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Abstract
We present a way to restrict recursive inheritance without sacri-
ficing the benefits of F-bounded polymorphism. In particular, we
distinguish two new concepts, materials and shapes, and demon-
strate through a survey of 13.5 million lines of open-source generic-
Java code that these two concepts never actually overlap in prac-
tice. With this Material-Shape Separation, we prove that even naı̈ve
type-checking algorithms are sound and complete, some of which
address problems that were unsolvable even under the existing pro-
posals for restricting inheritance. We illustrate how the simplicity
of our design reflects the design intuitions employed by program-
mers and potentially enables new features coming into demand for
upcoming programming languages.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Object-oriented languages;
D.3.3 [Programming Languages]: Language Constructs and
Features—Inheritance, Polymorphism

General Terms Algorithms, Design, Languages

Keywords Materials, Shapes, Separation, Subtyping, F-Bounded
Polymorphism, Variance, Decidability, Joins, Higher-Kinded Types

1. Introduction
Generics were a long-awaited addition to Java and C#. They finally
gave industry developers access to the benefits of polymorphism∗.
But polymorphism was not originally designed for object-oriented
languages, rather it was tried and tested primarily in functional lan-
guages [14]. There is one fundamental difference between typical
instances of these language classes: subtyping. The design and al-
gorithms for polymorphism were centered around unification [1], a
technique that only works smoothly in type systems without sub-
typing. Yet subtyping is a key part of Java, C#, Scala, and numerous
other object-oriented languages, and the question of how to com-
bine polymorphism and subtyping has yet to arrive at a solution that
is capable of expressing the various idioms used in practice while
still providing sound and complete algorithms for type checking.
Here we provide the foundations of such a solution, one based on

∗ In this paper, we use polymorphism to refer to parametric polymorphism
and not subtype polymorphism.
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reshaping F-bounded polymorphism [4] to properly match how it
is used in practice.

Plain bounded polymorphism is the ability to specify the range
of types a type variable can represent. Typically this is done with
an upper bound, i.e. a constraint indicating what classes/interfaces
instantiations of a type variable must implement. This allows the
programmer to guarantee the presence of various methods, such as
requiring a type variable to extend Formattable so that the pro-
grammer can safely use the format method. Thus bounded poly-
morphism enables programmers to impose the same requirements
and guarantees on type arguments that they can impose on function
parameters and returns.

F-bounded polymorphism is the ability to constrain a type vari-
able by a type expressed in terms of the type variable itself [4].
In other words, F-bounded polymorphism is the ability to use
recursive constraints. This subtle addition significantly increases
the power of type-variable constraints. In particular, F-bounded
polymorphism addresses the issue of binary methods, the pattern
that operations such as comparison and addition need both argu-
ments to have the same type. With F-bounded polymorphism, one
can require a type parameter T to extend Comparable<T>, where
Comparable<T> has a comparison method that only accepts ar-
guments of type T. This way types such as Integer and String
can be compared to themselves but not to other types that happen
to also have a comparison method. Java’s equality design does not
adopt this paradigm, instead declaring equality to exist between all
objects. Consequently, the type checker cannot help identify cases
where the wrong types of objects are being compared, and most
implementations of equals have to first cast its parameter to the
correct type.

The main drawback of F-bounded polymorphism is that it re-
quires inheritance to be recursive. For example, String imple-
ments Comparable<String>, so the inherited type is defined in
terms of the inheriting type itself. On its own, this is a simple fea-
ture, but generics typically also have some form of variance. That
is, a List<String>† can safely be treated as a List<Object>, an
ability that is rather useful in practice, and consequently languages
such as C# and Scala provide a way for programmers to declare
that List is covariant [8, 15]. Dually, something that is compara-
ble to arbitrary objects can safely be compared to integers, mak-
ing Comparable contravariant. Unfortunately, the combination of
variance and recursive inheritance greatly complicates many type-
checking algorithms. Indeed, Kennedy and Pierce proved that even
just subtyping is undecidable in languages supporting these two
features [11].

Our key insight is that we can recover decidability and algo-
rithmic simplicity by restricting recursive inheritance to how it is
actually used in practice. We call the classes/interfaces used for
recursive inheritance, such as Comparable, shapes because they
describe the higher-level shape of the type using recursive inheri-

† We use List to represent some read-only list interface.



tance. What we recognize is that shapes are used in a very restricted
fashion in practice. In particular, shapes are never used in parame-
ter types, return types, field types, and type arguments. Instead, we
call the classes/interfaces used in those locations materials, because
they are the types actually used for material exchanges across the
components of a program. Our fundamental finding is that, should
one require materials and shapes to be disjoint sets, the 13.5 million
lines of generic-Java code we analyzed would be unaffected except
for where the analysis identified flaws in the designs. We call this
observed property Material-Shape Separation.

With this newfound understanding of industry code, we are able
to formalize a decidable type system that is backwards compatible
with Java as it exists in practice. The key insight is that most
algorithms need only be defined on materials, since shapes are only
ever used as constraints. Because shapes encapsulate all recursive
inheritance, inheritance amongst materials is well founded, so even
naı̈ve strategies are guaranteed to terminate. With this, we solve
open problems such as computable joins, and we solve them with
simple, direct, and efficient machinery.

In summary, we make the following contributions:

Section 2 anecdotal evidence suggesting that Material-Shape Sep-
aration is already an unrecognized idiom

Section 3 a type-theoretic formalization of materials and shapes
and Material-Shape Separation

Section 4 a large survey of industry code demonstrating the com-
patibility of Material-Shape Separation with practice

Section 5 type-checking algorithms exploiting Material-Shape
Separation to achieve simplicity and decidability

Section 6 potential applications of Material-Shape Separation to
open type-checking challenges and new type-system features

We illustrate how our findings may enhance related work in Sec-
tion 7, following with high-level lessons from our experiences in
Section 8.

2. Background
Polymorphism and subtyping make a powerful combination, and as
such both have been widely adopted by statically-typed major in-
dustry languages. They also make for a troublesome combination,
as Kennedy and Pierce have shown that even subtyping with vari-
ant generics is undecidable without restriction [11]. Consequently,
Kennedy and Pierce provided various restrictions that ensure decid-
ability, the most notable of which is banning expansive inheritance,
which has been adopted by C# [8]. But that solution requires a com-
plicated algorithm, has poor blame properties, and does not work
for more powerful systems like Java’s wildcards [26]. Tate et al.
proposed an alternative restriction that guarantees decidability for
wildcards and uses a more efficient algorithm [20], but their restric-
tion is less accommodating of contravariance. Regardless of which
one might be better, both solutions grew from algorithmic perspec-
tives, recognizing current practice only insofar as to show back-
wards compatibility with existing code. Thus, their acceptability is
conditioned on there not being any compelling counterexamples.
However, the following interface is such a compelling counterex-
ample to both solutions:

interface List<out E>
extends Equatable<List<Equatable<E>>> {}

Here the definition uses the Equatable interface to express
type-safe equality. Equality is a binary method, and so mod-
ern object-oriented practice suggests it be formulated using F-
bounded polymorphism and recursive inheritance. Thus the signa-
ture guarantees that all lists implement type-safe equality. Ideally,

we would require that lists of E are equatable only when E extends
Equatable<E>; however, most modern languages do not support
such conditional inheritance, a feature we will discuss in more de-
tail in Section 6.1. We bypass this limitation by making List<E>
be equatable to lists of Equatable<E>, which will only exist when
E extends Equatable<E>. Also, when E extends Equatable<E>,
then List<E> will actually be a subtype of Equatable<List<E>>
due to the covariance of List (hence the out annotation on the
type parameter E) and the contravariance of Equatable (typically
expressed with an in annotation). Thus, List<String> will be
equatable with itself and so can be used as, say, the type of keys
for hash maps, which require equality to be defined on their keys.
Consequently, this design presents a solution to the important open
problem of type-safe equality on lists. In fact, we know of no al-
ternative solution to this problem using just the expressiveness of
Java or C#’s generics.

This solution is rejected by both of the existing proposals to
restrict generics for decidability. It uses expansive inheritance by
having List<E> use List<Equatable<E>> in its inherited type,
thereby violating Kennedy and Pierce’s requirement [11]. It also
uses nested contravariance, with Equatable being used at a non-
covariant position in the inherited type, thereby violating Tate
et al.’s requirement [20]. Yet this design is being rejected for rea-
sons that industry developers would view as purely academic. In
other words, the common case is being sacrificed for the corner
case. So, to design a more practical restriction to generics, one
must better understand the common case.

To that end we presented this design to our industry collabo-
rators, and to our surprise they were strongly opposed to it. De-
spite the lack of any type-safe alternatives, and even admitting they
found it to be a clever exploitation of features, they rejected it be-
cause they felt like it violated unwritten, and up to that point un-
recognized, design principles. In particular, to them Equatable is
only meant to describe types via constraints; it is not something to
be passed around in lists. Using Equatable as a type argument vi-
olates the accepted use of the interface. From this we developed the
concept of shapes, e.g. Equatable, and materials, e.g. List, and
we designed a type system and typing algorithms based on the sep-
aration of these two concepts, i.e. the Material-Shape Separation.

Using Material-Shape Separation, we were able to develop a
simple sound and complete subtyping algorithm, one capable of
incorporating type equivalence even in invariant types, a problem
raised by Tate et al. [20] and not well addressed by any of the ex-
isting proposals for restricting generics. More importantly, we de-
veloped a sound and complete algorithm for computing the join
of two types, a problem raised by Smith and Cartwright [18] and
also not well addressed by any of the existing proposals. We could
even add higher-kinded constrained type variables and type lamb-
das with pointwise higher-kinded subtyping [17] and still main-
tain decidability of all these features. Finally, to justify that all this
was indeed compatible with widespread industry practice and not
just limited to our collaborators, we surveyed 13.5 million lines of
open-source generic-Java code and found no violations of our de-
sign assumptions. Thus we have a decidable type system, with sim-
ple and efficient algorithms, that matches hitherto-unwritten design
principles of industry practitioners.

3. Materials and Shapes
In this section, we define materials and shapes in full detail. This
section culminates with the formalization of Material-Shape Sep-
aration, the key observation enabling the algorithms presented in
Section 5. But first, we must establish the formal setting we are
working within.

When discussing generics, variance is an important challenge.
In Section 2, we used declaration-site variance, which is used by



C# and Scala [8, 15]. However, here we will be using use-site
variance, a simplification of Java wildcards [6]. Tate discusses the
relationships between these systems [19], but for this paper one
need only understand that use-site variance is more expressive
than declaration-site variance and discards the implicit constraints
of wildcards, since the complications of implicit constraints far
outweigh their usefulness [20].

In our simplified formalism, classes/interfaces C have exactly
one type parameter; all the rules, algorithms, and proofs will be
extended to arbitrary type parameters in Section 5.5. More impor-
tantly, when supplying a type argument to a class/interface, one
provides both an in bound and an out bound. In terms of arrays,
the in bound is what can be put into the array, and the out bound
is what can be taken out of the array. Formally, the in bound
is the argument to the contravariant portion of the class/interface
and the out bound is the argument to the covariant portion of the
class/interface. We also use ⊥ and ⊤ as the subtype and super-
type of all types. That way Java’s C⟨? extends τ⟩ can translate to
C⟨in ⊥ out τ⟩, and C⟨? super τ⟩ to C⟨in τ out ⊤⟩.

3.1 Materials
Materials are the classes/interfaces exchanged between separate
components of a program and stored within the components of
a program. More formally, they are the classes/interfaces that are
used as parameter and return types for functions/methods/construc-
tors as well as types of fields. Consequently, most classes/interfaces
are materials.

Supposing M is the subset of classes/interfaces C that are mate-
rials, we define the grammar of our parameterized types as follows:

τ̇ ::= ⊥ | ⊤ | M⟨in τ̇ out τ̇⟩ | ·
The · represents the single parameter of the inheriting type; a
complete discussion of type variables appears in Section 5.4.

Observation that we make parameterized types τ̇ be comprised
of only materials. However, any class/interface can inherit any
other; only the type arguments are restricted to materials. Thus we
formalize inheritance as a relationship of the following form:

C⟨ · ⟩ <:: C′⟨τ̇ ′⟩
We do not impose a grammar for specifying inheritance, rather

we leave that to the language and assume it provides one. Con-
sequently, we demand the following three properties in order to
accurately model inheritance:

Transitivity
C⟨ · ⟩ <:: C′⟨τ̇ ′⟩ ∧ C′⟨ · ⟩ <:: C′′⟨τ̇ ′′⟩

⇓
C⟨ · ⟩ <:: C′′⟨τ̇ ′′[ · 7→ τ̇ ′]⟩

Finiteness For all classes/interfaces C and C′, the set of parameter-
ized types τ̇ ′ such that C⟨ · ⟩ <:: C′⟨τ̇ ′⟩ holds is finite.

Acyclicity There is no C and τ̇ ′ such that C⟨ · ⟩ <:: C⟨τ̇ ′⟩ holds.

Typically this relationship will be derived from some simpler one
via transitive closure, but we require transitivity in order to sim-
plify many of our formalisms. Nonetheless, with a little care one
can easily reformulate our system for a non-transitive inheritance
relationship. On a related note, we will use⩽:: to denote the reflex-
ive closure of <::.

3.2 Shapes
Shapes capture the recursive aspects of inheritance and are the rea-
son we need F-bounded polymorphism [4] rather than just plain
bounded polymorphism. For example, the common Java interface
Comparable is a shape because classes such as Integer im-
plement Comparable<Integer>, a type defined in terms of the
class/interface inheriting it. In current practice, only a few class-

interface Graph<G extends Graph<G,E,V>,
E extends Edge<G,E,V>,
V extends Vertex<G,E,V>> {

List<V> getVertices();
}
interface Edge<G extends Graph<G,E,V>,

E extends Edge<G,E,V>,
V extends Vertex<G,E,V>> {

G getGraph();
V getSource();
V getTarget();

}
interface Vertex<G extends Graph<G,E,V>,

E extends Edge<G,E,V>,
V extends Vertex<G,E,V>> {

G getGraph();
List<E> getIncoming();
List<E> getOutgoing();

}

class Map extends Graph<Map,Road,City> {...}
class Road extends Edge<Map,Road,City> {...}
class City extends Vertex<Map,Road,City> {...}

Figure 1. A type family for graphs, edges, and vertices

es/interfaces are shapes, but those classes/interfaces are often used
widely throughout the project.

From our observations, shapes arise in practice for two main
reasons. The primary one is to encode a form of self types [2]. That
is, the type parameter of the shape is meant to represent the type
implementing that shape. This is useful for binary methods, such
as comparisons and equalities, as well as algebraic operations, such
as addition, negation, and multiplication. Negation is an important
example because it illustrates that self types are not just used for
binary methods.

The second use of shapes is type families [5]. A type family
is a codependent group of classes/interfaces. A classic example is
graphs, edges, and vertices. A graph consists of edges and vertices;
edges connect vertices and reside within a graph; and vertices have
connecting edges and reside within a graph. The challenge is de-
signing this group such that when one extends it, say with muta-
bility, then all components can refer to the other components and
know they are also mutable. To accomplish this with shapes, each
interface takes three type parameters, one for graphs, one for edges,
and one for vertices, and all bounded to indicate so. Extensions
of the type family then impose additional constraints on the type
parameters to indicate the guaranteed additional functionality. We
illustrate this design pattern in Figure 1.

To formalize the recursive nature of inheritance with shapes, we
first define a labeled graph describing how classes/interfaces are
used in inheritance:

C⟨ · ⟩ <:: C′⟨τ̇ ′⟩
C → C′

C⟨ · ⟩ <:: C′⟨τ̇ ′⟩ C′′ occurs in τ̇ ′

C C′
−→ C′′

If one were to require classes/interfaces to inherit only types that
are already defined, then this usage graph would be acyclic, and
subtyping can be proven decidable by using a topological order-
ing of the classes/interfaces. However, in a system with recursive
inheritance, such a topological ordering does not exist. Shapes S
are the classes/interfaces such that if the edges labeled with shapes
were removed from the usage graph then it would be acyclic. Thus
shapes are the classes/interfaces preventing the topological order-
ing that would make subtyping easily decidable.



As an example, consider the following class declarations.

interface Comparable<E> {}
class Vector<E> {}
class Matrix<E extends Comparable<E>>

extends Vector<Vector<E>> {}
class Float extends Comparable<Float> {}

These result in the following usage graph.

..Vector. Matrix. Float.

Comparable

.

Vector

.

Comparable

The unlabeled edge from Matrix to Vector is due to the di-
rect extension class Matrix extends Vector<...> and the
labeled edge is due to Vector<X> being the type argument to
Vector<...> in that extension. The Float class has a self loop
labeled Comparable, creating a cycle in the usage graph contain-
ing Comparable, indicating that Comparable is a shape. Note that
the constraint on Matrix’s parameter E has no effect on this graph;
we discuss the role of type variables in Section 5.4.

3.3 Separating Materials and Shapes
While it is theoretically possible to have a class/interface be used
as both a material and a shape, our aforementioned interaction with
developers suggests there is a natural tendency to keep these two
patterns separate. Here we formalize that assumption.

Material-Shape Separation. Let M be all classes/interfaces used
as type arguments. For some set S of classes/interfaces such that
removing all edges labeled with an element of S from the usage
graph results in an acyclic graph, M and S are disjoint.

Although this formalization does not need M and S to cover C,
it is convenient to simply define M as all non-shapes. In this way,
unless a programmer explicitly declares a class/interface to be a
shape, they are free to use that class/interface without restriction
outside the class/interface hierarchy.

Under this design, our List example is still rejected, but
for more intuitive reasons. First, the designer would specify that
Equatable is a shape. Then, when defining List, our system
would indicate that Equatable cannot be used as an argument to
List due to being a shape. Hence the cause and effect are clear to
the designer, who can then focus on finding a type-safe alternative.
Regrettably, this leaves our problem with Equatable unsolved,
which we defer to future work as discussed in Section 6, but it
prevents programmers from creating unconventional designs, as-
suming that such designs are indeed unconventional, which we
verify in the next section.

4. Industry Compatibility
To support our claim that Material-Shape Separation captures an
industry-wide idiom, we present the findings of our scientific in-
quiry into current practices. Over 13.5 million lines of generic-Java
code across a total of 62 open-source projects, taken primarily from
the Qualitas Corpus [21], show no alarming cases where separa-
tion was broken. A table of all projects we analyzed and some
relevant statistics we collected can be found in the technical re-
port [7]. Projects ranged in scale and function from the jFin finance
library to the massive NetBeans IDE, the median size being ap-
proximately 60,000 lines of code. As such, our sample set con-
tains a wide range of styles and design principles. Nevertheless, the

projects conformed to our system, suggesting that one can enforce
Material-Shape Separation in existing languages, as well as in new
ones, without breaking compatibility with existing code bases.

4.1 Methodology
After forming our collection of projects, we modified the source
code of openjdk to generate the usage graphs of Section 3.2 from
the classes/interfaces of each project. From these graphs, we ex-
tracted the labels of the edges constituting simple cycles. These
labels formed our set of shapes S, and all other classes/inter-
faces formed our set of materials M. Another compiler pass then
searched for occurrences, if any, of shapes being used as materials,
thereby violating Material-Shape Separation.

4.2 Findings
Barring a few caveats discussed below, the entire body of 62 proj-
ects never violated Material-Shape Separation. In fact, every shape
we encountered was either an encoding of self types or type fam-
ilies, as we had expected. The type family we encountered hap-
pened to be precisely for representing graphs. In the findbugs
project, interfaces GraphVertex and GraphEdge, and classes
AbstractVertex and AbstractEdge, constituted type families at
the interface level, and at the class level, similar to the design in Fig-
ure 1. Some custom shapes, hadoop’s WritableComparable as
well as findbugs’s AnnotationEnumeration, are simple exten-
sions of Comparable. In fact, WritableComparable is actually
just an encoding of an intersection type, which will be discussed
in Section 5.2. As for self types, Comparable and Enum are the
two incorporated into Java’s libraries and are the most widely used.
Moreover, the remaining nine remaining shapes were all custom
applications of self types. All counted, there were 17 shapes in to-
tal, listed in the technical report [7], none of which were used as
materials.

Caveats
The above statements make a few simplifications, namely eliding
technicalities caused by programmer errors and Java limitations.
First, there were uses of the shapes outside of inheritance and
type-variable constraints. However, all these uses were in the form
of raw types (except in one case where the type argument was
simply an unconstrained wildcard, thereby not utilizing the type
argument). That is, the programmers used shapes as materials only
when bypassing Java’s type system, sacrificing type safety. These
were either results of poor utilization of generics (e.g. failing to
use F-bounded polymorphism in order to ensure type safety) or
involved casting wherein Java can only enforce raw types due to
type erasure [6].

Because none of these uses of shapes as materials actually used
their type argument, it is still possible to incorporate them into our
system. For each shape, we can associate a new parameterless ma-
terial inherited by the shape. This material is not inherited recur-
sively, so it is not a shape. We can substitute all the above raw (or
wildcarded) misuses of the shape with the new parameterless ma-
terial inherited by that shape. Thus, since the arguments of shapes
are never used in the code bases, through this encoding they still all
satisfy Material-Shape Separation. Regardless, it is better to view
these few instances as abuses of the type system rather than as re-
flective of design principles.

The second caveat is due to the following class in openjdk:

public class Env<A> implements Iterable<Env<A>> {}
Because of this one class, we originally inferred Iterable to be
a shape, even though this inheritance clause is never actually made
use of by the code base nor exposed by the API and so should not
have been present. Iterable is used widely as a material, so this



inference caused many false alarms, demonstrating the danger of
inferring shapes rather than having them be explicitly identified by
the programmer.

4.3 Ceylon
One might be surprised by how few shapes we discovered in use:
roughly one shape per million lines of code. However, every shape
had a key and distinct role in its respective architecture design. We
simply have recognized these as special cases and classified their
distinction. Nonetheless, one might worry that our observations
may not persist over more designs given the limited sample we
draw our conclusions from here. Similarly, our observations might
only apply to Java because of the burden Java imposes upon using
generics. To address this issue, we have adapted our analysis to
Ceylon, a language recently designed and released by Red Hat that
fully embraces generics. Self types and type families are directly
supported by Ceylon, and Ceylon uses shapes to support features
such as operator polymorphism [3]. Thus, shapes appear much
more frequently in Ceylon than in Java, providing a denser sample.

We presented Material-Shape Separation and our correspond-
ing results to the Ceylon team. They found the analysis and appli-
cations compelling and simple enough that within a day they had
implemented a branch of their compiler that enforced Material-
Shape Separation. They decided to treat precisely the self types
and type families as shapes instead of using our inference tech-
nique. They used the modified compiler on all the committed code
that had been developed in the language, either by the designers
implementing core modules or by contributors adding new mod-
ules to the open-source project, and found only one counterexample
to Material-Shape Separation. This counterexample was a labeled-
tree design similar to the problematic Tree example to be discussed
in Section 5.1. It was a quickly-drafted practical implementation of
a JSON API, and its design was already in contention at the time.
Furthermore, this instance is easily resolved by adding a children
attribute to the class in place of the extension clause, similar to
the example we include in Section 6. The designers have contin-
ued to confirm that unconstrained programmers still naturally ad-
here to Material-Shape Separation even with their more expressive
type system. Their current stance is that they will likely integrate
Material-Shape Separation into Ceylon 2.0.

5. Applications
Having introduced the formal definitions of materials and shapes
and demonstrated their compatibility with existing code bases, we
now describe how we can exploit our newfound Material-Shape
Separation to design simple, sound, and complete type-checking
algorithms. This section presents five results immediately realiz-
able through shapes: the decidability of subtyping, the support for
non-syntactic type equivalence, the existence of joins, the ability
to constrain type variables, and the incorporation of higher-kinded
types. In Section 6, we will discuss additional existing challenges
and new features we hope to address in future work by extending
the techniques we present here.

5.1 Decidability of Subtyping
Recall the example List design:

interface List<out E>
extends Equatable<List<Equatable<E>>> {}

javac‡ handles most uses of this design correctly. However, this
design violates both Kennedy and Pierce’s and Tate et al.’s restric-
tions on generics [11, 20], and consequently we can use it to cause
javac to stack overflow.

‡ When we refer to javac we mean the OpenJDK 1.7.0 25 type checker.

Consider the following use of the List design:

class Tree extends ArrayList<Tree> {}

In one line, it implements a mutable unlabeled tree. Furthermore,
since ArrayList implements List, we also get the correct equal-
ity implementation for trees with no additional effort. But upon ac-
tually equating two trees, javac throws a StackOverflowError.

Understanding why the type checker fails is crucial to under-
standing the surprising challenges behind generics. To check a use
of the equality operation, the type checker needs to verify that the
left type implements Equatable of the right type. Here this re-
duces to checking that Tree is a subtype of Equatable<Tree>.
This simple question evolves into the following infinite progression
of subtyping reductions:

Tree <: Equatable<Tree>
⇓ (inheritance)

ArrayList<Tree> <: Equatable<Tree>
⇓ (inheritance)

List<Tree> <: Equatable<Tree>
⇓ (inheritance)

Equatable<List<Equatable<Tree>>> <: Equatable<Tree>
⇓ (contravariance)

Tree <: List<Equatable<Tree>>
⇓ (inheritance)

ArrayList<Tree> <: List<Equatable<Tree>>
⇓ (inheritance)

List<Tree> <: List<Equatable<Tree>>
⇓ (covariance)

Tree <: Equatable<Tree>
...

Note that the final state of the above is the same as the initial
state, forming a loop that causes the infinite digression. What is
surprising is that this infinite digression corresponds to a valid
infinite proof of subtyping (refer to Tate et al. for more details [20]).
These infinite proofs are what make subtyping so difficult to decide,
since they imply that an algorithm can in fact make good progress
in each step but still never be able to finish. However, with Material-
Shape Separation, all proofs of subtyping are finite, so any such
algorithm is guaranteed to terminate.

To demonstrate this, we first formalize extended types σ. Ex-
tended types are not used in practice, but we can guarantee decid-
able subtyping even for extended types, so we present them here to
provide more informed options for language designers.

σ := ⊥ | ⊤ | C⟨in σ out σ⟩

The primary difference between σ and τ̇ is that σ allows arbitrary
classes/interfaces C rather than just materials M. Consequently,
extended types may use shapes, even as type arguments. The intu-
ition behind this is that, for subtyping, our separation of materials
and shapes need only be imposed upon the class/interface hierarchy
and not on types elsewhere in the program. The second difference
is that σ is not parameterized; we will address the issue of type
variables shortly in Section 5.4.

Figure 2 formalizes subtyping on extended types. The rule for
subtyping classes/interfaces combines inheritance and use-site vari-
ance into one step. The subtlety here is substitution, described in the
table in Figure 2 above the subtyping rules, which has to deal with
the fact that there are two type arguments for a single type param-
eter. This substitution replaces all contravariant uses of the type
parameter with the in argument, and all covariant uses with the
out argument. This technique combines the subtyping and tight-
approximation algorithms of Tate [19] into one rule.

The subtyping rules are syntax directed and so specify a sound
and complete decision algorithm provided we can guarantee the



τ̇ 7→ τ̇ [ · 7→ σi;σo]
⊥ 7→ ⊥
⊤ 7→ ⊤
· 7→ σo

M⟨in τ̇i out τ̇o⟩ 7→M⟨in τ̇i[ · 7→σo;σi] out τ̇o[ · 7→σi;σo]⟩

⊢ σ <: σ

⊢ ⊥ <: σ ⊢ σ <: ⊤
C⟨ · ⟩ ⩽:: C′⟨τ̇ ′⟩

⊢ σ′
i <: τ̇ ′[ · 7→ σo;σi] ⊢ τ̇ ′[ · 7→ σi;σo] <: σ′

o

⊢ C⟨in σi out σo⟩ <: C′⟨in σ′
i out σ′

o⟩

Figure 2. Algorithmic subtyping rules

process terminates. Our finiteness assumption on <:: prevents in-
finite branching at any point. Consequently, the only remaining
source of non-termination is the potential for infinite proofs, much
like in our example earlier. This brings us to our main theorem.

Theorem 1. Under Material-Shape Separation, all proofs of sub-
typing as specified in Figure 2 are finite.

Proof. The major insight is that Material-Shape Separation implies
that new uses of shapes are never introduced when applying inher-
itance in subtyping since shapes can never occur in the type argu-
ments of inherited classes/interfaces. Thus we can define a well-
founded two-part measure on extended types σ.

The first part, ⌊σ⌋ formalized in Figure 3, is the maximum lay-
ering depth of shapes in the extended type, where a layer is a shape
occurring syntactically inside a type argument to another shape.
This part of the measure is completely agnostic to the inheritance
hierarchy, since we know that inheritance cannot introduce new lay-
ers of shapes so long as it satisfies Material-Shape Separation. Thus
recursion in inheritance causes no problems.

The second part, |σ| formalized in Figure 3, specifies the max-
imum number of proof steps that can be taken from any situation
where σ is on either side of a subtyping judgement until reaching
a shape at the top level (thereby next reducing the first part of the
measure) or terminating. The challenge is to prove that this measure
is well defined; in other words, the calculation |σ| must terminate.
This is clear by structural induction provided each parameterized
measure MM is well defined. The parameterized measure MM
is a function on measures indicating how applying inheritance af-
fects the measure of a M type. The key observation is that MM
only uses the parameterized measures of inherited materials. Due
to Material-Shape Separation, well foundedness of material inher-
itance enables us to assume that those parameterized measures are
already well defined, thereby making MM well defined.

This two-part measure on types can be adapted into a mea-
sure on subtyping judgements. We define the measure of a judge-
ment ⊢ σ <: σ′ as the lexicographic ordering (⌊σ⌋+ ⌊σ′⌋) fol-
lowed by (|σ|+ |σ′|). One can easily verify that for each rule the
measure of the premises is always strictly less than the measure of
the conclusion, thereby guaranteeing that any proof will be finite
even if infinite proofs were permitted.

Corollary 1. Under Material-Shape Separation, subtyping as
specified in Figure 2 is decidable.

What is remarkable about this result is that our subtyping al-
gorithm is more naı̈ve than prior solutions and yet is still both
sound and complete under Material-Shape Separation. For exam-
ple, Kennedy and Pierce’s prohibition against expansive inheritance

σ 7→ ⌊σ⌋ : N
⊥ 7→ 0
⊤ 7→ 0

M⟨in σi out σo⟩ 7→ max(⌊σi⌋, ⌊σo⌋)
S⟨in σi out σo⟩ 7→ 1 + max(⌊σi⌋, ⌊σo⌋)

σ/τ̇ 7→ |σ/τ̇| : N/Ṅ
· 7→ ·

⊥ 7→ 0
⊤ 7→ 0

M⟨in σi/τ̇i out σo/τ̇o⟩ 7→ 1 +MM[ · 7→ max(|σi/τ̇i| , |σo/τ̇o|)]
S⟨in σi/τ̇i out σo/τ̇o⟩ 7→ 0

MM = max( · , max
M⟨ · ⟩<::M′⟨τ̇⟩

MM′ [ · 7→ |τ̇ |])

We implicitly lift max and 1+ to parameterized integers.

Figure 3. Measures for extended/parameterized types

does not prevent infinite proofs; it only ensures all infinite proofs
eventually cycle thanks to results from Viroli [27]. Therefore, their
algorithm requires keeping a list of all the subtyping judgements
that arose earlier in the recursion stack and checking them against
the current judgement for syntactic identity before proceeding to
process the judgement as usual in order to determine if they are in
an infinite cyclic proof [11]. While not as computationally difficult,
Tate et al. prevent infinite recursion by treating invariant types as a
special case using syntactic unification [20]. Notice that both these
approaches rely on syntactic identity, whereas we only use recur-
sion, which brings us to our next contribution.

5.2 Equivalences
Syntactic identity of types can be troublesome for type systems in
which there are multiple ways to express the same type. In prac-
tice, this has not been a large problem because many existing type
systems have the property that all equivalent types are syntactically
identical. However, newer and more expressive languages cannot
rely on syntactic identity. Tate et al. presented some issues with this
flawed assumption in Java, illustrating that semantically equivalent
types can be written differently and that consequently javac re-
jects programs due to such shallow syntactic differences [20]. Tate
et al.’s own algorithm actually also relies on syntactic identity, so
they describe a complex multipass process for canonicalizing types.
Ideally such complications would not be necessary because they
can be rather brittle and sensitive to changes in the language de-
sign. Our system has no such problem. Syntactic identity is never
used in our subtyping algorithm, so type equivalences are already
incorporated and decidable.

To describe the circumstances more formally, let us suppose we
make the following extension to our types:

τ̇ ::= · · · | M⟨inv τ̇⟩
σ ::= · · · | C⟨inv σ⟩

The inv annotation indicates an invariant usage of the type argu-
ment. In many systems, this is the default. We previously used only
the in and out arguments because inv represents the special case
where both arguments are the same; however, existing type systems
are more accurately formalized with an inv annotation.

In such systems, subtyping is specified with the following addi-
tional rules:

C⟨ · ⟩ ⩽:: C′⟨τ̇ ′⟩
⊢ σ′

i <: τ̇ ′[ · 7→ σ] ⊢ τ̇ ′[ · 7→ σ] <: σ′
o

⊢ C⟨inv σ⟩ <: C′⟨in σ′
i out σ′

o⟩



C⟨ · ⟩ ⩽:: C′⟨τ̇ ′⟩
τ̇ ′[ · 7→ σ] = σ′

⊢ C⟨inv σ⟩ <: C′⟨inv σ′⟩

The second rule uses syntactic identity. This is the status quo in
many type systems and algorithms, but it does not interact well
with other type features.

To demonstrate the problem, suppose we were to add intersec-
tion types. To do so, we would make the following extensions to
our system:

τ̇ ::= · · · | τ̇ & τ̇
σ ::= · · · | σ &σ

⊢ σi <: σ′

⊢ σ1 &σ2 <: σ′
⊢ σ <: σ′

1 ⊢ σ <: σ′
2

⊢ σ <: σ′
1 &σ

′
2

With intersection types one can require a field to be both iterable
and serializable using the type Iterable<T>&Serializable.
Such a type is not expressible in Java, and consequently program-
mers often opt to leave the Serializable requirement implicit
and manually cast when necessary, somewhat defeating the pur-
pose of a static type system.

Given such a feature, one might eventually obtain an object
Array<Iterable<T>&Serializable>, where Array is an in-
variant type (we have slipped to declaration-site variance for sake
of clarity). Similarly, a function might demand an object of type
Array<Serializable&Iterable<T>>. The question is whether
the former can be used for the latter. The answer seems to be ob-
viously yes, since & is a commutative operator, but the type sys-
tems and algorithms using syntactic identity would reject such a
coercion since the two intersections are written differently. At first
this might seem easy to fix, but the problem is subtler than it ap-
pears. In particular, Serializable and Iterable have no direct
connection to each other, making this is an easy example. But we
could also have the type Iterable<T>&List<T>, in which case
the left is a supertype of the right and therefore redundant. That is,
Iterable<T>&List<T> is equivalent to List<T>. Thus determin-
ing equivalences of intersections relies on subtyping, and determin-
ing proper subtyping relies on determining equivalences, producing
a circularity.

This troublesome circularity is best illustrated with the follow-
ing class definition:

class Foo extends Array<Foo&Array<Foo>> {}

Now consider whether Foo is a subtype of Array<Foo>. The sub-
typing holds iff Foo&Array<Foo> is equivalent to Foo, and that
equivalence holds iff Foo is a subtype of Array<Foo>. Thus we
have a circular dependency, so we can answer yes to both or no to
both and in either case we have a consistent system. This situation
is due to the problematic infinite proofs we discussed earlier.

Fortunately, having observed Material-Shape Separation, we
recognize that the above example is impractical and need not be
addressed. Moreover, our encoding of invariant types replaces the
rule using syntactic identity with the following rule:

C⟨ · ⟩ ⩽:: C′⟨τ̇ ′⟩
⊢ σ′ <: τ̇ ′[ · 7→ σ] ⊢ τ̇ ′[ · 7→ σ] <: σ

⊢ C⟨inv σ⟩ <: C′⟨inv σ′⟩

Hence our system already uses type equivalence rather than syn-
tactic identity. Plus, our strategy for guaranteeing all proofs are fi-
nite easily extends to incorporate intersections. Put together, these
properties give a sound and complete subtyping algorithm with in-
tersections that uses type equivalence rather than syntactic identity.

5.3 Joins
Whereas our subtyping results applied to extended types, our re-
maining findings only apply to non-extended types τ :

τ ::= ⊥ | ⊤ | M⟨in τ out τ⟩

Given a pair of types τ1 and τ2, their join τ1 ⊔ τ2 is their most-
precise common supertype. Joins are useful for the type checker,
particularly in operations that combine expressions. For example,
consider the following program:

<T extends Comparable<in T>>
void separate(T middle,

Iterable<out T> elems,
ArrayList<in T> smaller,
ArrayList<in T> bigger) {

foreach (T elem in elems)
(elem < middle ? smaller : bigger).add(elem);

}

Each element of the list is added to smaller or bigger depending
on how it compares with middle. To type check ? :, though, one
needs to combine the types of smaller and bigger into a common
supertype. If the most precise such common supertype is computed,
then the subsequent method call .add(elem) is rejected only if the
program is invalid.

In this case, such a most-precise common supertype seems
easy to determine since the types being joined are in fact the
same. However, we chose this example because it both arose from
practice and broke javac. The program, once translated into Java’s
syntax, is valid but javac incorrectly rejects it.

The reason is that javac uses an imprecise join algorithm that
discards any uses of ? super (i.e. in) in the types being joined. It
does so because Java’s type system does not have joins, and even
when they exist they can be difficult to determine. For this reason,
Smith and Cartright proposed simply adding union types [18], triv-
ially guaranteeing joins because the rules for union types actually
define them as the join of the types being unioned together. How-
ever, such a fix is shallow, since then one needs to extend all other
type-checking rules to handle union types. For example, Tate et al.
demonstrate that Smith and Cartwright’s approach does not address
capture conversion [20], an important feature for using wildcards
with generic methods [26]. Tate et al. instead use lazy existential
types as a regrettably complex solution.

As an example of the intricacies of this problems, suppose
we need to join together the two simple types Integer and
Float. To simplify matters, further suppose that Integer only
implements Summable<Integer> and Float only implements
Summable<Float>. One common supertype of Integer and
Float is Summable<?>, but so is Summable<out Summable<?>>
and Summable<out Summable<out Summable<?>>>, and each is
more precise than the one before it. In fact, we can continue this
chain forever, demonstrating that there is no most-precise common
supertype for this simple practical example. That is, the join of
Integer and Float does not exist.

Now we apply Material-Shape Separation to this problem. No-
tice that Summable is a shape; it appears in two cases of recursive
inheritance. Consequently, Summable<?> is not a valid type τ in
our system because Summable is not a material. In fact, none of the
above common supertypes are valid types in our system. Summable
is only permitted in inheritance and type-variable constraints, not as
the type of an expression. Thus in our system the join of Integer
and Float is simply ⊤. The following proof demonstrates that all
joins are similarly easy to compute in our system, provided we have
intersection types.



Theorem 2. Under Material-Shape Separation, our type sys-
tem extended with intersection types has computable joins for all
types τ1 and τ2 with respect to other types τ .

Proof. The algorithm is the following: (1) if either τj is ⊥, then the
join is τk where j ̸= k; (2) if either τj is ⊤, then the join is ⊤; (3) if
either τj is τ & τ ′, then the join is (τ ⊔ τk) &(τ

′ ⊔ τk) where j ̸= k;
(4) otherwise, each τj must be of the form Mj⟨in τ j

i out τ j
o ⟩, and

the join is
¯

M1⟨ · ⟩⩽::M′⟨τ̇ ′
1⟩,

M2⟨ · ⟩⩽::M′⟨τ̇ ′
2⟩

M′
⟨
in τ̇ ′

1[ · 7→ τ1
o ; τ

1
i ] & τ̇ ′

2[ · 7→ τ2
o ; τ

2
i ]

out τ̇ ′
1[ · 7→ τ1

i ; τ
1
o ]⊔ τ̇ ′

2[ · 7→ τ2
i ; τ

2
o ]

⟩

This algorithm can easily be shown to terminate reusing the
second component of the measure used for subtyping. Once again,
well-foundedness of material inheritance is the critical feature.
Note that the large intersection only ranges over inherited materials
rather than all classes/interfaces, which is safe to do because other
types τ are only comprised of materials. This is how we avoid the
issue of recursive inheritance via shapes.

The key step for proving the algorithm correct is proving that
joins distribute through intersections. Ignoring ⊥ and ⊤ at the
moment for simplicity, any type τ is essentially of the form

˘
i τi

where each τi is an instantiation of some material and i ranges over
some finite number. Given two such types

˘
i τi and

˘
k τ

′′
k , it

is easy to prove that
˘

i τi <:
˘

k τ
′′
k can only hold if for all k

there exists some i such that τi is a subtype of τ ′′
k . So, if

˘
k τ

′′
k

is a common supertype of
˘

i τi and
˘

j τ
′
j , then for each k there

exists some i and some j such that τ ′′
k is a common supertype of τi

and τ ′
j . Thus

˘
k τ

′′
k is a common supertype of

˘
i,j τi ⊔ τ ′

j , from
which the result follows.

The reader might take issue with our use of intersection types,
which allowed us to avoid computing the meet, or least-precise
common subtype of two types. Indeed, many languages impose
restrictions on multiple inheritance, and unrestricted intersection
types can be used to violate invariants that would otherwise hold
such as single-instantiation inheritance for arbitrary types. Addi-
tional subtleties surrounding intersection types include uninhab-
itable intersections, which a precise type system would replace
with ⊥. These issues are rather specific to details of a given lan-
guage design, so their discussion lies outside the scope of this pa-
per, but we have found Material-Shape Separation to be useful in
these settings. Here we used unrestricted intersection types because
they are necessary for handling arbitrary multiple inheritance.

Note that, although in the case of subtyping we only provided
an alternative to existing approaches to guaranteeing decidability,
in the case of joins none of those existing approaches guarantee
the existence, let alone the computability, of joins. Even the simple
example before with Integer and Float proved problematic in
those systems.

5.4 Type Variables and Constraints
So far we have managed to avoid the issue of type variables, a rather
important concept given the topic of F-bounded polymorphism. We
did so because we can view type variables simply as abstract class-
es/interfaces. Upper-bound constraints on type variables translate
to inheritance clauses on these type variables. There is a technical
issue with the use of top-level use-site variance permitted in con-
straints but not in inheritance clauses, but this is purely grammatical
and easy to accommodate. Lower-bound constraints on type vari-
ables can sometimes translate to locally adding inheritance clauses
to the constraining class/interface.

To illustrate our perspective, recall the code from Section 3.2:

κ ::= ∗ | ⟨κ⟩ → κ
τ ::= ⊥ | ⊤ | X | M | τ⟨in τ out τ⟩ | λX.τ
Θ ::= X : κ

Θ ⊢ τ : κ

Θ ⊢ ⊥ : ∗ Θ ⊢ ⊤ : ∗
X : κ ∈ Θ
Θ ⊢ X : κ

M : ⟨κ⟩ → ∗
Θ ⊢ M : ⟨κ⟩ → ∗

Θ, X : κ ⊢ τ : κ′

Θ ⊢ λX.τ : ⟨κ⟩ → κ′

Θ ⊢ τ : ⟨κ⟩ → κ′ Θ ⊢ τi : κ Θ ⊢ τo : κ

Θ ⊢ τ⟨in τi out τo⟩ : κ′

Figure 4. Higher-kinded types

interface Comparable<E> {}
class Vector<E> {}
class Matrix<E extends Comparable<E>>

extends Vector<Vector<E>> {}
class Float extends Comparable<Float> {}

Inside the body of Matrix, the type variable E is in scope. Var-
ious types will reference E, and subtyping will need to take its
constraint into account. To integrate this into our formalism, note
that if E were a class/interface C with the inheritance clause
E <:: Comparable<E> then Material-Shape Separation would still
hold. Thus, subtyping will still be decidable. If E had a lower bound
such as Integer, then subtyping would still be decidable since
adding the inheritance clauses Integer <:: E and (transitively
required) Integer <:: Comparable<E> still satisfies Material-
Shape Separation.

Note that a lower bound such as Vector<Integer> cannot be
translated like above into our formalization of inheritance, so our
current proof does not extend to such lower bounds. However, our
formalism could be extended to handle such lower bounds by treat-
ing them like inheritance clauses when generating the usage graph
(extending the definition of Material-Shape Separation) and when
defining the measure of variables (extending our proof strategy).
The one caveat is that shapes cannot be used in lower bounds for
this strategy to work. Indeed, if Foo inherited Shape<Foo> and X
had lower bound Shape<out X>, then there would be an infinite
proof that Foo is a subtype of X.

5.5 Higher Kinds
With this strategy of viewing type variables as abstract classes/in-
terfaces, we can extend type variables to having higher kinds since
class/interface names are essentially higher-kinded types. One
could declare a parameterized type variable C<X> and require it
to extend Iterable<X> so that C represents some iterable generic
class/interface. One could even further constrain C<X> to extend
Equatable<C<X>> so as to ensure this kind of collection comes
with a semantics and decision algorithm for equality. One only
needs to prove that higher-kinded subtyping [17] is decidable.

Unfortunately, higher-kinded subtyping is not decidable with
extended types. To understand why, consider the following defini-
tions (using declaration-site variance for the sake of convenience):

shape Shape<in P : *> {}
material Mayhem<Q : * -> *>

extends Shape<Q<Mayhem<Q>>> {}



τ ⇝ τ

(λX.τ)⟨in τi out τo⟩⇝ τ [X 7→ τi; τo]

τ ⇝ τ ′

τ⟨in τi out τo⟩⇝ τ ′⟨in τi out τo⟩

Θ ⊢ τ <: τ : κ Θ ⊢ τ <: S⟨in τ out τ⟩ : ∗

Θ ⊢ ⊥ <: τ : ∗ Θ ⊢ τ <: ⊤ : ∗

X : ⟨κ⟩ →∗ ∈ Θ Θ ⊢ τ ′
i <: τi : κ Θ ⊢ τo <: τ ′

o : κ

Θ ⊢ X ⟨in τi out τo⟩ <: X ⟨in τ ′
i out τ ′

o⟩ : ∗

M : ⟨κ⟩ → ∗ C : ⟨κ⟩ → ∗ M⟨X⟩ ⩽:: C⟨τ⟩
Θ ⊢ τ ′

i <: τ [X 7→ τo; τi] : κ

Θ ⊢ τ [X 7→ τi; τo] <: τ ′
o : κ

Θ ⊢ M⟨in τi out τo⟩ <: C⟨in τ ′
i out τ ′

o⟩ : ∗

τ ⇝ τ̂ Θ ⊢ τ̂ <: τ ′ : ∗
Θ ⊢ τ <: τ ′ : ∗

τ ′ ⇝ τ̂ ′ Θ ⊢ τ <: τ̂ ′ : ∗
Θ ⊢ τ <: τ ′ : ∗

Θ, X : κ ⊢ τ⟨in X out X⟩ <: τ ′⟨in X out X⟩ : κ′

Θ ⊢ τ <: τ ′ : ⟨κ⟩ → κ′

Figure 5. Subtyping rules for higher-kinded types

Note that Shape itself has kind ∗ → ∗, so Mayhem<Shape> is a
valid type of kind ∗. Consider, then, whether Mayhem<Shape> is a
subtype of Shape<Mayhem<Shape>>>. We can prove this with the
following infinite derivation (making intermediate steps explicit):

Mayhem<Shape> <: Shape<Mayhem<Shape>>>
⇓ (inheritance)

Shape<Shape<Mayhem<Shape>>> <: Shape<Mayhem<Shape>>
⇓ (contravariance)

Mayhem<Shape> <: Shape<Mayhem<Shape>>>
...

This example exploits the fact that Shape can be used as an argu-
ment to a higher-kinded parameter that can be used without restric-
tion in order to violate our invariant that shapes are never intro-
duced by expanding inheritance.

Fortunately, due to Material-Shape Separation we can adapt our
earlier proof strategy to a higher-kinded type system without nested
shapes. We formalize this higher-kinded type system in Figure 4
and its subtyping rules in Figure 5. For the sake of algorithmic
simplicity, we present the minimal form of type-level computation
necessary for the system to work as expected; this minimality is
not necessary for our proof strategy below. We use to indicate
“some number of”, being consistent with that unknown number
across multiple uses of within a rule, and similarly for . For
example, in the rule for variables, represents the number of appli-
cations to the variable X , and represents the number of arguments
in each of those applications. The premises indicate that each cor-

τ : κ 7→ |τ | : κ[∗ 7→ N]
⊥ 7→ 0
⊤ 7→ 0
X 7→X
M 7→ MM

τ⟨in τi out τo⟩ 7→ 1 + |τ | (max(|τi| , |τo|))
λX.τ 7→ λX.|τ |

MM:⟨κ⟩→∗ = λX.max

(
max(ζκ(X)), max

M⟨X⟩<::M′⟨τ⟩
MM′(|τ |)

)
where ζ∗(m) = m ζ⟨κ⟩→κ′(m) = ζκ′(m)(0)

We implicitly lift max, 1+, and 0 when applied to functions.

Figure 6. Measure for higher-kinded types

responding pair of in (or out) arguments of each corresponding
pair of applications must be supertypes (or subtypes).

Theorem 3. Under Material-Shape Separation, all proofs of sub-
typing as specified in Figure 5 are finite.

Proof. As before, our strategy is to identify a measure for types
such that the sum of the measures of the types being compared
always decreases as the syntax-directed algorithm progresses. We
no longer need to consider nested uses of shapes, but now we
must consider higher-kinded types. To do so, we assign a type τ
of kind κ a measure |τ | of type κ[∗ 7→ N]. For example, a type τ̂ of
kind ⟨∗, ∗⟩ → ∗ is assigned a measure |τ̂ | of type N×N → N. The
intuition is that if τ̂ were applied to types with measures m and n
then |τ̂ | (m,n) is the measure of the applied type.

We define this measure in Figure 6 (reusing type-variable names
as measure-variable names). The challenge is to prove that this
measure is well defined. To do so, observe that the definition of
the measure function MM for a material constructor M only
references measure functions for materials used in the inheritance
clauses of M. Due to Material-Shape Separation, we can assume
that those material functions are terminating, thereby making MM
a terminating function as well. Structural induction then easily
demonstrates that the measure is well defined on all types.

This measure on types can be adapted into a measure on sub-
typing judgements. We define the measure of a subtyping judge-
ment X : κ ⊢ τ <: τ ′ : ∗ to be (|τ |+ |τ ′|)[X 7→ 0]. Note that we
only define this measure for subtyping judgements of kind ∗. This is
because we view the only rule applicable to other kinds as interme-
diate since by structural induction on the kind it simply introduces
fresh variables until the types being compared have kind ∗.

Finally, one can easily verify that for each rule the measure
of the premises (after processing the rule for introducing fresh
variables) is always strictly less than the measure of the conclusion,
thereby guaranteeing that any proof must be finite even if infinite
proofs were permitted.

The proof for computable joins extends similarly. Thus, by
separating materials and shapes we are able to add a powerful, fully
functional feature to our type system with minimal effort.

6. Future Work
We have shown that the separation of materials and shapes is prac-
tical, with a broad survey demonstrating its compatibility with ex-
isting code and with anecdotes offering insight into why this pat-
tern arises. We have also shown that this separation simplifies and
improves various core typing algorithms even in the presence of in-



tersection types and higher-kinded type variables. Now we present
new type features that may be made possible by our findings.

6.1 Conditional Inheritance
Although Material-Shape Separation solves a number of open type-
checking problems, our initial motivating use case remains un-
solved. Recall that we wanted a type-safe way to make Lists
have equality whenever their elements have equality. We believe
we could apply our findings to conditional inheritance to produce
an effective solution. Here is how our example might look like us-
ing conditional inheritance:

interface List<out T> {...}
extends Equatable<List<T>>
given T extends Equatable<T> {...}

This seems ideal, something akin to Haskell’s type classes [28],
but now consider our Tree specification once again. The ques-
tion again is whether Tree extends Equatable<Tree>. Since
Tree extends List<Tree>, this holds provided List<Tree> ex-
tends Equatable<Tree>. According to the above specification,
List<Tree> extends Equatable<List<Tree>> (a subtype of
Equatable<Tree>) provided Tree extends Equatable<Tree>.
And now we are back where we started. Once again we are build-
ing a valid, yet infinite proof.

cJ and JavaGI have already made an effort to incorporate con-
ditional inheritance [9, 29]. However, cJ has no proof for decidable
type checking (and appears to be undecidable), and the above ex-
ample causes the JavaGI compiler to stack overflow even though
the language has a proof of decidability. Most likely this is because
a decision algorithm for the above would at least need to track all
entailments and subtypings currently being processed and continu-
ally check these for repeats in order to identify when inside a cyclic
infinite proof, a rather expensive and complicated process. Even if
implemented correctly, this approach is most likely brittle and may
not be able to extend to systems where type equivalence does not
imply syntactic identity.

We believe conditional inheritance would be decidable in our
system. In particular, we disallow the problematic recursive speci-
fication of Tree in Section 5.1, instead encouraging the following:

class Tree extends Equatable<Tree> {
List<Tree> children() {...}
Boolean equals(Tree that) {

return children().equals(that.children());
}

}
This implementation provides predictable, understandable behav-
ior. Furthermore, in the case of shapes, we believe it would be
possible to override a default implementation locally without ever
producing any semantic inconsistency via variance and subtyping,
since shapes may not occur as type arguments. Nonetheless, there
are many subtleties to explore both in terms of type checking and
in terms of run-time implementation, so we defer detailed investi-
gation to future work.

6.2 Decidable Intraprocedural Type Inference
With computable joins, we have the beginnings of decidable in-
traprocedural type inference. Ideally one would be able to take a
function whose context is well established, including types for pa-
rameters and an explicit return type, and determine whether it type
checks without needing any type annotations in its body. There are
two major challenges we foresee for completing this goal. First, one
must design an object-oriented type system with principal types,
which requires addressing practical issues such as overloading, as
well as theoretical issues such as type-argument inference. Second,

one must infer the types of loop variables whenever typeable. This
latter challenge may prove very difficult since, even given Material-
Shape Separation, subtyping is still not well founded despite all
proofs being finite. For example, Array<in Object> is a subtype
of Array<in Array<in Array<in Object>>>, which is only the
beginning of an infinite progression. Nonetheless, Material-Shape
Separation drastically simplifies the forms that subtyping con-
straints can take, so we believe it may be a first step towards decid-
able intraprocedural type inference for object-oriented languages.
Such a feature would not only make programming in statically-
typed languages more convenient, but would also enable one to
dynamically incorporate untyped code into typed systems by type
checking it at run time without error.

6.3 Virtual Types
Virtual types are, in summary, the idea that objects can have types
as members [12, 13]. For example, each graph object could have
a member V indicating the type of its own vertices. Self types are
a special form of virtual types, and type families are a means to
approximate virtual types with F-bounded polymorphism.

There are many ways to implement the concept of virtual types
within a type system [2, 10, 16, 23–25]. For example, with sig-
nificant effort one can encode virtual types using the implicit
constraints [20] of Java’s wildcards combined with wildcard cap-
ture [26], or much more simply one can use Scala’s path-dependent
types [16]. Regardless of the specifics, any encoding of virtual
types must address their many subtleties, such as those relating to
wildcards as described by Tate et al. [20]. We posit that Material-
Shape Separation may alleviate these subtleties. For example, by
incorporating the constraints on the virtual types of a class/interface
into the usage graph and measure, we might be able to extend the
definition of Material-Shape Separation and the proof of decidable
subtyping to virtual types. With further investigation, one might be
able to support constrained virtual types without sacrificing princi-
ples such as decidability.

7. Related Work
Previous work in this area has focused primarily on algorithmic
issues. Kennedy and Pierce mapped the boundary of decidable
subtyping, giving three forms of restrictions each of which would
guarantee decidability [11]. These provided subsequent works, ours
included, a firm basis for future explorations.

Wehr et al. built JavaGI, adding conditional inheritance to the
type system [29], and incorporating Kennedy and Pierece’s results
to achieve the decidability missing from cJ [9]. However, probably
due to the complexity of the underlying algorithms, the implemen-
tation of their type checker does not match the specification. Our re-
sults suggest that acknowledging the separation between materials
and shapes might help to repair and simplify their implementation.

Smith and Cartwright identified problems specific to type-
argument inference in Java and proposed an extension to the type
system with corresponding algorithms [18]. In particular, Java
wildcards do not admit joins, so Smith and Cartwright proposed
adding union types to Java’s type system, though these introduce
complications elsewhere in the type system [20]. Our finding is
that, by not allowing shapes as type arguments, we admit and can
compute joins without the need for union types. This change could
be incorporated into Smith and Cartwright’s algorithms.

Most recently, Tate et al. identified nested contravariance as a
source of complications [20]. Removing it, they found, would make
subtyping decidable in a manner compatible with existing code
bases. Yet their restrictions significantly restrict contravariance and
are strongly influenced by corner cases. Like Smith and Cartwright,
Tate et al.’s proposal does not admit joins, nor does it extend to the
many features we have addressed in this paper.



8. Conclusion
Our approach differed from the aforementioned past endeavors in
that we did not take algorithmic considerations as our imperative.
Rather we considered the question from the perspective of the
language user, trying to determine a solution that would gracefully
handle the common cases and clearly isolate edge cases. All of the
existing solutions we mentioned are incomparable to each other
and to our own in terms of formal expressiveness, but ours is the
only solution admitting more advanced type features and providing
a clear separation of concepts that can be explicitly integrated into
a language design. Our system is simple to understand, implement,
and extend.

Beginning with insights from our colleagues in industry, we de-
fined two different kinds of classes and interfaces: materials and
shapes. Materials are the classes/interfaces exchanged throughout
the programs; shapes are the classes/interfaces used to describe
types via recursive inheritance. We then presented Material-Shape
Separation, which prohibits shapes from being used as type argu-
ments. This split was motivated by the theoretical desire to pinpoint
the source of recursion in the type system and the practical intu-
ition that shapes are fundamentally different from materials. Sub-
sequently, we justified Material-Shape Separation through the sys-
tematic analysis of 13.5 million lines of open-source generic-Java
code. This was compelling evidence that shapes are never in prac-
tice used outside of inheritance and type-parameter constraints.

Next we proved the decidability of subtyping with type equiv-
alences even under naı̈ve algorithms, showed the computability of
joins, and demonstrated the capability to handle constrained higher-
kinded type variables. These results all followed naturally from
Material-Shape Separation, reasserting its usefulness and encour-
aging us of its future prospects. Indeed, we identified several av-
enues for future work where separating shapes from materials may
make even more advanced features feasible.

Since the barrier for adopting the separation of materials and
shapes is very low, especially when contrasted with the gains in
both decidability and simplicity, we believe that it can easily be in-
corporated into new and existing statically-typed object-oriented
languages. As evidence, the designers of Ceylon have already
taken interest in our design, and are likely to integrate Material-
Shape Separation into Ceylon 2.0. Given the benefits of enforcing
Material-Shape Separation, there is every reason to scale down
F-bounded polymorphism and get it into shape.
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