

 I
W

 I
W

 I
W

 I
W

 I
W

 I
W

 I
W

 I
W

 I
W

 I
W

 I
W

 I
W

 I
W

 I
W

 I
W

+
R

S

 I
W

+
R

S

 I
W

+
R

S

 I
W

+
R

S

 I
W

+
R

S

 I
W

+
R

S

 I
W

+
R

S

 I
W

+
R

S

 I
W

+
R

S

 I
W

+
R

S

 I
W

+
R

S

 I
W

+
R

S

 I
W

+
R

S

 I
W

+
R

S

 I
W

+
R

S

2.42 2.01 1.93 1.41 1.63 1.83 0.88 1.52 1.71 1.78 1.58 2.68 1.73 1.38 1.69
bzip2 crafty eon.k gap gcc gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r GMean

ns
c-
of

er-
ved
c-
u-

its
er

-
u-
nt

si-
in
-

ue

te

c-
.”

z.
l-

k

f

-

ter

-

-

-

-

.”
implement register sharing and reference counting as its
sharing discipline. While integration uses dataflow equiva-
lence to find sharing opportunities, unified renaming col-
lapses identity instruction sequences like register moves
(detected non-speculatively) and communicating store-
load pairs (detected via a memory dependence predictor).

The originalspeculative memory bypassingoperation
[9] uses address-based dependence prediction and success-
fully connects a load-consumer with a store-producer if
both instructions are simultaneously active and if the
store-producer output register is still mapped when the
load is renamed. Unified renaming [5] assimilates this
functionality. The value address association structure
(VAAS) [10] tags registers with reference addresses and
implements bypassing (among other optimizations) using
associative address matching at the data-cache access
stage.Speculative memory cloaking[9], also calledmem-
ory renaming[16], is a sub-component of bypassing in
which a store-load pair is transformed into a register move
(bypassing eliminates the register move, too). Thestack
value file (SVF)[7] implements memory renaming for the
stack. Given register integration, speculative memory
bypassing can be implemented for free (albeit for stack
references only) via the use of reverse entries. This formu-
lation exploits hardwired knowledge of the save-restore
idiom and the register dataflow of the stack pointer to
replace memory-communication prediction and/or asso-
ciative address matching and naturally skips the intermedi-
ate cloaking step. No auxiliary value structures are needed
and no values are moved, communication happens via
redirection to existing values. Our register-dataflow based
implementation has additional advantages in that it does
not require the store-producer to still be in the window or
its data register to still be mapped when the load-consumer
is renamed and in that it can deal with arbitrary stack
depths and connect parties in recursive callgraphs.

6 Conclusions
Register integration performs instruction-level result

reuse by manipulating the register renaming table. To date,
integration has been used to implement squash [11, 13]
and pre-execution reuse [12]. In this paper, we broaden its
applicability and performance impact by introducing three
extensions. Our first extension, a register reference count-
ing scheme that enables multiple active instructions to
simultaneously share a single register, implementsgeneral
reuse: reuse of results from squashed instructions, active
in-flight instructions, retired instructions, and even instruc-
tions whose values have been logically overwritten by
newer retired instructions. Second,opcode-based IT
indexingexposes more integration opportunities than the
original PC-based organization. Finally,reverse integra-
tion supports integration of results by operations that are
inverses of previously executed operations—a load is inte-
grated if the program has executed the inverse store—and
enables more dataflow-graph compression than conven-
tional reuse. Here, we use it to obtain a free implementa-
tion of speculative memory bypassing for stack loads.

Simulation results using the SPEC2000 benchmarks

show that using a 1K-entry, 4-way IT, these extensio
increase the integration rate, the number of retired instru
tions that bypass the execution engine, to an average
15%. On a 4-wide processor this translates into a 7% av
age speedup. Speedups of 5% and 6% can be achie
with simpler, direct-mapped and 2-way tables, respe
tively. Higher speedups can be achieved with more acc
rate mis-integration suppression.

Since integration reduces execution engine load,
presence allows the use of lower-complexity out-of-ord
core designs. This is not a case of simply moving com
plexity from one part of the pipeline to another. The exec
tion core is latency-sensitive, it must execute depende
chains of operations serially. Integration is latency-insen
tive, chains of dependent operations can be integrated
parallel. We show that a 1K-entry, 4-way integration con
figuration can compensate for a 25% reduction in iss
width or a 50% reduction in issue buffering.

Acknowledgments
Anne Bracy is partially supported by an NSF Gradua

Fellowship. We thank the reviewers for their comments.

References
[1] T. Austin. “DIVA: A Reliable Substrate for Deep Submicron

Microarchitecture Design.”MICRO-32, Nov. 1999.
[2] Y. Chou, J. Fung, and J. Shen. “Reducing Branch Mispredi

tion Penalties via Dynamic Control Independence Detection
ICS-13, Jun. 1999.

[3] D. Citron, D. Feitelson, and L. Rudolph. “Accelerating Multi-
Media Processing by Implementing Memoing in Multiplication
and Division Units.”ASPLOS-8, Oct. 1998.

[4] P. Glaskowsky. “Pentium 4 (Partially) Previewed.”Micropro-
cessor Report, 14(8), Aug. 2000.

[5] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar, and A. Yoa
“A Novel Renaming Scheme to Exploit Value Temporal Loca
ity Through Physical Register Reuse and Unification.”MICRO-
31, Dec. 1998.

[6] R. Kessler. “The Alpha 21264 Microprocessor.”IEEE Micro,
19(2), Mar./Apr. 1999.

[7] H.-H. Lee, M. Smelyanskiy, C. Newburn, and G. Tyson. “Stac
Value File: Custom Microarchitecture for the Stack.”HPCA-7,
Jan. 2001.

[8] C. Molina, A. Gonzalez, and J. Tubella. “Dynamic Removal o
Redundant Computations.”ICS-13, Jun. 1999.

[9] A. Moshovos and G. Sohi. “Streamlining Inter-Operation Com
munication via Data Dependence Prediction.”MICRO-30, Dec.
1997.

[10] S. Onder and R. Gupta. “Load and Store Reuse using Regis
File Contents.”ICS-15, Jun. 2001.

[11] A. Roth and G. Sohi. “Register Integration: A Simple and Effi
cent Implementation of Squash Reuse.”MICRO-33, Dec. 2000.

[12] A. Roth and G. Sohi. “Speculative Data-Driven Multithread
ing.” HPCA-7, Jan. 2001.

[13] A. Roth and G. Sohi. “Squash Reuse via a Simplified Imple
mentation of Register Integration.”JILP-4, 2002.

[14] A. Sodani.Dynamic Instruction Reuse. PhD thesis, University
of Wisconsin–Madison, Apr. 2000.

[15] A. Sodani and G. Sohi. “Dynamic Instruction Reuse.”ISCA-24,
Jun 1997.

[16] G. Tyson and T. Austin. “Improving the Accuracy and Perfor
mance of Memory Communication Through Renaming.”MI-
CRO-30, Dec. 1997.

[17] K. Yeager. “The MIPS R10000 Superscalar Microprocessor
IEEE Micro, Apr. 1996.

	1 Introduction
	2 Register Integration Primer
	The integration operation
	Major components and organization
	Mis-integrations

	3 Three Extensions
	3.1 General Reuse via Multiple Integration
	Working example
	Issue: speculative reference counting
	Issue: IT/reference vector management
	Issue: avoiding register mis-integrations

	3.2 More Reuse via Enhanced Opcode Indexing
	3.3 Memory Bypassing via Reverse Integration
	Working example
	Issue: non-standard stack disciplines

	4 Evaluation
	4.1 Environment
	4.2 Primary Performance Results
	Extension contribution
	Performance diagnostics

	4.3 Integration Stream Analysis
	Integration distance
	Integration-time result status
	Integration-time reference count

	4.4 Impact of Integration Configuration
	Integration associativity
	Integration table size.

	4.5 Trading Integration for Execution Resources

	5 Related Work
	6 Conclusions
	Three Extensions To Register Integration

