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Abstract

With the rapid proliferation of smart mobile devices,
users now take millions of photos every day. These include
large numbers of clothing and accessory images. We would
like to answer questions like ‘What outfit goes well with this
pair of shoes?’ To answer these types of questions, one has
to go beyond learning visual similarity and learn a visual
notion of compatibility across categories. In this paper, we
propose a novel learning framework to help answer these
types of questions. The main idea of this framework is to
learn a feature transformation from images of items into a
latent space that expresses compatibility. For the feature
transformation, we use a Siamese Convolutional Neural
Network (CNN) architecture, where training examples are
pairs of items that are either compatible or incompatible.
We model compatibility based on co-occurrence in large-
scale user behavior data; in particular co-purchase data
from Amazon.com. To learn cross-category fit, we introduce
a strategic method to sample training data, where pairs of
items are heterogeneous dyads, i.e., the two elements of a
pair belong to different high-level categories. While this ap-
proach is applicable to a wide variety of settings, we focus
on the representative problem of learning compatible cloth-
ing style. Our results indicate that the proposed framework
is capable of learning semantic information about visual
style and is able to generate outfits of clothes, with items
from different categories, that go well together.

1. Introduction

Smart mobile devices have become an important part of
our lives and people use them to take and upload millions
of photos every day. Among these photos we can find large
numbers of clothing and food images. Naturally, we would
like to answer questions like “What outfit matches this pair
of shoes?” or “What desserts would go well along this
entrée?” A straightforward approach to answer this type

∗These two authors contributed equally; the order is picked at random.

Figure 1: Example similar and dissimilar items predicted by
our model. Each row shows a pair of clusters; items on the
same side belong to the same clothing category and clus-
ter. (a): each row shows two clusters that are stylistically
compatible; (b): each row shows incompatible clusters.

of questions would be to use fine grained recognition of
subcategories and attributes, e.g., “slim dark formal pants,”
with a graph that informs which subcategories match to-
gether. However, these approaches require significant do-
main knowledge and do not generalize well to the intro-
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Figure 2: The proposed framework consists of four key components: (1) The input data comprises item images, category
labels and links between items, describing co-occurrences. (2) From the input data, we strategically sample training pairs of
items that belong to different categories. (3) We use Siamese CNNs to learn a feature transformation from the image space
to the style space. (4) Finally, we use a robust nearest neighbor retrieval to generate outfits of compatible items.

duction of new subcategories. Further, they require large
datasets with fine grained category labels, which are dif-
ficult to collect. Getting domain knowledge and collect-
ing large datasets becomes especially hard in domains like
clothing, where fashion collections change every season.

In this paper, we propose a novel learning framework to
overcome these challenges and help answer the raised ques-
tions. Our framework allows learning a feature transforma-
tion from the images of the items to a latent space, which we
call style space, so that images of items from different cat-
egories that match together are close in the style space and
items that don’t match are far apart. Our proposed frame-
work is capable of retrieving bundles of compatible objects.
A bundle refers to a set of items from different categories,
like shirts, shoes and pants. The challenge of this problem is
that the bundle of objects come from visually distinct cate-
gories. For example, clothing items with completely differ-
ent visual cues may be similar in our style space, e.g. white
shirts and black pants. However, this high contrast does not
generally imply a stylistic match; for example, white socks
tend to not match to black pants. Figure 1 shows pairs of
items that are very close in the style space (top rows) and
also pairs that are very far apart (bottom rows).

The proposed framework consists of four parts. Figure 2
provides an illustration of the basic flow. First, the input
data comprises item images, category labels and links be-
tween items, describing co-occurrences. Then, to learn style
across categories, we strategically sample training examples
from the input data such that pairs of items are co-occurring
heterogeneous dyads, i.e., the two items belong to different
categories and frequently co-occur. Subsequently, we use
Siamese CNNs [5] to learn a feature transformation from
the image space to the latent style space. Finally, we gen-
erate structured bundles of compatible items by querying
the learned latent space and retrieving the nearest neighbors
from each category to the query item.

To evaluate our learning framework, we use a large-scale
dataset from Amazon.com, which was collected by [14]. As

a measure of compatibility between products, we use co-
purchase data from Amazon customers. In our experiments,
we observe that the learned style space indeed expresses
extensive semantic information about visual clothing style.
Further, we find that the feature transformation learned with
our framework quantitatively outperforms the vanilla Ima-
geNet features [18] as well as the common approach where
Siamese CNNs are trained without the proposed strategic
sampling of training examples [1, 12].

Our main contributions are the following:

1. We propose a new learning framework that combines
Siamese CNNs with co-occurrence information as well
as category labels.

2. We propose a strategic sampling approach for pairwise
training data that allows learning compatibility across
categories.

3. We present a robust nearest neighbor retrieval method
for datasets with strong label noise.

4. We conduct a user study to understand how users think
about style and compatibility. Further, we compare our
learning framework against baselines.

2. Related work
Our work is related to different streams of research. We

focus this discussion on metric learning and attributes, con-
volutional neural networks for learning distance metrics and
image retrieval as well as learning clothing style.

Metric learning and attributes. Metric learning is used
to learn a continuous high dimensional embedding space.
This research field is wide and we refer to the work of Kulis
[10] for a comprehensive survey. A different approach is
the use of attributes that assign semantic labels to specific
dimensions or regions in the feature space. An example is
Whittle search that uses relative attributes to guide product
search [8]. In contrast with these works, we want to learn



a feature transformation from the input image to a similar-
ity metric that does not rely on discrete and pre-defined at-
tributes.

Convolutional neural networks for learning distance
metrics and image retrieval. Although convolutional neu-
ral networks (CNNs) were introduced many years ago [11],
they have experienced a strong surge in interest in re-
cent years since the success of of Krizhevsky et al. [9] in
the ILSVRC2012 image classification challenge [17]. We
use two of the most successful network architectures, i.e,
AlexNet [9] and GoogLeNet [18]. Razavian et al. [16] show
that CNNs trained for object classification produce features
that can even be used successfully for image instance re-
trieval. To compare our framework to this approach, we
include the vanilla ImageNet GoogLeNet as a baseline in
our evaluations.

Since the introduction of the Siamese setup [5], CNNs
are increasingly used for metric learning and image re-
trieval. The advantage of the Siamese setup is that it allows
to directly learn a feature transformation from the image
space to a latent space of metric distances. This approach
has been successfully applied to learn correspondences be-
tween images that depict houses from different viewpoints,
i.e., street view vs. aerial view, for image geo-localization
[12]. Further, Chopra et al. [4], Hu et al. [6] apply Siamese
networks in context of face verification.

In this stream of research, the closest work to ours is the
work by Bell and Bala [1]. Although they focus on learn-
ing correspondences between photos of objects in context
situations and in iconic photos, they also discover a space
that represents some notion of style. However, their no-
tion of style is only based on visual similarity. Our work
builds upon this approach, but extends it, because we want
to learn a notion of style that goes beyond visual similarity.
In particular, we want to learn the compatibility of bundles
of items from different categories. Since this compatibility
cannot be reduced to only visual similarity, we face a harder
learning problem. To learn this compatibility we propose
a novel strategic sampling approach for the training data,
based on heterogeneous dyads of co-occurrences. To com-
pare our framework to this approach, we include naı̈ve sam-
pling as a baseline in our evaluations. In particular, among
the presented architectures in [1], we choose architecture
B as baseline, because it gives the best results for cross-
category search.

Learning clothing style. There is a growing body of re-
search that aims at learning a notion of style from images.
For example, Murillo et al. [15] consider photos of groups
of people to learn which groups are more likely to socialize
with one another. This implies learning a distance metric
between images. However, they require manually specified
styles, called ‘urban tribes’. Similarly, Bossard et al. [3],
who use a random forest approach to classify the style of

clothing images, require pre-specified classes of style. In
contrast, our learning framework learns a continuous high
dimensional space of style that does not require specified
classes of styles. In a different approach, Vittayakorn et al.
[20] learn outfit similarity, based on specific descriptors for
color, texture and shape. While they are able to retrieve sim-
ilar outfits to a query image, they don’t learn compatibility
between parts of outfits and, as opposed to our work, are not
able to build outfits from compatible clothing items.

The closest work to ours in this line of research is the
work by [14]. They collect the large scale co-purchase
dataset from Amazon.com that we base our experiments on.
Similar to our work, they also learn a notion of style and re-
trieve products from different categories that are supposed
to be of similar style. However, their approach only uses the
image features from the vanilla ImageNet AlexNet that was
trained for object classification to learn their distance met-
ric. Rather than using logistic regression, our approach goes
further by fine-tuning the entire network with a Siamese ar-
chitecture and novel sampling strategy. Further, we demon-
strate the transferrability of our features to an object cate-
gory not seen during training.

3. Dataset
Training the Siamese CNN to learn the function f re-

quires positive and negative examples of clothing pairs.
Let t(+/−) = (a, b) denote the training example contain-
ing items a and b. Positive examples contain two com-
patible items t+ = (a, b) s.t. comp(a, b), whereas neg-
ative examples contain incompatible items t− = (a, b)
s.t. ¬ comp(a, b). Our learning framework requires items of
positive training examples to belong to different categories,
i.e., t+ = (a, b) s.t. comp(a, b), a ∈ Ci, b ∈ Cj , i 6= j.
However, publicly available datasets either don’t contain la-
bels for item categories, but only full body outfits [20] or do
not provide information about item compatibility [3].

Our work uses the large-scale dataset downloaded from
Amazon.com by [14]. The dataset consists of three com-
ponents: product images, product categories and product
co-purchase information. While the dataset contains prod-
ucts from many categories, e.g. books, electronics, clothing
etc., we only consider the ’Clothing, Shoes, and Jewelry’
category and its subcategories. Following our notation, for
each product a, the dataset contains one image Ia. Most of
the images are iconic with a white background. However,
some products are shown in full body pictures. Further,
each product has a high-level category label a ∈ Ci, where
Ci ∈ {‘pants’, ‘coats’, ...}. We give a detailed overview of
the distribution of the categories in the supplementary ma-
terial. The advantage of using high-level categories such as
‘pants’ or ‘shoes’ is that they are independent of the notion
of style, and thus, not subject to frequent change.

As a measure of compatibility between products, we use



Figure 3: Visualization of a 2D embedding of the style space trained with strategic sampling computed with t-SNE [19]. The
embedding is based on 200,000 images from the test set. For a clear visual representation we discretize the style space into a
grid and pick one image from each grid cell at random. See the supplemental for the full version.

aggregated co-purchase data from Amazon. In particular,
we define two items to be compatible, comp(a, b), if “a and
b are frequently bought together” or “customers who bought
a also bought b”. These are terms used by Amazon.com.
Further, the relationships in the dataset do not come directly
from the users, but reflect Amazon’s recommendations [13],
which are based on item-to-item collaborative filtering. For
example, two items of similar style tend to be bought to-
gether or by the same customer. Many of the relationships
in the co-purchase graph are not based on visual similarity,
but on an implicit human judgment of compatibility. We ex-
pect the aggregated user behavior data to recover the com-
patibility relationships between products. However, there
are challenges associated with using user behavior data, as it
is very sparse and often noisy. While users tend to buy prod-
ucts they like, not buying a product does not automatically
imply a user dislikes the item. Specifically in the Amazon
dataset, two items that are not labeled as compatible are not
necessarily incompatible.

4. Learning the style space

Given a query image, we want to answer questions like:
“What item is compatible with the query item, but belongs
to a different category?” More formally, let the query image

be denoted by Iq and the item depicted in the image be q.
The membership of the item q to a category Ci is denoted by
q ∈ Ci. Further, let comp(q, r) denote the boolean function
that items q and r are compatible with one another. Then,
our goal is to learn a function r = retrieve(Iq, j) to retrieve
an item r such that comp(q, r) and q ∈ Ci, r ∈ Cj , i 6= j.
To retrieve compatible items, we learn a feature transfor-
mation f : Iq → sq from the image space I into the style
space S, where compatible items are close together. Then,
we can use the style space descriptor sq to look up compat-
ible neighbors to q.

The data on co-purchased items represents the aggre-
gated preferences of the Amazon customers and defines a
latent space that captures the customers’ consensus on style.
We are especially interested in the specific space that cap-
tures style compatibility of clothing items from different
categories. Since Siamese CNNs learn a space defined by
the training data, choosing the right sampling method of the
training examples is important.

In this section, we first describe our novel sampling strat-
egy to generate training sets that represent notions of style
compatibility across categories. Then, we show how to train
a Siamese CNN to learn a feature transformation from the
image space into the latent style space.



4.1. Heterogeneous dyadic co-occurrences

Two key concepts of the proposed sampling approach are
heterogeneous dyads and co-occurrences. Generally, a dyad
is something that consists of two elements, i.e., our train-
ing examples are dyads of images. Heterogeneous dyads
are pairs where the two elements come from different cat-
egories. Formally, in the context of this work, a dyad is a
pair of item images (Ia, Ib) and a heterogeneous dyad is a
pair (Ia, Ib) s.t. a ∈ Ci, b ∈ Cj , i 6= j.

Co-occurrence generally refers to elements occurring to-
gether. For sales information, co-occurrence might refer to
co-purchases, for food items it might mean that a group of
items belong to the same menu or diet and for medical appli-
cations it might refer to symptoms often observed together.
While this is a general concept, for our experiment, we de-
fine co-occurrence between items to be co-purchases.

4.2. Generating the training set

Before generating the training set, we remove duplicates
and images without category labels. This reduces the num-
ber of images from ≈ 1.6 million to ≈ 1.1 million im-
ages. Training a Siamese CNN requires positive (similar
style) as well as negative (dissimilar style) training exam-
ples. To generate training pairs, we first split the images
into training, validation and test sets according to the ra-
tios 80 : 1 : 19. When we split the sets, we ensure that
they contain different clothing categories in equal propor-
tions. Then, for each of the three sets we generate positive
and negative examples. We sample negative pairs randomly
among those not labeled compatible. We assume that these
pairs will be incompatible with high probability, but also
relatively easy to classify. We compensate this by sampling
a larger proportion of negative pairs in the training set. In
particular, for each positive example we sample 16 nega-
tive examples. Further, as pointed out by [2], balancing the
training set for categories can increase the mean class accu-
racy significantly. Thus, we ensure a balance of the positive
examples over all clothing categories as much as size dif-
ferences between categories allow. We choose a training set
size of 2 million pairs, as it is sufficient for the network to
converge. The validation and test set sizes are chosen pro-
portionally. We use three different sampling strategies:

Naı̈ve: All positive and negative training examples are
sampled randomly. Positive as well as negative pairs can
contain two items from within the same category or from
two different categories.

Strategic: The motivation for this sampling approach is
the following: Items from the same category are generally
visually very similar to each other and items from differ-
ent categories tend to be visually dissimilar. For example
all pants share many visual characteristics like their shape
among each other, but are distinct from other categories
like shoes. Further, convolutional neural networks tend to

Figure 4: Each column: outfits generated with our algo-
rithm by querying the learned style space. Query images are
indicated by a green border. The other items are retrieved
as nearest neighbors to the query item.

map visually similar items close in the output feature space.
However, we want to learn a notion of style across cate-
gories, i.e., items from different categories that fit together
should be close in the feature space. To discourage the ten-
dency of mapping visually similar items from the same cat-
egory close together, we enforce all positive (close) training
pairs to be heterogeneous dyads. This helps pulling together
items from different categories that are visually dissimilar,
but match in style. Negative (distant) pairs can include both,
two items from within the same category or from two differ-
ent categories to help separate visually similar items from
the same category that have different style.

Holdout-categories: The holdout training and test sets
are generated to evaluate the transferability of the learned
notion of style towards unseen categories. The training ex-
amples are sampled according to the same rules as in ‘strate-
gic’. However, the training set does not contain any objects
from the holdout-category. To evaluate the transferability of
the learned style to the holdout-category, the test and vali-
dation set contain only pairs with at least one item from the
holdout category.

4.3. Training the Siamese network

To train the Siamese networks, we follow the training
procedure and network parameters outlined by Bell and
Bala [1]. For more detailed background on training Siamese
CNNs we refer to Section 3 of [1]. As a basis for our train-
ing procedure, we use AlexNet and GoogLeNet, both pre-
trained on ILSVRC2012 [17], and augment the networks
with a 256-dimensional fully connected layer. We chose
256, because [1] show that 256 dimensions gave nearly the
same performance as 1024 and 4096, but uses less mem-
ory. Then, we fine-tune the networks on about 2 million
positive and negative examples in a ratio of 1 : 16. The
training takes approximately 24 hours on an Amazon EC2
g2.2xlarge instance using the Caffe library [7].

The objective of the network is to project positive pairs



close together and negative pairs far apart. In Figure 5 we
plot the distributions of distances for positive and negative
pairs for both before and after training. The plot shows that
the fine-tuned GoogLeNet separates the two classes with a
greater margin. This indicates that the network learned to
separate matching from non-matching clothing.

5. Generating outfits

To generate outfits, we handpicked sets of categories that
seemed meaningful to the authors. For example we did not
sample “dress” and “shirt”, because both cover the upper
body and don’t create a meaningful outfit.

Then, given the image Ia of a query item a, we first use
the trained network to project the image into the learned
style space sa = f(Ia). For this explanation, let an out-
fit consist of the categories Cshoes, Cshirt, Cpants and the
query item is be a shirt, a ∈ Cshirt. Then, we look up the
nearest neighbors to sa in space S for the remaining cate-
gories Cshoes and Cpants. One challenge with large scale
datasets like the Amazon dataset is label noise, e.g., there
exist shirts that are falsely labeled as shoes. Due to the ten-
dency of Siamese CNNs to put similar looking objects close
in the output space, this label noise gets particularly empha-
sized during nearest neighbor lookups. This means that with
high probability a shirt labeled as shoe will be closer to the
queried shirt than real shoes. To address this challenge we
introduce a robust nearest neighbor lookup method.

1. We use k-means to cluster the style space that contains
all items labeled with the target category, in this exam-
ple shoes. In our experiment, we use k = 20 so that
we get 20 centroids {c1, . . . , ck}. Then, we find the
nearest centroid to the query item

c∗ = argmin
ci∈{c1,....,ck}

‖sa − ci‖2 (1)

2. Then, we sample a set of the n closest items to the
centroid. In our experiment, we choose n = 5.

{x1, . . . , xn} = argmin(n)
si∈S,i∈Cshoes

‖c∗ − si‖2 (2)

3. Finally, we choose the closest item in {x1, . . . , xn} to
the query item for the outfit.

x∗ = argmin
xi∈{x1,...,xn}

‖xi − sa‖2 (3)

This method allows us to robustly sample outfits and ignore
images with false labels. Figure 4 shows outfits generated
by our algorithm.
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Figure 5: Distributions of distances for close and distant
pairs for the vanilla GoogLeNet trained on ImageNet (a)
and GoogLeNet trained with strategic sampling (b). The
fine-tuned GoogLeNet separates the two classes with a
greater margin. This indicates that the network learned to
separate matching from non-matching clothing.

6. Visualizing the style space

After we finished training the network, we can visualize
the learned style space. First, we use the t-SNE algorithm
[19] to project the 256-dimensional embedding down to a
two-dimensional embedding. We visualize the 2D embed-
ding by discretizing the style space into a grid and picking
one image from the images in each grid cell at random. Fig-
ure 3 shows an embedding for all clothing categories.

In this embedding, we can observe the notion of style
learned by the network. Although the algorithm does not
know the category labels, the embedding is mostly orga-
nized by object categories. This is expected behavior, as
objects from the same category generally share many visual
features. Further, the network is initialized with weights
pre-trained on ImageNet, which separates the feature space
by objects. However, we also observe that the network
learned a notion of compatibility across categories. For ex-
ample, the category of shoes has been split into three differ-
ent areas dividing boots, flat shoes and high heels.

In addition, we visualize stylistic insights the network
learned about clothing that goes well together and cloth-
ing that does not. To do this, we first cluster the space for
each category. Then, for each pair of categories, we retrieve
the closest clusters in the style space (should be worn to-
gether) and the most distant clusters (ought not to be worn
together). Figure 1 shows the close fits in the top rows and
the distant clusters in the bottom rows. The clustering helps
to avoid outliers that are incompatible to all types of cloth-
ing and further helps retrieve a general understanding of
stylistic compatibility between groups of clothing.

7. Evaluation

We perform four different evaluations for our proposed
learning framework. First, we measure the link prediction
performance on the test set and compare it against two base-
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Figure 6: ROC curves of link prediction on the test set. (a) Test set and training set include pairs of items from all categories.
Only ‘GoogLeNet Vanilla’ was trained only on the ImageNet training set. (b) Test set only includes dyads with at least a
pair of jeans. The training set for ‘GoogLeNet Holdout Jeans Sampling’ does not include any jeans, whereas the training set
for ‘GoogLeNet Strategic Sampling’ includes items from all categories. (c,d) Follow the same principle as (b), with holdout
categories of shirts and shoes, respectively.

lines. Second, we evaluate the transferability of the learned
features to new, unseen categories. Third, we compare
against results in related work and lastly we conduct a large
scale user study.

Test set prediction accuracy. The first experiment mea-
sures the link prediction performance of our algorithm on
the test set. The links in the test set are chosen accord-
ing to the same rule as in the training set of our strategic
sampling method. This means close links are all heteroge-
neous dyads whereas distant links can be both, within or
across categories. Further the test set contains close and
distant links in ratio 50 : 50. We choose this test set as
it measures the performance of predicting bundles of co-
occurring items. We compare four different approaches:
GoogLeNet and AlexNet, both trained with strategic sam-
pling, GoogLeNet with naı̈ve sampling as well as vanilla
ImageNet-trained GoogLeNet. Figure 6 shows the ROC
curve computed by sweeping a threshold value to predict
if a link is close or distant. The plot shows clearly that
the strategic sampling approach outperforms all baselines.
Table 1 shows the performance in terms of area under the
curve (AUC). Since GoogLeNet outperforms AlexNet, we
focus on GoogLeNet for the rest of the experiments.

Feature transferability. In the second setup, we eval-
uate the transferability of features learned with our frame-
work to new unseen categories. To test transferability, we
separate a holdout category from the training set so that the
network has never seen items from the holdout category
during training. Then, we test this network on a test set,
where each link contains at least one item from the hold-
out category. We perform this experiment for three differ-
ent holdout categories: shoes, jeans and shirts. The ROC
curves for the different holdout experiments are shown in
Figure 6. The results show that the networks that never saw
items from the holdout categories clearly outperform the
vanilla GoogLeNet baseline. In terms of AUC, the networks
trained on the holdout testsets are able to achieve 47.5%

Methods All categ. Shirts Jeans Shoes
G-Net-vanilla 0.675 0.742 0.724 0.547
G-Net-naı̈ve 0.770 - - -
A-Net-strategic 0.721 - - -
G-Net-strategic 0.826 0.865 0.836 0.700
G-Net-no-Shirts - 0.824 - -
G-Net-no-Jeans - - 0.779 -
G-Net-no-Shoes - - - 0.620

Table 1: AUC scores for all experiments. We can see that
GoogLeNet with strategic sampling outperforms all other
methods.

(shoes), 67.0% (shirts) and 48.6% (jeans) of the improve-
ment of the network that saw the holdout category during
training. This means that a great extent of the style features
learned through our framework are transferable to unseen
clothing categories. This is a very promising result as it
indicates that our framework learns style features that gen-
eralize well to new categories.

Comparison to related work. We also compare our
method to [14]. Since the learning task as well as the
training and test sets differ between their work and ours,
the results are not directly comparable. In particular they
learn and separately optimize two models, one to predict if
items are bought together and one to predict if they are also
bought. Further, their test sets contain mostly links within
the same category: 85% in ‘bought together’ and 74% in
‘also bought’, whereas our model is specifically trained to
predict links between categories. Despite the fact that we
trained for a different task and did not distinguish between
‘bought together’ and ‘also bought’, we still get competitive
results. In particular, we are able to achieve 87.4% accuracy
on bought together (compared to 92.5%) and 83.1% on also
bought (compared to 88.7%).

User study. Finally, we conduct an online user study



to understand how users think about style and compatibil-
ity and compare our learning framework against baselines.
During the study, we present three images to the users: One
image from one category, e.g. shoes, and two images from
a different category, e.g. shirts. Then, we ask triplet ques-
tions of the form: “Given this pair of shoes, which of the
two presented shirts fits better?” The two options for the
user are predictions from different networks, using the pre-
viously described nearest neighbor retrieval method. We
present these predictions in a random order, so the users
cannot tell which algorithm’s prediction they chose. The
results of the study in absolute click counts are shown in
Figure 7. We can see that for (a) and (b) the proposed
method outperforms the baseline and the difference is sta-
tistically significant. For (c) and (d) we do not find a sig-
nificant difference. Only studies (a) and (b) are consistent
with the quantitative results. This indicates that the evalu-
ations might measure different aspects of human behavior.
While the quantitative results measure aggregated purchase
behavior, the user study measures individual style prefer-
ences. We also conducted a survey with participating users
asking them how they decide which option to pick. The sur-
vey indicated that responses were not based only on stylistic
compatibility; users were also influenced by factors such as:

1. Users tend to choose the option that fits in functional-
ity, i.e. it serves the same function as the query item.
For example, users pick long socks for boots, even
though the colors or patterns don’t match as well as
the other pair of socks.

2. Users sometimes choose the item that is stylistically
similar, but not stylistically compatible. For example,
the query item and selected choice could have similar
bright colors, but not actually match.

3. Users sometimes pick the item they like more, not the
item that better matches according to style.

The survey indicates that, in addition to compatibility,
users’ decisions are also motivated by subjective prefer-
ences to individual items. This motivates future work in
how to design user studies that can separate between hedo-
nics and the perception of compatibility.

8. Conclusion
In this work, we presented a new learning framework

that can recover a style space for clothing items from co-
occurrence information as well as category labels. This
framework learns compatibility between items from differ-
ent categories and thus extends the traditional approach of
metric learning with Siamese networks that focus on recov-
ering correspondences. Further, we present a robust near-
est neighbor retrieval method for datasets with strong la-
bel noise. Combining our learning framework and nearest

Figure 7: User study results. Our method GoogLeNet
strategic compared against (a) random choice, (b)
GoogLeNet naı̈ve sampling, (c) AlexNet stragetic sampling
and (d) GoogLeNet Vanilla. Dashed line: if both bars are
below this line, the difference is not statistically significant
(hypothesis test for binomial distribution, 95% confidence).

neighbor retrieval, we are able to generate outfits with items
from different categories that go well together. Our eval-
uation shows that our method outperforms state-of-the-art
approaches in predicting if two items from different cate-
gories fit together. Additionally, we conduct a user study
to understand how users think about style and compatibil-
ity, and compare our learning framework against baselines.
Furthermore we show that a great extent of the style features
learned through our framework are transferable to unseen
clothing categories. As future work, we plan to expand our
approach to incorporate user preferences to provide person-
alized outfit recommendations.
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