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Abstract There has been considerable interest in the identification of structural prop-
erties of combinatorial problems that lead to efficient algorithms for solving them.
Some of these properties are “easily” identifiable, while others such as backdoor sets
are of interest because they capture key aspects of state-of-the-art constraint solvers
as well as of many real-world problem instances. In particular, it was recently shown
that the problem of identifying a strong Horn- or 2CNF-backdoor can be solved by
exploiting equivalence with deletion backdoors, and is NP-complete. We prove that
strong backdoor identification becomes harder than NP (unless NP=coNP) as soon as
the inconsequential sounding feature of empty clause detection (present in all modern
SAT solvers) is added. More interestingly, in practice such a feature as well as poly-
nomial time constraint propagation mechanisms often lead to much smaller backdoor
sets. We show experimentally that instances from real-world domains that have thou-
sands of variables often have backdoors of only a few variables. Our results suggest
that structural notions explored for designing efficient algorithms for combinatorial
problems should capture both statically and dynamically identifiable properties. We
also evaluate the effect of different preprocessors on the structure of the instances and
hence on the backdoor size. Finally, we also look into strong backdoors for satisfiable
instances and their relationship to solution counting.

Keywords Boolean satisfiability (SAT) · problem structure · backdoor sets ·
dynamic simplification

1 Introduction

General purpose inference engines for Constraint Satisfaction Problems (CSPs) have
witnessed tremendous progress since the early 1990s, and are increasingly becoming
key components of efficient solution methodologies for many interesting problems
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within the realm of artificial intelligence as well as hardware and software verifica-
tion. While the initial work in this area was directed towards solving randomly gener-
ated problem instances, the development of successful techniques quickly led to the
generation of a whole suite of non-random instances of direct interest to AI practition-
ers and the verification community alike. Such instances encode highly combinatorial
problems finding a solution to which in a brute-force manner is impractical. These
problems tend to be NP-hard, leaving little room for an algorithmic technique that
is guaranteed to be efficient at solving all instances of the underlying problem. For-
tunately, while being able to efficiently solve all instances is highly unlikely, many
real-world instances have been found to exhibit a “structure” very different from that
of hard random instances, a structure that constraint solvers are in fact able to exploit
to, in a sense, defy the worst-case complexity of these problems. Specifically, while
one would expect instances of an NP-hard problem with hundreds of thousands of
variables to be completely out of reach in practice, it is not uncommon to be able
to solve many such “structured” instances of interest within a few minutes to a few
hours using state-of-the-art constraint solvers. The focus of this work is the study of
such structure and, specifically, the tradeoff between the strength and the simplicity
of various notions of structure.

Capturing and exploiting problem structure is key to solving large real-world
combinatorial problems. For example, several interesting tractable classes of combi-
natorial problems have been identified by restricting the constraint language used to
characterize such problem instances. Well-known cases include 2CNF, Horn, Linear
Programming (LP), and Minimum Cost Flow problems (MCF). In general, however,
such restricted languages are not rich enough to characterize complex combinatorial
problems. A very fruitful and prolific line of research that has been pursued in the
study of combinatorial problems is the identification of various structural properties
of instances that lead to efficient algorithms. Ideally, one prefers structural properties
that are “easily” identifiable, such as from the topology of the underlying constraint
graph. As an example, the degree of acyclicity of a constraint graph, measured using
various graph width parameters, plays an important role with respect to the identifi-
cation of tractable instances — it is known that an instance is solvable in polynomial
time if the treewidth of its constraint graph is bounded by a constant [7, 8, 14–16, 31].
Interestingly, even though the notion of bounded treewidth is defined with respect to
tree decompositions, it is also possible to design algorithms for constraint satisfac-
tion problems of bounded (generalized) hypertree width that do not perform any form
of tree decomposition (see e.g., [5]). Other useful structural properties consider the
nature of the constraints, such as their so-called functionality, monotonicity, and row
convexity [9, 34].

Another approach for studying combinatorial problems focuses on the role of hid-
den structure as a way of analyzing and understanding the efficient performance of
state-of-the-art constraint solvers on many real-world problem instances. One exam-
ple of such hidden structure is a backdoor set, i.e., a set of variables such that once
they are instantiated, the remaining problem simplifies to a tractable class [6, 19, 24,
30, 33, 35, 36]. Note that the notion of tractability in the definition of backdoor sets
is not necessarily syntactically defined: it may often be defined only by means of a
polynomial time algorithm, such as unit propagation. In fact, the notion of backdoor
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sets came about as a way of explaining the high variance in performance of state-of-
the-art Boolean Satisfiability (SAT) solvers, in particular heavy-tailed behavior, and
as a tool for analyzing and understanding the efficient performance of these solvers
on many real-world instances, in which the propagation mechanisms of fast “sub-
solvers” play a key role. In this work the emphasis was not so much on efficiently
identifying backdoor sets, but rather on the fact that many real-world instances have
surprisingly small sets of backdoor variables and that once a SAT solver instantiates
these variables, the rest of the problem is solved easily. In this context, randomization
and restarts play an important role in searching for small backdoor sets [35, 36].

Even though variable selection heuristics, randomization, and learning in current
SAT/CSP solvers are quite effective at finding relatively small backdoors in practice,
finding a smallest backdoor is in general intractable in the worst case. This intractabil-
ity result assumes that the size of the smallest backdoor is unknown and can grow ar-
bitrarily with n. However, if the size of the backdoor is small and fixed to k, one can
search for the backdoor by considering all

(n
k
)

subsets of k variables and all 2k truth
assignments to these candidate variables. This is technically a polynomial time pro-
cess for fixed k, although for moderate values of k the run time becomes infeasible
in practice. Can one do better? This is a question considered in the area of fixed-
parameter complexity theory. A problem with input size n and a parameter k is called
fixed-parameter tractable w.r.t. k if it can be solved in time O( f (k)nc) where f is any
computable function and c is a constant. Note that c does not depend on k, meaning
that one can in principle search fairly efficiently for potentially large backdoors if
backdoor detection for some class is shown to be fixed parameter tractable. Indeed,
Nishimura, Ragde, and Szeider [28] showed that detecting strong backdoors (cf. Sec-
tion 2 for a formal definition) w.r.t. the classes 2CNF and Horn is NP-complete but,
interestingly, fixed-parameter tractable. This result for 2CNF and Horn formulas ex-
ploits the equivalence between (standard) strong backdoors and “deletion” backdoors,
i.e., a set of variables that once deleted from a given formula (without simplification)
make the remaining formula tractable. Note, however, that this result is only w.r.t.
the tractable classes of pure 2CNF/Horn. In particular, certain kinds of obvious in-
consistencies are not detected in these classes, such as having an empty clause in an
arbitrary formula — clearly, any basic solver detects such inconsistencies. We show
that such a seemingly small feature increases the worst-case complexity of backdoor
identification, but, perhaps more importantly, can dramatically reduce the size of the
backdoor sets.

More specifically, we prove that strong Horn- and 2CNF-backdoor identification
becomes both NP- and coNP-hard, and therefore strictly harder than NP assuming
NP 6= coNP, as soon as empty clause detection is added to these classes. This in-
crease in formal complexity has however also a clear positive aspect in that adding
empty clause detection often considerably reduces the backdoor size. For example,
we found that in certain graph coloring instances with planted cliques of size 4, while
strong Horn-backdoors involve ≈ 67% of the variables, the fraction of variables in
the smallest strong backdoors w.r.t. mere empty clause detection converges to 0 as
the size of the graph grows.

Encouraged by the positive effect of slightly extending our notion of Horn-
backdoor with empty clause detection, we also considered backdoors w.r.t. RHorn
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(renamable Horn), UP (unit propagation), PL (pure literal rule), UP+PL, PROB,
PROBPL and SATZ. For each of these notions, we show on a variety of domains
that the corresponding backdoors are significantly smaller than pure, strong Horn-
backdoors. For example, we consider the smallest deletion RHorn-backdoors. We
provide a 0-1 integer programming formulation for finding such optimal backdoors,
and show experimentally that they are in general smaller than strong Horn-backdoors.
In the three synthetic domains that we evaluated, deletion RHorn-backdoors are
slightly smaller that strong Horn-backdoors. More interestingly, when considering
real-world instances the differences is considerable. For a car configuration problem,
while strong Horn-backdoor sets vary in size between 10-25% of the variables, dele-
tion RHorn-backdoor sets vary only between 3-8%.

At a higher level, our results show that the size of backdoors can vary dramati-
cally depending on the effectiveness of the underlying simplification and propagation
mechanism. For example, as mentioned earlier, empty clause detection can have a ma-
jor impact on backdoor size. Similarly, Horn versus RHorn has an impact. We also
show that there can be a substantial difference between deletion backdoors, where
one simply removes variables from the formula, versus strong backdoors, where
one factors in the variable settings and considers the propagation effect of these
settings. Specifically, we contrast deletion RHorn-backdoors with strong RHorn-
backdoors. We prove by construction that there are formulas for which deletion
RHorn-backdoors are exponentially larger than the smallest strong RHorn-backdoors.

Despite the worst-case complexity results for strong backdoor detection, we show
that Satz-Rand [20, 25] is remarkably good at finding small strong backdoors on
a range of experimental domains. For example, in the case of our graph coloring
instances, the fraction of variables in a small strong SATZ-backdoor converges to
zero as the size of the graph grows. For the car configuration problem, strong SATZ-
backdoor sets involve 0-0.7% of the variables. We next consider synthetic logistics
planning instances over n variables that are known to have strong UP-backdoors of
size logn [21]. For all these instances, the size of the strong SATZ-backdoor sets
is either zero or one. In contrast, the size of deletion RHorn-backdoors corresponds
to over 48% of the variables, increasing with n. We also consider instances from
game theory for which one is interested in determining whether there is a pure Nash
equilibrium. For these instances, while strong Horn-backdoors and deletion RHorn-
backdoors involve ≈ 68% and ≈ 67% of the variables, respectively, strong SATZ-
backdoors are surprising small at less than 0.05% of the variables.

In addition to on-the-fly simplification techniques used by current solvers such
as unit propagation and pure literal rule, another family of still poly-time but more
sophisticated algorithms are so-called preprocessing techniques. Such preprocessors
incorporate simplification and inference mechanism that are too expensive to be ap-
plied at each node of the backtrack search tree. Instead, they are applied only at the
root of the search tree. The implied assumption is that the formulas obtained after
running a preprocessor are easier to decide. However, preprocessing inevitably af-
fects the structure of the original instance and hence may obscure some of the original
hidden structure. Here, we look at the effect of preprocessing on the backdoor size in
unsatisfiable SAT instances. Our results suggest that while preprocessing can some-
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times reduce the backdoor size, it can also increase the backdoor size by obfuscating
structure w.r.t. the particular sub-solver under consideration.

While the notion of strong backdoors is defined with respect to both satisfiable
and unsatisfiable instances, most reported results to date study strong backdoors for
unsatisfiable instances [24]. In this work, we look at strong backdoor sizes in some
satisfiable instances as well, and the effect of preprocessors on the backdoors of these
formulas. Finally, We explore the semantics of strong backdoors in satisfiable in-
stances and their relation to counting solutions. In particular, while pure literal back-
doors only facilitate the decision of satisfiability, strong backdoors w.r.t. unit propa-
gation are also backdoors for the problem of counting solutions.

In summary, our results show that real-world SAT solvers such as Satz are in-
deed remarkably good at finding small backdoors sets. At a broader level, this work
suggests that the study of structural notions that lead to efficient algorithms for com-
binatorial problems should consider not only “easily” identifiable properties, such as
being Horn, but also properties that capture key aspects of state-of-the-art constraint
solvers, such as unit propagation and pure literal rule.

The remainder of the article is organized as follows. Section 2 formally intro-
duces the basic concepts of backdoor sets and commonly employed sub-solvers such
as unit propagation and pure literal elimination. It also discusses empty clauses de-
tection and deletion backdoors, and provides a summary of related work. Section 3
presents the two main theoretical results, that while relaxing key properties of strong
backdoors can make identifying backdoors computationally easier (Section 3.1), it
also can lead to exponentially larger backdoor sizes (Section 3.2) and hence weakens
the usefulness of the notion of backdoors. The rest of the article presents an empiri-
cal study of backdoor sets. Section 4 discusses methods to compute (or approximate)
the smallest backdoors for our study, and involves translation of the given problem
to an integer programming problem. Section 5 discusses experimental results for the
smallest backdoor size w.r.t. various static and dynamic sub-solvers. Section 6 ex-
plores various other directions, namely, the effect of preprocessing on the size of the
smallest backdoor set, strong backdoor sets for satisfiable instances, and backdoors
for the model counting problem. Finally, Section 7 concludes with a summary of the
work.

2 Background and Related Work

We begin with an introduction to the Boolean satisfiability problem and CNF formu-
las, and then describe the notion of backdoor sets.

A conjunctive normal form (CNF) formula F is a conjunction of a finite set of
clauses, a clause is a disjunction of a finite set of literals, and a literal is a Boolean
variable or its negation. The literals associated with a variable x are denoted by xε ,
ε ∈ {0,1}. var(F) denotes the variables occurring in F . A (partial) truth assignment
(or assignment, for short) is a map τ : Xτ → {0,1} defined on some subset of vari-
ables Xτ ⊆ var(F). A solution to a CNF formula F is a complete variable assignment
τ (i.e., with Xτ = var(F)) that satisfies all clauses of F . F [ε/x] denotes the simpli-
fied formula obtained from F by removing all clauses that contain the literal xε and
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removing, if present, the literal x1−ε from the remaining clauses. For a partial truth
assignment τ , F [τ ] denotes the simplified formula obtained by setting the variables
according to τ .

A unit clause is a clause that contains only one literal. A pure literal in F is a
literal xε such that x ∈ var(F) and x1−ε does not occur in F . A Horn clause is a clause
that contains at most one positive literal. A binary clause is a clause that contains
exactly two literals. A formula is called Horn (resp., 2CNF) if all its clauses are Horn
(binary). We also use Horn and 2CNF to denote the two corresponding classes of
formulas. Renaming or flipping a variable x in F means replacing every occurrence
of xε in F with x1−ε . F is Renamable Horn, also called RHorn, if all clauses of F can
be made Horn by flipping a subset of the variables. Following Nishimura et al. [28],
we define the deletion of a variable x from a formula F as syntactically removing the
literals of x from F : F −x =

{

c\
{

x0,x1} | c ∈ F
}

. For X ⊆ var(F), F −X is defined
similarly.

The concept of backdoors and their theoretical foundations were introduced by
Williams, Gomes, and Selman [35, 36]. Informally, a strong backdoor set is a set
of variables such that for each possible truth assignment to these variables, the sim-
plified formula is tractable. The notion of tractability is quite general, and it even
includes tractable classes for which there is not a clean syntactic characterization. It
is formalized in terms of a polynomial time sub-solver:

Definition 1 (sub-solver [35]) A sub-solver S is an algorithm that given as input a
formula F satisfies the following conditions:

1. Trichotomy: S either rejects F or correctly determines it (as unsatisfiable or satis-
fiable, returning a solution if satisfiable),

2. Efficiency: S runs in polynomial time,
3. Trivial solvability: S can determine if F is trivially true (has no clauses) or trivially

false (has an empty clause, {}), and
4. Self-reducibility: If S determines F , then for any variable x and value ε ∈ {0,1},

S determines F [ε/x].

Definition 2 (strong S-backdoor [35]) A set B of variables is a strong backdoor set
for a formula F w.r.t a sub-solver S if B ⊆ var(F) and for every truth assignment
τ : B → {0,1}, S returns a satisfying assignment for F [τ] or concludes that F [τ] is
unsatisfiable.

Clearly, if B is a strong S-backdoor for F , then so is any B′ such that B ⊆ B′ ⊆
var(F). For any sub-solver S, given 〈F,k〉 as input, the problem of deciding whether
F has a strong S-backdoor of size k is in the complexity class ΣP

2 : we can formulate
it as, “does there exist a B ⊆ var(F), |B| = k, such that for every truth assignment
τ : B → {0,1}, S correctly determines F [τ/B]?” We are interested in the complexity
of this problem for specific sub-solvers.

The most trivial sub-solver that fulfills the conditions in Definition 1 is the one
that only checks for the empty formula and for the empty clause. Lynce and Marques-
Silva [26] show that the search effort required by the SAT solver zChaff [27] to
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prove a random 3-SAT formula unsatisfiable is correlated with the size of the strong
backdoors w.r.t. this trivial sub-solver.

More relevant sub-solvers employed by most state-of-the-art SAT solvers are Unit
Propagation and Pure Literal Elimination, and their combination. Given a formula
F , the Unit Propagation sub-solver (UP) checks whether the formula is empty or
contains the empty clause, in which case it is trivially solvable, otherwise it checks
whether the formula contains a unit clause. If yes, it assigns the variable in the unit
clause the corresponding satisfying value, and recurses on the simplified formula. If
the formula does not contain any more unit clauses, it is rejected. The Pure Literal
Elimination sub-solver (PL) checks for variables that appear as pure literals, assigning
them the corresponding value and simplifying, until the formula is trivially solvable
or is rejected (when no more pure literals are found). The sub-solver that uses both
of these rules is referred to as UP+PL.

We note that unit propagation by itself is known to be sufficient for computing a
satisfying assignment for any satisfiable Horn formula: set variables following unit
propagation until there are no more unit clauses, and set the remaining variables to 0.
A similar result is known for RHorn formulas. Interestingly, this does not mean that
the smallest UP-backdoors are never larger than Horn- and RHorn-backdoors. For
example, any (satisfiable) Horn formula with k ≥ 2 literals per clause has a strong
Horn-backdoor of size zero but no strong UP-backdoor of size k−2.

Szeider [33] studied the complexity of finding strong backdoors w.r.t. the above
sub-solvers. For S ∈ {UP, PL, UP+PL} and with k as the parameter of interest, he
proved that the problem of deciding whether there exists a strong C-backdoor of
size k is complete for the parameterized complexity class W[P]. Interestingly, the
naı̈ve brute-force procedure for this problem is already in W[P]; it has complexity
O(nk2knα) and works by enumerating all subsets of size ≤ k, trying all assignments
for each such subset, and running the O(nα) time sub-solver. Hence, the in the worst
case we cannot hope to find a smallest strong backdoor w.r.t. UP, PL, or UP+PL more
efficiently than with brute-force search.

Satz [25] is a DPLL-based SAT solver that incorporates a strong variable selec-
tion heuristic and an efficient simplification strategy based on UP and PL. Its sim-
plification process and lookahead techniques can be thought of as a very powerful
sub-solver. Kilby et al. [24] study strong SATZ-backdoors: sets of variables such that
for every assignment to these variables, Satz solves the simplified formula without
any branching decisions (i.e., with a “branch-free” search). They measure problem
hardness, defined as the logarithm of the number of search nodes required by Satz,
and find that it is correlated with the size of the smallest strong SATZ-backdoors.

The lookahead technique employed by Satz is a limited form of probing. Prob-
ing, also known as the failed literal rule, consists of assigning a variable to a value
and running unit propagation. If a contradiction is found, then the variable is safely
assigned to the opposite value. Otherwise, we test the opposite value and if contradic-
tion is found, then we safely assign the variable to the first value attempted. Probing
can also be thought of as a poly-time sub-solver. The sub-solver checks for variables
that can be assigned by probing, assigning them the corresponding value and simpli-
fying, until the formula is trivially solvable or is rejected (when no more variables
can be assigned by probing). This sub-solver will need to apply UP at most n2 times
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and hence still runs in polynomial time. We refer to backdoors w.r.t. this sub-solver
as PROB-backdoors.

A sub-solver S correctly determines a subclass of CNF formulas and rejects oth-
ers, and hence implicitly defines the class CS of formulas that it can determine. A
natural variation of the definition of the backdoor does not explicitly appeal to a
sub-solver, but rather requires the remaining formula, after setting variables in the
backdoor, to fall within a known tractable sub-class, such as 2CNF, Horn, or RHorn.
We will refer to such backdoors as Horn-backdoor, RHorn-backdoor, etc. Note that
this way of defining the backdoor de facto corresponds to relaxing the assumption
of the sub-solver’s trivial solvability and therefore trivially satisfiable or unsatisfiable
formulas need not lie within the tractable class. For example, an arbitrary formula
with an empty clause may not be Horn. Such formulas—with an empty clause in
them—are important for our discussion and we use the following notation:

Definition 3 C{} is the class of all formulas that contain the empty clause, {}. For
any class C of formulas, C{} denotes the class C∪C{}.

We will show that strong backdoors w.r.t. 2CNF{} and Horn{} behave very dif-
ferently, both in terms of the complexity of finding backdoors as well as backdoor
size, compared to 2CNF and Horn. In our arguments, we will use two properties of
formula classes defined next.

Definition 4 A class C of formulas is closed under removal of clauses if removing
arbitrary clauses from any formula in C keeps the formula in C.

Definition 5 A class C of formulas is said to support large strong backdoors if there
exists a polynomial (in k) time constructible family {Gk}k≥0 of formulas such that
the smallest strong C-backdoors of Gk have size larger than k.

Note that (pure) 2CNF, Horn, and RHorn are closed under removal of clauses,
while C{} is in general not: removing the empty clause may put a formula outside
C{}. Further, 2CNF and Horn support large strong backdoors as witnessed by the
following simple single-clause family of formulas: Gk = (x1 ∨ x2 ∨ . . .∨ xk+3). It can
be easily verified that the all-0’s assignment to any set of k variables of Gk leaves a
clause with three positive literals, which is neither 2CNF nor Horn.

A different notion of backdoors, motivated by the work of Nishimura et al. [28],
involves a set of variables such that once these variables are “deleted” from the for-
mula, the remaining formula falls into a given tractable class (without considering
any simplification due to truth assignments). Formally,

Definition 6 (deletion C-backdoor [28]) A set B of variables is a deletion backdoor
set of a formula F w.r.t. a class C if B ⊆ var(F) and F −B ∈C.

When membership in C can be checked in polynomial time, the problem of de-
ciding whether F has a deletion C-backdoor of size k is trivially in NP. This problem
is in fact NP-complete when C is 2CNF [28], Horn [28], or RHorn [4].

In general, a deletion C-backdoor may not be a strong C-backdoor. E.g., when C
includes C{}, any 3CNF formula F has a trivial deletion C-backdoor of size 3: se-
lect any clause and use its variables as the deletion backdoor. Unfortunately, such a
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“backdoor” set is of limited practical use for efficiently solving F . When the class C
is closed under removal of clauses, every deletion C-backdoor is indeed also a strong
C-backdoor. Conversely, strong C-backdoors often are not deletion C-backdoors, be-
cause assigning values to variables usually leads to further simplification of the for-
mula. Nonetheless, for C ∈ {2CNF, Horn}, deletion and strong backdoors are equiv-
alent, a key fact underlying the fixed parameter algorithm of Nishimura et al. [28].
We will show that this equivalence between deletion backdoors and strong backdoors
does not hold for RHorn.

Paris et al. [30] studied deletion RHorn-backdoors. They proposed a two step
approach: find a renaming that maximizes the number of Horn clauses using a lo-
cal search method and then greedily delete variables from the remaining non-Horn
clauses until the renamed formula becomes Horn. The variables deleted in the second
step form a deletion RHorn-backdoor. They find that branching on these variables can
significantly speed up DPLL solvers.

3 Theoretical Results

While other approaches to studying structural properties of combinatorial problems
have looked at instance characteristics that are “statically” identifiable, such as the
topology of the underlying constraint graph, the notion of backdoors captures “hid-
den” structure. A key property of the backdoor definition is that it allows for “dy-
namic” constraint reasoning as a function of variable assignments: for every assign-
ment to the backdoor variables, the resulting simplified formula should be decidable
by the sub-solver. Another important property of backdoors is that the definition of
a sub-solver captures inconsistency detection (the solvability property), a key feature
underlying the efficiency of SAT solvers. In this section, we show that while relax-
ing each of these properties can make identifying backdoors computationally easier
(Section 3.1), it also can lead to exponentially larger backdoor sizes (Section 3.2) and
hence weakens the usefulness of the notion of backdoors.

3.1 The Impact of Empty Clause Detection

We show that strong backdoors w.r.t. 2CNF{} and Horn{} behave very differently,
both in terms of the complexity of finding backdoors as well as backdoor size, com-
pared to strong backdoors w.r.t. 2CNF and Horn.1 In particular, we prove that the
two problems of deciding whether a formula has a strong backdoor w.r.t. 2CNF{}

and Horn{}, respectively, are NP-hard as well as coNP-hard. This shows that unless
NP=coNP, this problem is much harder than detecting strong backdoors w.r.t. 2CNF
and Horn, which are both known to be NP-complete, and thus within NP [28].

We start with a relatively simple observation, which highlights the potential pos-
itive impact of adding empty clause detection. Consider the unsatisfiable formula
F = (x0)∧ (¬x0)∧ (x0 ∨ x1 ∨ . . .∨ xn). It is clear that the variable x0 is the “cause” of

1 Recall that adding C{} to 2CNF and Horn corresponds to adding empty clause detection to the sub-
solvers corresponding to the two classes.
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F being unsatisfiable. Indeed, {x0} is a strong C{}-backdoor of size 1 for F . On the
other hand, one must assign values to at least n (or n− 1) variables before the third
clause of F becomes Horn (or 2CNF, resp.). In other words, this examples shows that
empty clause detection can lead to not only exponentially but even arbitrarily smaller
backdoor sets.

Proposition 1 There are formulas for which there is a strong C{}-backdoor of size 1
but all strong Horn- or 2CNF-backdoors involve nearly all the variables.

Let us return to the subject of analyzing the worst case complexity of finding small
backdoors when empty clause detection is added to the underlying class. To prove
the NP-hardness result mentioned above, we extend the argument originally used by
Nishimura et al. [28] for (pure) 2CNF/Horn using a reduction from the NP-complete
Vertex Cover problem. In the other direction, we prove coNP-hardness of backdoor
detection w.r.t. Horn{} and 2CNF{} by directly reducing UNSAT, the coNP-complete
problem of deciding whether a given CNF formula is unsatisfiable, to strong C{}-
backdoor detection exploiting the fact that Horn and 2CNF are closed under clause
deletion. These two results are formally stated as Lemmas 1 and 2 below, which
together lead to our main result, Theorem 1.

Lemma 1 Let C ∈ {Horn, 2CNF}. Given a formula F and k ≥ 0, the problem of
deciding whether F has a strong C{}-backdoor of size k is NP-hard.

Proof We extend the argument originally used by Nishimura et al. [28] for (pure)
2CNF/Horn. The polynomial time reduction is from the NP-complete Vertex Cover
problem: given an undirected graph G = (V,E) and a number k ≥ 0, does G have
a vertex cover of size k? Recall that a vertex cover U is a subset of V such that
every edge in E has at least one end point in U . Given an instance 〈G,k〉 of this
problem, we will construct a formula FHorn with all positive literals such that FHorn
has a strong Horn{}-backdoor of size k iff G has a vertex cover of size k. Similarly,
we will construct F2CNF.

FHorn has |V | variables and |E| clauses. The variables are xv for each v ∈ V .
For each edge e = {u,v} ∈ E,u < v, FHorn contains the binary clause (xu ∨ xv). It
is easy to see that if G has a vertex cover U , then the corresponding variable set
XU = {xu | u ∈U} is a strong Horn{}-backdoor: for any assignment τ to XU , F [τ/XU ]
only contains unit clauses or the empty clause, and is thus in Horn{}. For the other
direction, suppose XU is a strong Horn{}-backdoor. We claim that variables of XU
must touch every clause of FHorn so that the corresponding vertices U touch every
edge of G and thus form a vertex cover. To see this, consider the all-1’s assignment
τ1 to XU . Since XU is a strong Horn{}-backdoor and assigning variables according to
τ1 cannot result in creating the empty clause, FHorn[τ1/XU ] must be Horn. If XU did
not touch a clause c of FHorn, then c would appear in FHorn[τ1/XU ] as a binary clause
with two positive literals, violating the Horn property. Hence, the claim holds.

F2CNF has |V |+ |E| variables and |E| clauses. The variables are xv for each v ∈V
and yu,v for each {u,v} ∈ E,u < v. For each such {u,v}, F2CNF contains the ternary
clause (xu∨xv∨yu,v). The argument for the correctness of the reduction is very similar
to above, relying on the all-1’s assignment. The only difference is that if we have a
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strong backdoor XU , it may contain some of the y variables, so that there is no direct
way to obtain a vertex cover out of XU . However, this is easy to fix. If XU contains
yu,v and also at least one of xu and xv, we can simply disregard yu,v when constructing
a vertex cover. If XU contains yu,v but neither xu nor xv, we can replace yu,v with either
of these two variables and obtain a backdoor set with fewer (and eventually no) such
y variables. ut

We now prove coNP-hardness of backdoor detection w.r.t. Horn{} and 2CNF{},
exploiting the notions introduced in Definitions 4 and 5.

Lemma 2 Let C be a class of formulas such that (1) C is closed under removal of
clauses and (2) C supports large strong backdoors. Then, given a formula F and
k ≥ 0, the problem of deciding whether F has a strong C{}-backdoor of size k is
coNP-hard.

Proof Let UNSAT denote the coNP-complete problem of deciding whether a given
CNF formula is unsatisfiable. We prove the lemma by reducing UNSAT to C{}-
backdoor detection. Let H be a CNF formula over variables VH , |VH |= k. We create a
formula F such that F has a strong C{}-backdoor of size k iff H is unsatisfiable. The
idea is to start with H and append to it a formula on a disjoint set of variables such
that for any assignment to k backdoor variables, the combined formula does not re-
duce to a formula in C and must therefore contain the empty clause in order to belong
to C{}.

F is constructed as follows. Using the fact that C supports large strong backdoors,
construct in polynomial time a formula G over a disjoint set of variables (i.e., vari-
ables not appearing in H) such that G does not have a strong C-backdoor of size k.
Now let F = H ∧G. We prove that H ∈ UNSAT iff F has a strong C{}-backdoor of
size k.

(⇒) Suppose H is unsatisfiable. This implies that every truth assignment τ to
VH , the variables of H, violates some clause of H. It follows that for each such τ ,
F [τ/VH ] = H[τ/VH ]∧G[τ/VH ] contains the empty clause and is therefore in C{}.
Hence VH gives us the desired backdoor of size k.

(⇐) Suppose F has a strong C{}-backdoor B of size k. Partition B into BH ∪BG,
where BH has the variables of H and BG has the variables of G. By the construction
of G and because |BG| ≤ k, BG cannot be a strong C-backdoor for G. In other words,
there exists an assignment τG to BG such that G[τG/BG] 6∈C. Because of the closure
of C under removal of clauses and and the variable disjointness of H and G, it follows
that F [τ/B] 6∈C for every extension τ = (τH ,τG) of τG to all of B. However, since B
is a strong C{}-backdoor for F , it must be that F [τ/B] ∈C{}, and the only possibility
left is that F [τ/B] ∈C{}. Since G[τG/BG] 6∈C{}, it must be that H[τH/BH ] ∈C{} for
all such extensions τ of τG. In words, this says that H[τH/BH ] contains a violated
clause for every truth assignment to BH . Therefore, H is unsatisfiable as desired. ut

Lemmas 1 and 2 together give us our main theorem:

Theorem 1 Let C ∈ {Horn, 2CNF}. Given a formula F and k ≥ 0, the problem of
deciding whether F has a strong C{}-backdoor of size k is both NP-hard and coNP-
hard, and thus harder than both NP and coNP, assuming NP 6= coNP.
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3.2 Strong Backdoors vs. Deletion Backdoors

Let us turn our attention to the relationship between strong and deletion backdoors.
While these two kinds of backdoors are known to be equivalent for the classes 2CNF
and Horn, we prove an exponential separation for a slightly stronger class that has a
slight “dynamic” flavor to it—that of renamable-Horn or RHorn formulas, where the
specific renaming used to convert a sub-formula to the Horn form may differ depend-
ing on the variable restriction that yields that sub-formula. Specifically, we demon-
strate the existence of formulas for which strong RHorn-backdoors are exponentially
smaller than the smallest deletion RHorn-backdoors. This suggests that RHorn back-
doors are more likely to succinctly capture structural properties of interest in formulas
than purely static classes like Horn.

The main idea behind the proof is the following. Suppose B is a strong RHorn-
backdoor for F . Then for each assignment τ to the variables in B, there exists a re-
naming rτ such that F [τ/B] under the renaming rτ yields a Horn formula. If F is such
that for different τ , the various renamings rτ are different and mutually incompatible,
then there is no single renaming r under which F −B, the formula obtained by delet-
ing the variables in B, becomes Horn. The following example illustrates this point,
which we will generalize to an exponential separation in the proof of Theorem 2.

Example 1 Let F = (x1∨x2)∧(¬y1∨¬y2)∧(¬x1∨y1∨z)∧(¬x1∨y2∨¬z)∧(¬x2∨
y1 ∨ z)∧ (¬x2 ∨ y2 ∨¬z). First we observe that B = {z} is a strong RHorn-backdoor
for F because for z = 0 we can rename x1 and y1, and for z = 1 we can rename x1 and
y2 to get a Horn formula. On the other hand, {z} certainly does not work as a deletion
backdoor because we must rename at least one of x1 and x2, which forces both y1
and y2 to be renamed and violates the Horn property. In fact, it can be easily verified
that both {x1} and {y1} are also not deletion RHorn-backdoors. From the symmetry
between x1 and x2 and between y1 and y2, it follows that F does not have a deletion
RHorn-backdoor of size 1.

Theorem 2 There are formulas for which the smallest strong RHorn-backdoors are
exponentially smaller than any deletion RHorn-backdoors.

Proof Let s be a power of 2, t = s + log2 s, and n = s + log2 s + t = 2 · (s + log2 s).
We will prove the theorem by explicitly constructing a family of formulas {Fn} such
that Fn is defined over n variables, Fn has a strong RHorn-backdoor of size log2 s =
Θ(logn), and every deletion RHorn-backdoor for Fn is of size at least s+ log2 s−1 =
Θ(n).

Fn is constructed on three kinds of variables: {xi | 1 ≤ i ≤ t},
{

y j | 1 ≤ j ≤ s
}

,
and {zk | 1 ≤ k ≤ log2 s}. Variables zk are used to encode all s 0-1 sequences of length
log2 s. Specifically, for 1 ≤ j ≤ s, let D j

z be the unique clause involving all z variables
where each zk appears negated in D j

z iff the kth bit of j, written in the binary repre-
sentation, is a 1. For example, for j = 01101, D j

z = (z1 ∨¬z2 ∨¬z3 ∨ z4 ∨¬z5). Note
that D j

z is falsified precisely by the unique assignment that corresponds to the binary
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representation of j. Fn is defined to have exactly the following st +2 clauses:

Cx ≡ (x1 ∨ x2 ∨ . . .∨ xt)

Cy ≡ (¬y1 ∨¬y2 ∨ . . .∨¬ys)

Ci, j
z ≡ (¬xi ∨ y j ∨D j

z) ∀i ∈ {1, . . . , t} , j ∈ {1, . . . ,s}

We now analyze RHorn-backdoors for Fn. First, we show that {zk | 1 ≤ k ≤ log2 s}
is a strong RHorn-backdoor for Fn. To see this, fix any assignment τ ∈ {0,1}log2 s to
the z variables. By the discussion above, τ satisfies all but one clause D j

z . Let us de-
note this falsified clause by Dτ

z . It follows that the reduced formula, Fn[τ/z], consists
of Cx,Cy, and for each i ∈ {1, . . . , t}, the binary clause (¬xi∨yτ). We can convert this
formula to Horn by renaming or flipping the signs of all xi, and of yτ . This renaming
makes Cx Horn. Further, it preserves the Horn property of Cy as well as of each of
the t residual binary clauses. Hence the z variables form a strong RHorn-backdoor of
size log2 s.

To derive a lower bound on the size of every deletion RHorn-backdoor B, notice
that if B includes at least t −1 of the x variables, then |B| ≥ t −1 = s+ log2 s−1, as
claimed. Otherwise, B does not contain at least two of the x variables, and we must
therefore rename at least one of these two variables, say x1, to make Cx Horn. This
implies that we must flip all variables y j 6∈ B because of the clauses C1, j

z which now
already have a positive literal, x1. However, because of the clause Cy, we can flip
at most one y variable, and it follows that at least s− 1 of the y variables are in B.
Moreover, we also have that all log2 s of the z variables are in B, because otherwise,
irrespective of how the z variables are renamed, in at least one C1, j

z clause a z variable
will appear positively, violating the Horn property. Hence, |B| ≥ s− 1 + log2 s, as
claimed. This finishes the proof. ut

4 Experimental Setup

The remainder of this article presents an empirical study of the size of backdoor sets
in various settings w.r.t. a number of static and dynamic sub-solvers. The present
section describes our methodology (i.e., how we compute or approximate the small-
est backdoor sets) and the benchmark domains used for experiments. We will then
present are main results in Section 5, followed by some additional extensions in Sec-
tion 6.

4.1 Computing Smallest Backdoors

Given a CNF formula, how can we compute a smallest backdoor for it with respect
to a given sub-solver? We consider this question w.r.t. the tractable classes Horn and
RHorn, as well as w.r.t. the solver Satz. We also consider computing bounds on sizes
of smallest backdoors w.r.t. unit propagation, pure literal elimination, and their com-
bination.
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Smallest Strong Horn-Backdoors: The problem of finding a smallest strong Horn-
backdoor can be formulated as a 0-1 integer programming problem using the equiv-
alence to deletion backdoors [28]. Given a formula F , associate with each Boolean
variable xi a 0-1 variable yi, where yi = 0 denotes that the corresponding variable xi is
deleted from F (and added to the backdoor). For a clause c ∈ F , let c+ =

{

i | x1
i ∈ c

}

and c− =
{

i | x0
i ∈ c

}

. The smallest (deletion) Horn-backdoor problem is formulated
as follows:

minimize ∑i∈var(F)(1− yi)

subject to ∑i∈c+ yi ≤ 1, ∀c ∈ F
yi ∈ {0,1} , ∀xi ∈ var(F)

The constraints ensure that each clause is Horn (in each clause, the total number
of not-deleted positive literals is at most one). The objective function minimizes the
size of the backdoor.

Smallest Deletion RHorn-Backdoors: The problem of finding a smallest deletion
RHorn-backdoor can be formulated similarly. Given a formula F , associate with each
Boolean variable xi three 0-1 variables y1i,y2i,y3i, where y1i = 1 denotes that xi is not
renamed in F , y2i = 1 denotes that xi is renamed in F , and y3i = 1 denotes that xi is
deleted from F (and added to the deletion backdoor). The smallest deletion RHorn-
backdoor problem is formulated as follows:

minimize ∑i∈var(F) y3i

subject to y1i + y2i + y3i = 1, ∀xi ∈ var(F)

∑i∈c+ y1i +∑i∈c− y2i ≤ 1, ∀c ∈ F
y1i,y2i,y3i ∈ {0,1} , ∀xi ∈ var(F)

The first set of constraints ensures that each Boolean variable xi is either not-
renamed, renamed, or deleted. The second set of constraints ensures that each clause
is Horn (in each clause, the total number of not-renamed positive literals and renamed
negative literals is at most one). The objective function minimizes the size of the
backdoor.

We use the above encodings and the ILOG CPLEX libraries [23] for experimenting
with Horn- and RHorn-backdoors.

Smallest Strong SATZ-, PROBPL-, PROB-, (UP+PL)-, UP-, and PL-Backdoors:
Following previous work [24, 35], we also use the complete randomized solver Satz-
Rand [20] to find small strong backdoors. Satz-Rand employs a randomized variable
selection heuristic as well as a laborious propagation procedure at each search node
that includes limited probing, unit propagation and pure literal elimination. The lim-
ited probing consists of a single pass through the variables. If it finds a variable that it
can set by probing it does and applies UP, but once it has iterated once over the vari-
ables it then moves to heuristically selecting a branch variable. We refer to the back-
doors with respect to the this built-in propagation as SATZ-backdoors. We obtain an
upper bound on the size of the smallest strong SATZ-backdoor by running Satz-Rand
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(a randomized version of Satz) without restarts multiple times with different seeds
and recording the set of variables on which the solver branches when proving un-
satisfiability. For every possible assignment to this set of variables, Satz decided the
simplified formula in a branch-free manner by applying its propagation mechanism,
and the size of this variable set is an upper bound on the minimum SATZ-backdoor
size.

In our initial experiments [11], we recorded the set of variables not set by UP
and PL while searching with Satz-Rand to obtain UPPL-backdoors, i.e. the UPPL-
backdoor includes the variables set by probing plus the variables set by branching.
Similarly, the set of variables not set by UP while searching with Satz-Rand, i.e. the
variables set by probing, PL or branching, is a UP-backdoor. Recording backdoors
in such a way, conditioned the backdoors with respect to UPPL and PL to include
the variables set by probing and PL which are by default applied by Satz-Rand. More
recently, we have instrumented the Satz-Rand code so that we can turn on/off each
of the propagation techniques (probing, UP and PL) while keeping the randomized
branch heuristic, thereby removing this conditioning. In addition, probing is applied
until closure similarly to UP and PL, i.e. until no variable can be determined by prob-
ing – as opposed to the default where Satz scans the variables with probing only once.
We run the instrumented Satz-Rand with probing (which includes UP) as propagation
procedure (but turning off PL) and record the branch variables. By a similar reasoning
as above, the size of this set gives us an upper bound on the smallest strong PROB-
backdoor size. We combine probing and PL, to obtain backdoors w.r.t. PROBPL.
Similarly, we record all branch variables in Satz-Rand using only UP and PL (or UP
only or PL only) propagation procedures to obtain an upper bound on the smallest
strong UPPL (or UP or PL)-backdoor size. For satisfiable instances, we obtain upper
bounds on the smallest backdoors by forcing Satz-Rand to continue searching even
after a solution is found until the full search space is explored. By recording the vari-
ables on which it branches while finding all solutions, we obtain a strong backdoor set
such that for each assignment the simplified formula is determined as either unsatisfi-
able or satisfiable by the propagation mechanism of Satz. For each problem instance,
we record the smallest backdoor size found across all runs as the upper bound to the
minimum strong backdoor size for this instance.

4.2 Benchmark Domains

We consider five benchmark domains for our experiments.

Graph coloring: This domain encodes the problem of computing a legal k-coloring
of a given undirected graph with a given k. The instances are generated using the
clique hiding graph generator of Brockington and Culberson [3]. All instances were
generated with the probability of adding an edge equal to 0.5 and with a hidden clique
of size 4. All SAT-encoded instances are unsatisfiable when the number of colors is 3.
The twelve variables representing color assignments to the four vertices in the hidden
4-clique constitute a strong C{}-backdoor, since any assignment of colors to these
four vertices will fail at least one coloring constraint.
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MAP planning: This is a synthetic logistics planning domain for which the size
of strong UP-backdoors is well understood [21]. In this domain, n is the number of
nodes in the map graph and k is the number of locations to visit. All MAP instances
considered are unsatisfiable, encoding one planning step less than the length of the
optimal plan. Hoffmann et al. [21] identify that MAP instances with k = 2n−3 (called
asymmetric) have logarithmic size DPLL refutations (and backdoors). We evaluate
the size of the backdoors in asymmetric MAP instances of various sizes (n = 5..50).

Game theory: These instances encode the problem of computing an equilibrium
strategy in a multi-player game and were used first in a study of the existence of
such equilibria under varying network topology [10]. In a game, interactions between
players can be represented by an undirected graph where nodes represent players and
edges represent mutual dependencies between players. Each player has a finite set of
actions and a payoff function that assigns a real number to every selection of actions
by him and his neighbors. Here we consider binary games, where each player has
exactly two action choices. Our focus will be on random graphical games where
each payoff value is chosen uniformly and independently at random from the interval
[0,1] and the interaction graphs are drawn from the Erdös-Rényi random graph model
G(n, p). In a pure Nash equilibrium (PNE), each player chooses an action and has no
incentive to unilaterally deviate and change his action, given the actions chosen by
the other players remain fixed (i.e., each player has chosen a best response action to
the choices of his neighbors). We encode the problem of deciding whether a graphical
game has a PNE as a CNF formula that is satisfiable if and only if the given game has
a PNE. The details of this encoding may be found in the Appendix.

Car configuration: This is a real-world SAT benchmark whose instances encode
problems from the validation and verification of automotive product configuration
data for the Daimler Chrysler’s Mercedes car lines [32]. We consider a set of unsat-
isfiable instances available at http://www-sr.informatik.uni-tuebingen.de/~sinz/DC/.

Bridge Faults: This benchmark set is part of SATLIB [22] and is listed as BF. This is
a real-world SAT benchmark whose instances encode problems from the verification
of bridge faults. The instances are generated by Nemesis, a test-pattern generation
program for realistic bridging faults in CMOS Integrated Circuits. We also give re-
sults on the instance ssa0432-003, which is one of the eight instances which test for
single-at-stuck faults (also part of the BF benchmark set).

5 Strong Backdoor Size in Practice

The complexity of backdoor detection limits the usefulness of backdoors as a solu-
tion concept for combinatorial problems. However, the notion of backdoors can be
applied as a tool for analyzing and understanding the efficient performance of state-
of-the-art solvers on many real-world instances. Previous work of strong backdoors
has considered random SAT formulas [24, 26]. In this section, we demonstrate that,

http://www-sr.informatik.uni-tuebingen.de/~sinz/DC/


Tradeoffs in the Complexity of Backdoor Detection for Combinatorial Problems 17

Table 1 Strong backdoor sizes as a percentage of the number of variables for various ensembles of in-
stances: Graph Coloring (gcp), MAP planning (map), Pure Nash Equilibrium (pne), Automotive Configu-
ration (cnnn), and Bridge Faults (ssa/bf). Each row reports the average over several instances for gcp, pne
and cnnn. Backdoor sizes are shown as the average % of the number of problem variables. The RHorn
numbers are for deletion backdoors. Horn- and RHorn-backdoor sizes are for the smallest corresponding
backdoors (except the ones indicated with *), while the rest are upper bounds.

instance num num Static (optimal, %) Dynamic (upper bound, %)
set vars clauses Horn RHorn PROBPL (SATZ) PROB UP+PL UP PL C{}

Graph Coloring
gcp 100 300 7,557.7 66.67 *57.73 0.33 (0.33) 0.33 1.43 1.47 34.63 4.00
gcp 200 600 30,122.0 66.67 *62.47 0.17 (0.17) 0.17 0.73 0.73 30.43 2.00
gcp 300 900 67,724.4 66.67 *63.82 0.11 (0.11) 0.11 0.51 0.51 27.36 1.33
gcp 400 1,200 119,997.4 66.67 *64.48 0.08 (0.08) 0.08 0.38 0.40 26.82 1.00
gcp 500 1,500 187,556.0 66.67 *64.88 0.07 (0.07) 0.07 0.40 0.41 32.75 0.80
AI Planning
map 5 7 249 720 38.96 37.75 0 (0) 0 2.41 2.41 62.65
map 10 17 1,284 5,000 44.55 44.31 0 (0) 0 1.25 1.25 59.27
map 20 37 5,754 33,360 47.31 47.25 0 (0) 0 0.63 0.63 57.72
map 30 57 13,424 103,120 48.21 48.19 0 (0) 0 0.42 0.42 57.22
map 40 77 24,294 232,280 48.66 48.65 0 (0) 0 0.31 0.31 56.97
map 50 97 38,364 438,840 48.93 48.92 0 (0) 0 0.25 0.25 56.83
Game Theory
pne 2,000 40,958.9 67.88 66.86 0.00 (0.05) 0.00 0.07 0.09 0.22
pne 3,000 60,039.7 67.66 66.55 0.00 (0.00) 0.00 0.03 0.04 0.08
pne 4,000 78,839.1 67.97 66.93 0.00 (0.00) 0.00 0.03 0.03 0.07
pne 5,000 98,930.8 67.81 66.80 0.00 (0.00) 0.00 0.02 0.02 0.05
Automotive Configuration
c168 fw sz 1,698 5,646.8 14.32 2.83 0.06 (0.16) 0.06 0.45 0.60 4.16
c168 fw ut 1,909 7,489.3 23.62 5.50 0.00 (0.00) 0.00 0.06 0.06 10.84
c170 fr sz 1,659 4,989.8 9.98 3.57 0.00 (0.13) 0.00 0.45 0.48 3.40
c202 fs sz 1,750 6,227.8 12.31 4.55 0.00 (0.13) 0.00 0.21 0.27 4.11
c202 fw rz/sz 1,799 8,906.9 14.48 6.12 0.02 (0.22) 0.02 0.86 1.06 6.24
c202 fw ut 2,038 11,352.0 21.25 7.61 0.00 (0.00) 0.00 0.15 0.25 9.13
c208 fA rz/sz 1,608 5,286.2 10.52 4.51 0.00 (0.06) 0.00 0.32 0.37 2.30
c208 fA ut 1,876 7,335.5 23.13 7.46 0.00 (0.00) 0.00 0.08 0.08 13.33
c208 fc rz 1,654 5,567.0 10.28 4.59 0.00 (0.36) 0.00 0.67 0.79 3.20
c208 fc sz 1,654 5,571.8 10.47 4.68 0.01 (0.16) 0.01 0.40 0.76 3.17
c210 fs rz 1,755 5,764.3 11.64 4.22 0.00 (0.55) 0.00 0.55 0.68 3.30
c210 fs sz 1,755 5,796.8 11.77 4.35 0.00 (0.30) 0.00 0.39 0.54 3.51
c210 fw rz 1,789 7,408.3 12.54 4.81 0.00 (0.65) 0.00 0.65 0.86 4.14
c210 fw rz/sz 1,789 7,511.8 13.74 5.37 0.02 (0.23) 0.02 0.41 0.73 5.62
c210 fw ut 2,024 9,720.0 20.73 7.31 0.00 (0.00) 0.00 0.37 0.42 12.80
c220 fv rz/sz 1,728 4,758.2 9.14 2.92 0.09 (0.19) 0.16 0.33 0.54 5.53
Verification
bf0432-007 1,040 3,668 50.10 *28.17 1.54 1.54 11.54 12.69 85.19
bf1355-075 2,180 6,778 52.06 *26.15 2.80 2.80 5.00 5.00 64.17
bf1355-638 2,177 6,768 51.68 *25.86 2.07 2.07 7.95 8.04 62.93
bf2670-001 1,393 3,434 41.92 *20.96 1.22 1.22 1.29 1.65 48.96
ssa0432-003 435 1,027 48.97 20.46 0.00 0.00 3.91 3.91 88.51

although one cannot always efficiently identify the smallest backdoor sets, in practice
many real-world combinatorial problems have surprisingly small backdoors.

Specifically, in our experimental evaluation, we compute the size of strong and
deletion backdoors w.r.t. several classes and sub-solvers in five problem domains, dis-
cussed in Section 4. The results are shown in Table 1. The results for SATZ-backdoors
are presented in braces in the PROBPL column, since SATZ propagation is a limited
form of PROBPL.

The MIP problems, encoding finding minimum deletion RHorn-backdoors for the
graph coloring and the bridge fault instances, are actually very hard to solve. Here we
report results based on the best feasible solutions found in a limited computational
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time, i.e. an upper bound on the minimum deletion RHorn backdoor sizes. For all
other instances we report optimal del RHorn-backdoor sizes.

The graph coloring domain illustrates that both strong Horn-backdoors and dele-
tion RHorn-backdoors can be significantly larger than backdoors w.r.t. empty clause
detection. Recall that by construction, these instances have a C{}-backdoor of size 12.
We note that Satz finds backdoors even smaller than the C{}-backdoor.

In the MAP planning domain, strong Horn-backdoors and deletion RHorn-backdoors
are of comparable size and relatively large (37-48%); as expected strong UP-backdoors
are quite small. Interestingly, Satz solves these instances without any search at all
when using its full propagation procedure. The smallest strong PROBPL- and PROB-
backdoors are of size 0.

For the game theory problems of computing a pure nash equilibrium, while strong
Horn-backdoor sets and deletion RHorn-backdoor involve ≈ 68% and ≈ 67% of the
variables, respectively, for the selected instances strong PROB-backdoors are surpris-
ingly small, close to 0% of the variables.

In the automotive product configuration problems, while strong Horn-backdoors
vary between 10-25% of the variables, RHorn-backdoor sets are considerably smaller
at 3-8%. Notice that the RHorn-backdoor sizes are similar to the PL-backdoor sizes.
However, these are deletion RHorn backdoor sizes and hence provide only an upper
bound on the minimum strong RHorn-backdoor size, which could be even smaller.
Strong PROBPL-backdoors involve only 0-0.09% of the variables. In this domain,
the full probing included in the PROB- and PROBPL- sub-solvers results in find-
ing smaller strong backdoors than the SATZ-backdoors where the propagation only
includes limited probing (with backdoor sizes of 0-0.7% instead).

Finally, in the bridge fault instances, we can again see that deletion RHorn-
backdoor sets are considerably smaller than Horn-backdoor sets, involving 20-29%
versus 41-51% of the variables. Pure literal elmination is not effective on these prob-
lems, resulting in PL-backdoors of 48-89% of the variables.

We can conclude that RHorn-backdoors are smaller than Horn-backdoors, espe-
cially in the industrial auto configuration and bridge fault benchmarks (as opposed to
the three synthetic domains). Hence, between these two syntactic tractable classes,
RHorn is computationally more relevant. Further, PL-backdoor sizes are larger than
UP- and UPPL-backdoor sizes. In particular, adding PL propagation to UP to obtain
UPPL, and adding PL to probing to obtain PROBPL propagation has minor effect on
the size of the minimum strong backdoor. In fact, we observed that using PROBPL
or UPPL as a sub-solver causes Satz-Rand to often find larger backdoors than when
using PROB or UP respectively. In effect, the added pure literal propagation changes
the structure of the problem in such a way that it misleads the solver heuristic toward
less effective branch variables. This issue is further examined in the next section in the
context of preprocessors and their effect on backdoor sizes. Because of this effect of
pure literal elimination (which has been observed previously) and its computational
overhead, PL has been omitted in some of the state-of-the-art solvers.
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6 Backdoors: Preprocessing, Satisfiable Instances, and Model Counting

6.1 Effect of Preprocessing

In recent years, there has been interest in developing preprocessing techniques for
SAT. Such preprocessing techniques change the structure of the original formula and
hence might have an effect on the backdoor size. In this section, we investigate the
effects that preprocessors have on the size of strong backdoors in unsatisfiable in-
stances.

We consider four of the more popular preprocessors used with state-of-the-art
SAT solvers: 3-Resolution, 2-SIMPLIFY, HyPre, and SatELite. The simplification
techniques incorporated in these preprocessors are often more sophisticated but also
more time-consuming than standard simplification techniques such as UP and PL,
and hence are not cost-effective as a propagation mechanism at each search node. 3-
Resolution is a preprocessing technique that has been used in several SAT solvers, in
particular Satz. It resolves clauses of length at most 3 until saturation. 2-SIMPLIFY
[2] efficiently implements and combines well-known 2-SAT techniques, a limited
form of hyper-resolution and a novel use of transitive reduction to reduce formula
size. HyPre [1] reasons on binary clauses similarly to 2-SIMPLIFY, but also incorpo-
rates full resolution. Also, unit propagation and equality reduction are applied until
saturation. SatELite [13] uses the rule of Variable Elimination by Substitution.

When applied to structured formulas, as ones that appear in real-world domains,
preprocessors often lead to great reduction in the size of the instance and sometimes
can even solve the instance without search. In such cases, one can consider the pre-
processor as a sub-solver for which the instance has a strong backdoor of size 0. In
particular, the instances from the four domains studied in the previous section are
often fully solved by the preprocessors themselves. For example, 3-Resolution deter-
mines the graph coloring problems, while the MAP domain is easy for HyPre and
3-Resolution.

Here, we report results on the BF domain from SATLIB [22], which consists of
four benchmark instances which test for bridge faults. Table 2 reports the number of
variables and clauses in the original formula and in the resulting formulas after ap-
plying each of the preprocessors. It also reports upper bounds on the minimum strong
backdoor size w.r.t. SATZ and UP+PL. For some instances, certain preprocessors de-
termine the unsatisfiability of the instance. In this case, we report 0 in all entries.
As an example, the instance bf1355-075 is solved by SatELite, while it has a strong
SATZ-backdoor of size 179 after preprocessing with 2-SIMPLIFY. The results in Ta-
ble 2 show that none of the preprocessors has a monotonic effect on the backdoor
size in unsatisfiable instances. SatELite overall has the most positive effect resulting
in SATZ-backdoors of size 0 in three of the instances, however it results in larger
backdoors for bf0432-007. On the other hand, 2-SIMPLIFY increases the backdoor
size for three of the instances, but reduces the backdoor size to 8 for bf2670-001. The
results seem to suggest that while for some instances preprocessing simplifies the
formula, in some cases it obfuscates the hidden structure of the problem and results
in larger backdoors.
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Table 2 Effect of preprocessing. For each instance, we report upper bounds on the strong backdoors size
w.r.t. SATZ and UP+PL for the original formula and the formulas obtained after running 2-SIMPLIFY,
HyPre, SatELite, 3-Resolution.

instance preprocessor simplification backdoor size (%)
name used num vars num clauses SATZ UP+PL

none 1,040 3,122 80 217
2-SIMPLIFY 1,205 2,501 67 168

bf0432-007.cnf HyPre 325 1,383 65 156
SatELite 556 2,216 132 219
3-Resolution 795 3,499 30 191
none 2,180 5,146 44 117
2-SIMPLIFY 2,583 4,134 179 221

bf1355-075.cnf HyPre 704 3,124 82 103
SatELite 0 0 0 0
3-Resolution 1,682 5,557 72 158
none 2,177 5,385 34 142
2-SIMPLIFY 2,589 4,861 104 152

bf1355-638.cnf HyPre 486 2,010 37 50
SatELite 814 3,134 0 5
3-Resolution 1,461 4,397 46 81
none 1,393 2,926 16 32
2-SIMPLIFY 1,592 1,629 8 29

bf2670-001.cnf HyPre 0 0 0 0
SatELite 80 294 0 10
3-Resolution 1,202 2,970 7 19

6.2 Backdoors for Satisfiable Instances

Most of the previous work on strong backdoors has analyzed unsatisfiable instances
[e.g. 26]. However, the notion of strong backdoor is also relevant to satisfiable in-
stances. While for unsatisfiable instances, a strong backdoor set B is such that for
every assignment to B, the sub-solver derives the empty clause when simplifying the
formula. For satisfiable instances, a strong backdoor set B is such that for every as-
signment to B, the sub-solver either derives the empty clause (a subtree that contains
no solutions), or it finds a solution that is an extension of the assignment to B. On
the other hand, the notion of weak backdoors with respect to satisfiable formulas
captures, in a sense, a “witness” to the satisfiability of the instance.

We study satisfiable instances with many solutions from the Car Configuration
domain [32]. The results we obtain are very similar across instances, and we report
on one representative instance. Table 3 suggests that for such satisfiable instances
with many solutions, the weak backdoor size is extremely small, while the strong
backdoor size is larger. A strong backdoor needs to capture a solution for each back-
door assignment that does not lead to an inconsistent formula. In addition, when con-
sidering strong backdoors, the choice of sub-solver has a major effect. Interestingly,
although in general UP is a more effective propagation mechanism when deciding
satisfiability, when considering strong backdoors in the satisfiable car configuration
instances, the PL sub-solver can result in smaller backdoor sizes than those w.r.t. UP.
Finally, with the exception of SatELite, preprocessors do not significantly affect the
size of strong backdoors in satisfiable instances of the Car Configuration domain.
Notice that when PL is added to UP, the strong backdoor sizes are dramatically re-
duced. This effect appears to be due to the fact that the pure literal rule is de facto a
“stream-liner” [17, 18]: as PL assigns variables that appear as pure literals, it guaran-
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Table 3 Weak and Strong backdoor sizes of a representative satisfiable Car Configuration instance of the
original formula and the formulas obtained after running preprocessors 2-SIMPLIFY, HyPre, SatELite,
3-Resolution.

C168 FW MT 28 vars clauses SATZ UP+PL UP PL
Weak Original 1909 3808 18 22 423 357
Strong Original 1909 3808 153 156 500 388
Strong HyPre 536 2816 144 145 478 306
Strong SatELite 107 790 34 35 76 98
Strong 3-Resolution 228 1088 142 142 225 189
Strong 2-SIMPLIFY 1920 2618 118 118 478 285

tees that the satisfiability of the formula remains unchanged, while at the same time
potentially pruning several solutions.

6.3 Backdoors for Model Counting

The observation about strong backdoors w.r.t. PL acting as a streamliner raises an
interesting question about the relationship between strong backdoors and counting
the number of solutions of the given formula (the model counting problem). Consider
a strong backdoor B for a formula F w.r.t. a sub-solver S. One can count the number
of solutions of F , denoted #F , by adding up the solution counts #F [τ/B] for each of
the 2|B| truth assignments τ to the variables in B. Suppose the sub-solver S has the
property that there exists a poly-time algorithm S′ such that whenever a formula G
is determined by S as being satisfiable or unsatisfiable, then S′ can compute #G. If
this property holds, then B also acts as a backdoor for the model counting problem:
adding up #F [τ/B] for all assignments τ to B yields a 2|B|nO(1) time algorithm for
computing #F .

Looking at various sub-solvers (and tractable classes) discussed so far, we may
ask which ones have the above property, i.e., strong backdoors for which of these sub-
solvers also act as backdoors for the model counting problem? Consider the pure lit-
eral sub-solver. A strong PL backdoor B may not necessarily help with model count-
ing. For example, if for some assignment τ to B, the simplified formula F [τ/B] has
only pure literals, the PL sub-solver sets all variables of F [τ/B] to their respective
pure values (possibly eliminating several solutions in the process) and immediately
declares the formula satisfiable. However, the model counting problem for formulas
with only pure literals (sometimes called monotone formulas) is still #P-complete,2
making it highly unlikely that a poly-time model counting algorithm for such for-
mulas exists. Thus, a small strong PL backdoor does not necessarily yield an effi-
cient way to compute #F . Similarly, for 2CNF and Horn formulas, the corresponding
model counting problem is known to be #P-complete, making strong backdoors for
these classes (even with empty clause detection added) not very useful for model
counting.

On the other hand, strong backdoors B w.r.t. certain common sub-solvers do yield
a 2|B|nO(1) time algorithm for computing #F . We present the case for the unit prop-

2 #P-completeness for monotone 2CNF formulas can be proved by a simple reduction from model
counting for the Vertex Cover problem.
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agation sub-solver. Unlike PL, every variable assignment that UP makes when B is
set to τ is a logical implication of the residual formula F [τ/B]. Hence, setting those
variables by UP does not affect the set of solutions of F [τ/B] as the UP sub-solver
proceeds to either derive an empty clause or simplify F [τ/B] to the empty formula.
In the former case, F [τ/B] clearly has zero solutions. In the latter case, we claim that
F [τ/B] has exactly 2m solutions, where m is the number of variables of F that are
not in B and are also not assigned a value by UP. This is seen by noting that every
variable of F [τ/B] set by UP must have been set that way in all solutions to F [τ/B],
and every variable not set by UP is in fact a “don’t care” variable for F [τ/B] and can
be set either way in all solutions. This gives us a 2|B|nO(1) algorithm for computing
#F as claimed.

In related work, another class of formulas for which counting is easy was con-
sidered by [29]. The class consists of “cluster formulas”, which are variable disjoint
union of so-called “hitting formulas”, where any two clauses of a hitting formula
“clash” in at least one literal. Again, given a backdoor B w.r.t. this class of formulas,
counting the number of solutions of the original formula can be done in 2|B|nO(1)

time. They also describe how to find such backdoors of bounded size (by relaxing to
deletion backdoors which are not necessarily minimal strong backdoor) in formulas
with bounded cluster width.

7 Conclusion

The presence of tractable structure in many real-world instances of combinatorial
problems plays a critical role in extending the reach of state-of-the-art constraint
solvers to these problems. This work explores such structure, focusing in particular on
the tradeoffs between static vs. dynamic properties exploited by the prevalent notions
of structure.

The complexity of finding backdoors is influenced significantly by the features
of the underlying sub-solver or tractable problem class. In particular, while the prob-
lem of identifying a strong Horn- or 2CNF-backdoor (a static class) is known to
be in NP and fixed parameter tractable, strong backdoor identification w.r.t. to Horn
and 2CNF becomes harder than NP (unless NP=coNP) as soon as the seemingly
small but dynamic feature of empty clause detection (present in all modern SAT
solvers) is incorporated. While such a feature increases the worst-case complexity
of finding backdoors, our experiments show that in practice it also has a clear posi-
tive impact: it reduces the size of the backdoors dramatically. For the class RHorn,
we prove that deletion backdoors can be exponentially larger than strong backdoors,
in contrast with the known results for 2CNF- and Horn-backdoors. Nonetheless, we
show experimentally that deletion RHorn-backdoors can be substantially smaller than
strong Horn-backdoors. We also demonstrate that strong backdoors w.r.t. UP, PL, and
UP+PL can be substantially smaller than strong Horn-backdoors and deletion RHorn-
backdoors, and that Satz-Rand is remarkably good at finding small strong backdoors
on a range of unsatisfiable problem domains.

Further, our experiments suggest that preprocessing does not have a consistent
effect on the strong backdoors size for unsatisfiable formulas and can result in both
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larger and smaller backdoors. On the other hand, preprocessing does not seem to
affect in any significant way the backdoor size in satisfiable instances. In the context
of strong backdoors w.r.t satisfiable instances and model counting, we also consider
which sub-solvers lead to strong backdoors that also act as backdoors for the model
counting problem. In particular, while PL cannot help with identifying backdoors for
model counting, small strong UP-backdoors allow for efficiently counting solutions.
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Appendix: CNF Encoding of the Pure Nash Equilibria Problem

For completeness, we describe the Pure Nash Equilibria (PNE) setting in game theory
and a translation of instances of this problem to CNF formulas. Consider an n-player
game G in which the actions of a player and his payoff depend on the actions of a
subset of the other players. G is called a graphical game; when the payoffs of all
players depend on the actions of all other players, the graphical game degenerates
into a classical “full-interaction” game. We can represent the mutual interactions be-
tween the players in G as edges in an undirected graph G whose nodes correspond to
the players. Specifically, the payoff of a player p is a function of his action and the ac-
tions of all his neighbors Nbr(p) in G. This payoff function defines p’s best-response
strategy, which is a mapping from the actions of the players in Nbr(p) to an action for
p that maximizes his own payoff. For simplicity, one often assumes that p always has
a unique best-response action given the actions of his neighbors, and thus talk of the
best-response function. Although we make this assumption in the instances chosen
for our experiments, the CNF translation discussed below applies also to the general
case where a player can have several best-response actions in any given setting.

We will assume that each player has a finite set of actions and a payoff function
that assigns a real number to every selection of actions by him and his neighbors.
For the simplified case of binary games, where each player has exactly two action
choices, the CNF encoding discussed below can be naturally simplified so that there
is only one Boolean variable per player, the two values of which denote the two pos-
sible actions of the player. Our experiments in this work involve only binary games,
and hence we use this simplified encoding for the experiments. For completeness,
however, we discuss the general encoding here, allowing each player to potentially
have a choice between several (but finitely many) possible actions.

In a pure Nash equilibrium, each player chooses an action and has no incentive
to unilaterally deviate and change his action, given the actions chosen by the other
players remain fixed (i.e., each player has chosen a best response action to the choices
of his neighbors). We encode the problem of deciding whether G has a PNE as a CNF
formula F that is satisfiable if and only if G has a PNE.

For every player p in G and every possible action a of p, there is a Boolean
variable xa

p in F encoding the choice of action a for p. We add a constraint stating
that exactly one of all possible actions of p must be taken.3 Further, let the neighbors
of p be (q1,q2, . . . ,qk), in some arbitrary but fixed order. As discussed above, the
payoffs in G determine a set of best-response actions BRp(a1,a2, . . . ,ak) for p when
the action of player qi is ai, 1 ≤ i ≤ k. Therefore, F must encode the fact that when

3 We could, in principle, relax this constraint and require that at least one of the actions must be chosen.
This would still maintain the requirement that F is satisfiable if and only if G has a PNE. However,
choosing exactly one action for each player is more natural.
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literals xaiqi are True for all 1≤ i≤ k, then literals xb
p are False for all non-best-response

actions of p, i.e., for all b ∈ actions(p)\BRp(a1,a2, . . . ,ak).
Overall, these constraints can be summarized as the following set of constraints

in F for each player p:
∨

a∈actions(p)

xa
p (1)

¬xa
p ∨¬xa′

p ∀a,a′ ∈ actions(p);a 6= a′

(2)




∧

qi∈Nbr(p)

xai
qi



 → ¬xb
p ∀ai ∈ actions(qi),b ∈ actions(a)\BRp(a1,a2, . . .)

(3)

The last of these constraints is not a clause but can be easily translated into the stan-
dard clausal form:





∨

qi∈Nbr(p)

¬xai
qi



 ∨ ¬xb
p ∀ai ∈ actions(qi),b ∈ actions(a)\BRp(a1,a2, . . .)

(4)

This finishes the translation of the PNE problem on the game G into a CNF formula
F .


