
BOAI: Fast Alternating Decision Tree
Induction based on Bottom-up Evaluation?

Bishan Yang, Tengjiao Wang, Dongqing Yang, and Lei Chang

Key Laboratory of High Confidence Software Technologies (Peking University),
Ministry of Education, CHINA

School of Electronics Engineering and Computer Science,
Peking University, Beijing, 100871, CHINA

{bishan yang, tjwang, dqyang, changlei}@pku.edu.cn

Abstract. Alternating Decision Tree (ADTree) is a successful classifi-
cation model based on boosting and has a wide range of applications.
The existing ADTree induction algorithms apply a “top-down” strat-
egy to evaluate the best split at each boosting iteration, which is very
time-consuming and thus is unsuitable for modeling on large data sets.
This paper proposes a fast ADTree induction algorithm (BOAI) based
on “bottom-up” evaluation, which offers high performance on massive
data without sacrificing classification accuracy. BOAI uses a pre-sorting
technique and dynamically evaluates splits by a bottom-up approach
based on VW-group. With these techniques, huge redundancy in sort-
ing and computation can be eliminated in the tree induction procedure.
Experimental results on both real and synthetic data sets show that
BOAI outperforms the best existing ADTree induction algorithm by a
significant margin. In the real case study, BOAI also provides better
performance than TreeNet and Random Forests, which are considered as
efficient classification models.

Key words: classification, decision tree, ADTree, BOAI

1 Introduction

Boosting procedure has been proved to be very helpful to improve the accuracy
of decision tree classifiers. AdaBoost, introduced by Freund and Schapire [1],
is the most commonly used boosting procedure. It has been successfully used
to combine with decision trees like C4.5 [2], and produces very good classifiers.
However, the output classifiers are often large, complex and difficult to inter-
pret. Freund and Mason solved this problem by proposing Alternating Decision
Tree (ADTree) [3] and an induction algorithm based on AdaBoost. ADTrees can
produce highly accurate classifiers while generating trees in small size which are
easy to interpret. They can also provide a measure of classification which helps
to rate prediction confidence. Based on these attractive features, ADTrees have
? This work is supported by the National ’863’ High-Tech Program of China under

grant No. 2007AA01Z191, and the NSFC Grants 60473051, 60642004



2 BOAI

a wide range of applications, such as customer churn prediction, fraud detection
and disease trait modeling [4, 5].

Whereas ADTree is a very popular model in classification, it faces a problem
of training efficiency on huge volumes of data. The original induction algorithm
proposed by Freund and Mason performs split evaluation with a top-down strat-
egy at each boosting round. The algorithm is very expensive to apply to large
knowledge discovery tasks. Several techniques have been developed to tackle the
efficiency problem. However, there still be a large space to improve.

For very large data sets, several techniques have been developed, mainly
based on traditional decision trees. SLIQ [6] and Sprint [7] use new data struc-
tures and processing methods to scale decision trees to large data sets. PUBLIC
[8] integrates the MDL “pruning” phase into the tree “building” phase. RainFor-
est [9] uses AVC-groups which are sufficient for split evaluation to speed up tree
construction. BOAT [10] provides techniques to build trees based on a subset
of data and results in faster tree construction. All these algorithms are based
on traditional decision trees, which compute the split criteria only based on the
information of the current node, and thus can not directly apply to ADTree.

With regards to the scalability of ADTree, several optimizing methods are
introduced in [11]: Zpure cutoff, merging and three heuristic mechanisms. The
former two methods gain little efficiency until reaching 50 boosting iterations.
Although the heuristic methods reduce the induction complexity obviously, they
generate trees that are different from the original trees. In [12], ADTree is up-
graded to first order logic and three efficiency improvements are proposed. The
caching optimization, which stores the success (failure) of each rule for each rel-
evant instance in a bit-matrix, was shown to be most effective. Nevertheless, the
additional memory consumption grows fast in the number of boosting rounds.

To address the efficiency challenges, we introduce a novel ADTree induction
algorithm called BOAI1 that gains great efficiency in handling large data sets
without sacrificing classification accuracy. BOAI uses a pre-sorting technique
and a bottom-up evaluation approach based on VW-group to avoid much re-
dundancy of sorting and computation in the tree building process. To validate
the efficiency of BOAI on large data sets, we conduct comprehensive experiments
on both synthetic and real data sets. We also apply BOAI to a real data min-
ing application to evaluate its performance. The results are very encouraging as
BOAI offers significant performance improvements.

The remainder of this paper is organized as follows. Section 2 describes
ADTree and its Induction algorithm. Section 3 introduces the new techniques
used in BOAI and then describes the algorithm and implementation issues. Sec-
tion 4 presents the experimental results on both real and synthetic data. Finally,
section 5 concludes the paper.

1 The acronym BOAI stands for BOttom-up evaluation for ADTree Induction



BOAI 3

2 Preliminaries

2.1 Alternating Decision Tree

Unlike traditional decision trees, Alternating Decision Tree (ADTree) contains
two kinds of nodes: decision nodes and prediction nodes. Each decision node
involves a splitting test while each prediction node involves a real-valued number
(Fig. 1 shows an example). A decision node splits sets of training instances into
two parts with each part belonging to a prediction node. An instance defines a set
of paths along the tree from the root to some of the leaves. The classification of
an instance is the sign of the sum of the prediction values along the paths defined
by this instance and the sum can be interpreted as a measure of confidence. For
example, the classification of the instance (age, income) = (35, 1300) is sign(0.5-
0.5+0.4+0.3) = sign(0.7) = +1. The prediction nodes in the instance’s defined
paths are shadowed in the figure.

+0.5

Age <= 40 Income <= 1000

-0.5 +0.2 -0.6 +0.3

Income <= 1200 Age <= 50

-0.2 +0.4 +0.1 -0.1

Y N

Y N Y N

Y N

:Prediction node

:Decision node

Fig. 1. an example of ADTree

2.2 ADTree Learning with AdaBoost

Freund and Mason presented the ADTree induction algorithm with the appli-
cation of AdaBoost [3]. There are two sets maintained in the algorithm, a set
of preconditions and a set of rules, denoted as P and R respectively. C denotes
the set of base conditions. The algorithm is given as Algorithm 1. The induc-
tion procedure can be divided into two phases at each boosting iteration: Split
Evaluation and Node Partition. In the evaluation phase (line 2-5), the algorithm
evaluates all the splits basically by a top-down strategy. It traverses the tree by
a depth-first search. For each prediction node, it scans the instances at the node
to compute the total weight of the instances that satisfy each possible condi-
tion. Before the computation, the instances need to be sorted on each numeric
attribute to obtain the possible splits of the attribute. The best split is found by
minimizing Z-value of the function that measures the weighted error of the rules
(Equation 1). In the partition phase (line 6-8), a new rule is added to set R and
two prediction values are calculated. A decision node is created according to the



4 BOAI

rule and two prediction nodes are created associated with the prediction values.
Applying the rule, the instances are split into two parts with each part propa-
gated to one of the prediction nodes. After each boosting round, the weights of
the instances belonging to these two prediction nodes are updated, decreasing for
correctly classified instances and increasing for incorrectly classified instances.
As described above, the complexity of the algorithm mainly lies in the evaluation
phase because of the huge sorting and computational cost. They will result in
low-efficiency when training on massive data sets.

Algorithm 1 ADTree Learning with an application of AdaBoost
Input: S = {(x1,y1), . . . , (xm,ym)} | xi ∈ Rd , yi ∈ {-1,+1}}
Initialize. Set each instance’s weight wi,0 = 1.0, 1 ≤ i ≤ m. Set the rule set R1 =

{True}. Calculate the prediction value for the root node as a = 1
2

ln
W+(c)

W−(c)
, c = True.

W+(c) (resp. W−(c)) is the total weight of the positive (resp. negative) instances
that satisfying condition c. Adjust the weights of the instances at the root node as
wi,1 = wi,0e

−ayi .

1: for t = 1 to T do
2: for all c1 such that c1 ∈ Pt do
3: for all c2 such that c2 ∈ C do
4: Calculate

Zt(c1, c2) = 2(
√

W+(c1 ∧ c2)W−(c1 ∧ c2)+√
W+(c1 ∧ ¬c2)W−(c1 ∧ ¬c2)) + W+(¬c1)

(1)

5: Select c1, c2 which minimize Z(c1, c2) and set Rt+1 = Rt ∪ {rt : precondition c1,

condition c2, two prediction values a = 1
2

ln
W+(c1∧c2)+1

W−(c1∧c2)+1
, b = 1

2
ln

W+(c1∧¬c2)+1

W−(c1∧¬c2)+1

}
6: Pt+1 = Pt ∪ {c1 ∧ c2, c1 ∧ ¬c2}
7: Update weights: wi,t+1 = wi,te

−rt(xi)yi , rt(xi) is the prediction value that the
rule rt associates with the instance xi.

3 BOAI - Bottom-up Evaluation for ADTree Induction

In this section, we present BOAI, an efficient ADTree induction algorithm. Un-
like the original top-down mechanism, BOAI performs split evaluation using a
bottom-up approach. It gains significant efficiency of tree induction while main-
taining the classification accuracy. In addition, it can easily combine with the
optimizations in [11].

To bring down the large cost in the evaluation phase, BOAI uses a pre-
sorting technique and applies a bottom-up evaluation based on VW-group for
split evaluation. The pre-sorting technique aims at reducing the sorting cost to
linear time. The bottom-up evaluation approach evaluates splits from the leaf
nodes to the root node. On each prediction node, the evaluation is performed on



BOAI 5

a VW-group, which stores sufficient statistics for split evaluation. The VW-group
can be built up in linear time by a bottom-up merging process. The combination
of these techniques enables BOAI to induce ADTree efficiently on large data sets.
Following are details about these techniques.

3.1 Pre-Sorting technique

BOAI uses a special sorting technique as a preprocessing step. It works as follows.
At the beginning of the algorithm, the values of each numeric column in the
input database are sorted separately. Suppose for attribute A, the sorting space
of its distinct values is x0, x1, . . . , xm−1. These values can be mapped into an
integer value field 0, 1, . . . , m− 1, which reflects the offset address of each value
in the sorted space. Then the original values in the data are replaced with their
mapped values in the value field. As the replaced values preserve the original
value distribution on the attribute, it will not affect the following evaluation on
the attribute. The benefit of this method is that we can easily use the actual
attribute values to index into a sorted array. The detailed analysis is given in
Sect. 3.3.

3.2 Data Structure

Note that for a prediction node p, the possible splits of an attribute A can be
evaluated separately from other attributes. Besides, the total weight of the in-
stances that satisfy each condition on each prediction node is needed to compute
for split evaluation. Let F (p) denote the instances projected onto node p. Sim-
ilar to the AVC-set structure in [9], the VW-set (The acronym VW stands for
Attribute-Value, Class-Weight) of a predictor attribute A at node p is defined to
preserve the weight distribution of each class for each distinct value of A in F (p).
Each element in a VW-set contains an attribute value field and a class-weight
field (operations on the class-weight are performed on weights of two classes (pos-
itive and negative) respectively). The class-weight field can be viewed as caching
W+(A = v) and W−(A = v) for each distinct attribute value v of A. Suppose in
F (p), v0, ..., vm−1 are the distinct values of A. If A is a categorical attribute, the
split test is of form A = vi, where 0 ≤ i ≤ m − 1. If A is a numeric attribute,
the split test is of form A ≤ (vi + vi+1)/2, where 0 ≤ i ≤ m− 2, and v0, ..., vm−1

are in sort order. For each possible condition c on A, W+(c) and W−(c) can be
easily calculated by scanning the VW-set of A at p. The VW-group of node p is
defined to be the set of all VW-sets at node p, and p can be evaluated based on
its VW-group, whose result is the same as that of being evaluated via scanning
F (p). The size of the VW-set of an attribute A at node p is determined by the
number of distinct values of A in F (p) and is not proportional to the size of
F (p).

3.3 Bottom-up Evaluation

The great complexity in the split evaluation is due to the exhaustive explor-
ing on all possible splits at each boosting round. Since the weights of instances



6 BOAI

change after each round, we can not simply ignore evaluating any possible split
in the following round. A fundamental observation is that there are recurrences
of instances at the prediction nodes. When evaluating the prediction nodes re-
cursively from the root to the leaves, the instances in fact have a great deal
of computing and sorting overlap. To eliminate this crucial redundancy, we pro-
pose a bottom-up evaluation approach. The bottom-up approach evaluates splits
from the leaf nodes to the root node based on the VW-group of each node. It
uses the already computed VW-groups of the offspring nodes to construct the
VW-groups of the ancestor nodes. The approach of VW-group construction is
described as follows.

For a leaf prediction node p, it scans the instances at p to construct the
VW-set of each attribute. For a categorical attribute A, a hash table is created
to store the distinct values of A. As the attribute values in the VW-set of A
are not required to be sorted, the VW-set can be constructed by collecting the
distinct values of A from the hash table and computing the weight distributions
on these values. For a numeric attribute A, the attribute values on A need to
be sorted. With the pre-sorting technique, the sort takes linear time in most
cases. Suppose there are N instances at node p and the mapped value field on
A is range from 0 to M − 1, where M is the number of distinct values of A. It
takes one pass over N instances mapping their weights into the value field of
A. Then the attribute values together with their corresponding weights will be
compressed into the VW-set of A. The total time for getting sorted attribute
values in the VW-set is O(N + M). For most cases, M is smaller than N , in
which case the running time is O(N). If M is much larger than N , the algorithm
switches to quick sort.

For an internal prediction node p, the VW-group is constructed through a
merging process, with the VW-set of each attribute generated at a time. Each
generation only require time O(m) where m is the total number of elements in
the two merging VW-sets. Suppose Z is the VW-set of attribute A at node p
and X, Y are the VW-sets of A at node p1 and p2 which are two prediction
nodes under a decision node of p. If A is a categorical attribute, as the attribute
values in X and Y are not sorted, Z can be generated by performing hash join
on the attribute values in one pass over X and Y . If A is a numeric attribute, we
can perform the merge procedure similar to merge sort to generate Z, and the
attribute values in Z are kept in order after merging. Fig. 2 shows this process
pictorially.

Since the VW-group of each prediction node can be constructed by the
bottom-up approach, and each prediction node can be correctly evaluated based
on its VW-group, the global minimum Z-value found by evaluating all the pre-
diction nodes is correct. Because the best split found at each boosting round is
correct, the tree induced by the bottom-up evaluation approach is the same as
that induced by the top-down evaluation approach.

The reduced cost by using the bottom-up evaluation is remarkable. In the
top-down evaluation, instances are sorted on each numeric attribute on every
prediction node, with each sort taking at least O(n log n) time (n is the number



BOAI 7

of the considered instances) in the average case. While in bottom-up evalua-
tion, we focus on gaining orders of distinct attribute values whose cost is much
inexpensive. Additionally, the spectacular redundancy in computing weight dis-
tributions is eliminated since the statistics are cached in VW-group to prevent
being recomputed. Moreover, the bottom-up technique will not affect the accu-
racy of the original algorithm.

Value PosW NegW

A 0.0 1.6

B 1.2 0.8
C 1.2 1.6

VW-set of Dept. VW-set of Income
Value PosW NegW

0 0.0 2.4

1 1.2 0.0
2 1.2 1.6

Value PosW NegW

B 0.0 1.6
C 1.2 0.8

VW-set of Dept.
VW-set of Income

Value PosW NegW
1 0.0 0.8

2 1.2 0.8
3 0.0 0.8

Value PosW NegW

A 0.0 1.6
B 1.2 2.4

C 2.4 2.4

VW-set of Dept. VW-set of Income

Value PosW NegW

0 0.0 2.4
1 1.2 0.8

3 0.0 0.8
2 2.4 2.4

Y N

Fig. 2. Construct VW-set via merging: Example

3.4 Algorithm

In this section, we present BOAI algorithm. Note that the partition phase con-
tributes a little to the complexity of tree induction. BOAI shares it with Al-
gorithm 1. We just provide illustration about the evaluation phase here. Let
p-VW-group denote the VW-group at prediction node p, and p-VW-set denote
the VW-set contained in p-VW-group. The algorithm is given in Algorithm 2.
The procedure is invoked at every boosting step, with the root node r as an
input parameter. Since ADTree can have more than one decision node below
a prediction node, the instances at the prediction node can be partitioned by
different split criteria. We only consider partitions of one decision node for per-
forming merging (we always choose the first decision node in BOAI). For other
decision nodes, we view each of their prediction children as the root node of a
subtree. The evaluating process will start from these root nodes individually. In
this way, no redundant merging of VW-groups is performed. Note that when the
combination is finished, the two VW-groups being merged can be deleted.

The optimizing techniques introduced in [11] can be easily integrated in BOAI
and show better performance improvements. The Zpure calculation can be sped
up by merging the sum of the weights of the positive (negative) instances through
the merging process of the bottom-up approach. The heuristic mechanisms can
be performed by only evaluating the tree portion included in the heuristic path.



8 BOAI

Algorithm 2 EvaluateSplits(Prediction Node p)
1: if p is a leaf then
2: generate p-VW-group via scanning F (p)
3: else
4: /*p1 and p2 are two children of p’s first decision node*/

p1-VW-group = EvaluateSplits(p1);
5: p2-VW-group = EvaluateSplits(p2);
6: p-VW-group ⇐ Merge p1-VW-group and p2-VW-group
7: for each attribute A do
8: traverse p-VW-set of attribute A /* the value field stores v0, ..., vm−1 */
9: if A is a categorical attribute then

10: for i = 0 to m− 1 do
11: compute Z-value for test (A = vi) using class-weight associated with vi

12: if A is a numeric attribute then
13: for i = 0 to m− 2 do
14: cumulate the sum of the class-weights associated with the former i values

and vi /* the values are in sorted order */
15: compute Z-value for test (A ≤ (vi + vi+1)/2) using the cumulated sum
16: for each node s such that s is the child of p’s other decision nodes do
17: EvaluateSplits(s);
18: return p-VW-group;

4 Experiments

In this section, we perform comprehensive experiments on both synthetic and real
data sets to study the performance of BOAI. In the first experiment, we compare
efficiency of BOAI and ADT on synthetic data sets up to 500,000 instances. In
the next, we use the real data sets contained 290,000 records with 92 variables
to evaluate the efficiency of BOAI. At last, we apply BOAI to churn prediction
application, comparing to ADT, Random Forests [13] and TreeNet [14], which
are considered as accurate and efficient classification models. (TreeNet won the
Duke/Teradata Churn modeling competition in 2003 and won the KDD2000
data mining competition.)

BOAI and ADT are written in C++. The software of TreeNet and Random
forests are downloaded from the web site (http://www.salford-systems.com/churn
.html) of Salford Systems. All our experiments were performed on AMD 3200+
CPU running Windows XP with 768MB main memory.

4.1 Synthetic Databases

In order to study the efficiency of BOAI, we used the well-known synthetic data
generation system developed by the IBM Quest data mining group [15], which
is often used to study the performance of decision tree construction [7–10]. Each
record in this database consists of nine attributes. Among the attributes, six are
numeric and the others are categorical. Ten classification functions are used to
generate different data distributions. Function 1 involves two predictor attributes



BOAI 9

with respect to the class label. Function 7 is linear depending on four predictor
attributes. We only show results of these two functions due to space limitation,
the results are similar for other functions.

First, we examined the modeling time of BOAI and ADT as the number of the
instances increases from 100,000 to 500,000. The number of boosting iterations is
set to 10. We consider the Zpure cut-off, merging and heuristic search techniques
[11] in the comparison. In the following experiments, ADT and BOAI are default
with Zpure and merging options. Fig. 3 and Fig. 4 show the results of the two
algorithms for function 1 and 7. BOAI is faster by a factor of six. Fig. 5 and
Fig. 6 show the results of employing heuristic options (the produced models
are different from those of the original algorithm). BOAI also makes significant
gains for each heuristic option. We further investigated the cost of sorting and
computation in the split evaluation. Fig. 7 shows that the sorting cost in ADT
rises eight times faster than BOAI in function 1. Fig. 8 shows that BOAI is about
twenty-two times faster than ADT in comparison of Z-value computation cost
in function 1. As the above two cost are dominant cost during tree induction,
they can explain why BOAI outperforms ADT by a large margin.

We also examined the effect of boosting iterations on BOAI. We changed
the number of boosting iterations from 10 to 50 while fixing the number of the
instances at 200,000. Fig. 9 and Fig. 10 show the results for Function 1 and
Function 7. The results are both encouraging as BOAI grows much smoother
than ADT with the increasing number of boosting iterations.

Fig. 11 and Fig. 12 show the effect of adding extra attributes with random
values to the instances in the input database. The number of the instances
are kept at 200,000 and the number of boosting iterations is set at 10. The
additional attributes need to be evaluated but they will never be chosen as the
split attribute. Thus the extra attributes increase tree induction time while the
final classifier keeps the same. BOAI exhibits much more steady performance
with the increasing number of attributes.

4.2 Real Data sets

In order to study the performance of BOAI in real cases, we experimented with
a real data set obtained from China Mobile Communication Company. The data
refers to seven months of customer usage, from January 2005 through July 2005.
The data set consists of 290,000 subscribers covering 92 variables, including
customer demographic information, billing data, call detail data, service usage
data and company interaction data. The churn indicator attribute is the class
attribute. We first study the training time of BOAI on the real data sets. Then
we apply BOAI to churn prediction, comparing its performance to ADT, TreeNet
and Random Forests. To guarantee the prediction accuracy, we don’t consider
heuristic techniques in the comparison.

We first compare the training time of BOAI and ADT. Fig. 13 shows the
overall running time of the algorithms as the number of the input instances
increases from 20,083 to 219,644 and the number of boosting iterations sets at
10. BOAI is about fourteen times faster than ADT. Then we change the number



10 BOAI

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

0.0 1.0 2.0 3.0 4.0 5.0

T
im

e(
se

c)

Number of Instances(×105)

Original Search - F1

ADT
BOAI

Fig. 3. Overall Time:F1

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

0.0 1.0 2.0 3.0 4.0 5.0

T
im

e(
se

c)

Number of Instances(×105)

Original Search - F7

ADT
BOAI

Fig. 4. Overall Time:F7

 0

 50

 100

 150

 200

 250

 300

0.0 1.0 2.0 3.0 4.0 5.0

T
im

e(
se

c)

Number of Instances(×105)

Heuristic Search: 1-Zpure,2-Heaviest,3-Random - F1

ADT1
ADT2
ADT3

BOAI1
BOAI2
BOAI3

Fig. 5. Overall Time:F1

 0

 50

 100

 150

 200

0.0 1.0 2.0 3.0 4.0 5.0

T
im

e(
se

c)

Number of Instances(×105)

Heuristic Search: 1-Zpure,2-Heaviest,3-Random - F7

ADT1
ADT2
ADT3

BOAI1
BOAI2
BOAI3

Fig. 6. Overall Time:F7

 0

 50

 100

 150

 200

 250

 300

 350

0.0 1.0 2.0 3.0 4.0 5.0

T
im

e(
se

c)

Number of Instances(×105)

Sorting Comparison - F1

ADT
BOAI

Fig. 7. Sorting Cost

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.0 1.0 2.0 3.0 4.0 5.0

T
im

e(
se

c)

Number of Instances(×105)

Computing Cost Comparison - F1

ADT
BOAI

Fig. 8. Computing Cost

 0

 200

 400

 600

 800

 1000

 1200

0.0 10.0 20.0 30.0 40.0 50.0

T
im

e(
se

c)

Boosting iterations

Changing Boosting Iterations - F1

ADT
BOAI

Fig. 9. Changing Itera-
tions:F1

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

0.0 10.0 20.0 30.0 40.0 50.0

T
im

e(
se

c)

Boosting iterations

Changing Boosting Iterations - F7

ADT
BOAI

Fig. 10. Changing Itera-
tions:F7

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

0.0 2.0 4.0 6.0 8.0 10.0

T
im

e(
se

c)

Additional Number of Attributes

Extra Attributes - F1

ADT
BOAI

Fig. 11. Adding At-
tributes:F1

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

0.0 2.0 4.0 6.0 8.0 10.0

T
im

e(
se

c)

Additional Number of Attributes

Extra Attributes - F7

ADT
BOAI

Fig. 12. Adding At-
tributes:F7

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0.0 5.0 10.0 15.0 20.0

T
im

e(
se

c)

Number of Instances(×104)

Modeling Time Comparison

ADT
BOAI

Fig. 13. Overall Time

 0

 200

 400

 600

 800

 1000

 1200

0.0 10.0 20.0 30.0 40.0 50.0

T
im

e(
se

c)

Boosting iterations

 Changing Boosting Iterations

ADT
BOAI

Fig. 14. Changing Itera-
tions



BOAI 11

of boosting iterations from 10 to 50 with 20,083 instances. Fig. 14 shows that
BOAI offers more steady performance with the changing number of iterations.
For memory usage, the largest size of the VW-group used in induction is only
10MB for 219,644 instances (with 92 attributes), which is also a small size to
easily hold in memory.

In the next, we apply BOAI to churn prediction to study its performance. we
sampled 20,083 examples from the original data set as a calibration set which has
2.1% churn rate, and 5,062 examples as a validation set which has 1.8% churn
rate. Since the data is highly skewed, we take a re-balancing strategy to tackle
the imbalanced problem. As a pre-processing step, we multiply the weight of each
instance in the minority class by Wmaj/Wmin, where Wmaj (resp. Wmin) is the
total weight of the majority (resp. minority) class instances. In this way, the total
weights of the majority and minority instances are balanced. Unlike sampling
[16], re-balancing weights has little information loss and does not introduce more
computing power on average.

Table 1. Performance comparison on churn analysis

Models F -measure G-mean W-accuracy Modeling Time (sec)

ADT (w/o re-balancing) 56.04 65.65 44.53 75.56
Random Forests 19.21 84.04 84.71 960.00
TreeNet 72.81 79.61 64.40 30.00
BOAI 50.62 90.81 85.84 7.625

We compare the predicted accuracy of BOAI, ADT (without re-balancing),
TreeNet and Random Forests, with measures of F -Measure, G-Mean and Weight-
ed Accuracy [17], which are commonly used to evaluate performance on skewed
class problem. The modeling time of these algorithms is also given. The results,
shown in Table 1, indicate that BOAI outperforms ADT, TreeNet and RF when
evaluated in terms of G-mean and Weighted-Accuracy. More importantly, BOAI
uses the least modeling time.

5 Conclusion

In this paper, we have developed a novel approach for ADTree induction, called
BOAI, to speed up ADTree construction on large training data sets. The key
insight is to eliminate the great redundancy of sorting and computation in the
tree induction by using a bottom-up evaluation approach based on VW-group.
In experiments on both synthetic and real databases, BOAI offers significant
performance improvements over the best existing algorithm while constructing
exactly the same ADTree. We also study the performance of BOAI for churn
prediction. With the re-balancing technique, BOAI offers good prediction accu-
racy while spends much less modeling time compared with ADT, TreeNet and



12 BOAI

Random Forests, which are reported as efficient classification models. Therefore,
BOAI is an attractive algorithm for modeling on large data sets. It has been
successfully used for real-life churn prediction in telecommunication.

Acknowledgments. We gratefully thank Prof. Jian Pei in Simon Fraser Uni-
versity for his insightful suggestions.

References

1. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1),
119–139 (1997)

2. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
3. Freund, Y., Mason, L.: The alternating decision tree learning algorithm. In: 16th

International Conference on Machine Learning, pp. 124–133 (1999)
4. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-

niques, Second Edition. Morgan Kaufmann (2005)
5. Liu, K.Y., Lin, J., Zhou, X., Wong, S.: Boosting Alternating Decision Trees Modeling

of Disease Trait Information. BMC Genetics, 6(1) (2005)
6. Mehta, M., Agrawal, R., Rissanen J.: SLIQ: A fast scalable classifier for data mining.

In: 5th International Conference on Extending Database Technology, pp. 18–32
(1996)

7. Shafer, J., Agrawal, R., Mehta, M.: SPRINT: A scalable parallel classifier for data
mining. In: 22nd International Conference on Very Large Databases, pp. 544–555
(1996)

8. Rastogi, R., Shim, K.: PUBLIC: A Decision Tree Classifier that Integrates Pruning
and Building. In: 24th International Conference on Very Large Database, pp. 315–
344 (1998)

9. Gehrke, J., Ramakrishnan, R., Ganti, V.: Rainforest: A framework for fast decision
tree construction of large data sets. In: 24th International Conference on Very Large
Database, pp. 127–162 (1998)

10. Gehrke, J., Ganti, V., Ramakrishnan, R., Loh, W.Y.: BOAT—optimistic decision
tree construction. In: ACM SIGMOD International Conference on Management of
Data, pp. 169–180 (1999)

11. Pfahringer, B.,Holmes, G., Kirkby, R.: Optimizing the Induction of Alternating
Decision Trees. In: 5th Pasific-Asia Conference on Knowledge Discovery and Data
Mining, pp. 477–487 (2001)

12. Vanassche, A., Krzywania, D., Vaneyghen, J., Struyf, J., Blockeel, H.: First or-
der alternating decision trees. In: 13th International Conference on Inductive Logic
Programming, pp. 116–125 (2003)

13. Breiman, L.: Random forests. Machine Learning Journal, 45, 5–32 (2001)
14. http://www.salford-systems.com/products-treenet.html
15. IBM Intelligent information systems, http://www.almaden.ibm.com/software/

quest/resources/
16. Maloof, M.: Learning when data sets are imbalanced and when costs are unequal

and unknown. In: ICML Workshop on Learning from Imbalanced Data Sets (2003)
17. Chen, C., Liaw, A., Breiman, L.: Using Random Forest to Learn Imbalanced Data.

Technical Report 666, Statistics Department, University of California at Berkeley
(2004)


