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Abstract

In this paper, we study the problems of opin-
ion expression extraction and expression-level
polarity and intensity classification. Tradi-
tional fine-grained opinion analysis systems
address these problems in isolation and thus
cannot capture interactions among the tex-
tual spans of opinion expressions and their
opinion-related properties. We present two
types of joint approaches that can account for
such interactions during 1) both learning and
inference or 2) only during inference. Exten-
sive experiments on a standard dataset demon-
strate that our approaches provide substantial
improvements over previously published re-
sults. By analyzing the results, we gain some
insight into the advantages of different joint
models.

1 Introduction

Automatic extraction of opinions from text has at-
tracted considerable attention in recent years. In
particular, significant research has focused on ex-
tracting detailed information for opinions at the fine-
grained level, e.g. identifying opinion expressions
within a sentence and predicting phrase-level po-
larity and intensity. The ability to extract fine-
grained opinion information is crucial in supporting
many opinion-mining applications such as opinion
summarization, opinion-oriented question answer-
ing and opinion retrieval.

In this paper, we focus on the problem of identi-
fying opinion expressions and classifying their at-
tributes. We consider as an opinion expression
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any subjective expression that explicitly or implic-
itly conveys emotions, sentiment, beliefs, opinions
(i.e. private states) (Wiebe et al., 2005), and con-
sider two key attributes — polarity and intensity —
for characterizing the opinions. Consider the sen-
tence in Figure 1, for example. The phrases “a bias
in favor of”” and “being severely criticized” are opin-
ion expressions containing positive sentiment with
medium intensity and negative sentiment with high
intensity, respectively.

Most existing approaches tackle the tasks of opin-
ion expression extraction and attribute classification
in isolation. The first task is typically formulated as
a sequence labeling problem, where the goal is to la-
bel the boundaries of text spans that correspond to
opinion expressions (Breck et al., 2007; Yang and
Cardie, 2012). The second task is usually treated as
a binary or multi-class classification problem (Wil-
son et al., 2005; Choi and Cardie, 2008; Yessenalina
and Cardie, 2011), where the goal is to assign a
class label to a text fragment (e.g. a phrase or a sen-
tence). Solutions to the two tasks can be applied in a
pipeline architecture to extract opinion expressions
and their attributes. However, pipeline systems suf-
fer from error propagation: opinion expression er-
rors propagate and lead to unrecoverable errors in
attribute classification.

Limited work has been done on the joint modeling
of opinion expression extraction and attribute clas-
sification. Choi and Cardie (2010) first proposed
a joint sequence labeling approach to extract opin-
ion expressions and label them with polarity and in-
tensity. Their approach treats both expression ex-
traction and attribute classification as token-level se-



He demonstrated 'a bias in favor of .4 the rebels despite being severely criticized j;g/,.

Figure 1: An example sentence annotated with opinion expressions and their polarity and intensity. We use colored
boxes to mark the textual spans of opinion expressions where green (red) denotes positive (negative) polarity, and use

subscripts to denote intensity.

quence labeling tasks, and thus cannot model the
label distribution over expressions even though the
annotations are given at the expression level. Jo-
hansson and Moschitti (2011) considered a pipeline
of opinion extraction followed by polarity classifica-
tion and propose re-ranking its k-best outputs using
global features. One key issue, however, is that the
approach enumerates the k-best output in a pipeline
manner and thus they do not necessarily correspond
to the k-best global decisions. Moreover, it is not
clear how to set k for each attribute especially as the
number of attributes grows.

In contrast to existing approaches, we formu-
late opinion expression extraction as a segmenta-
tion problem and attribute classification as segment-
level attribute labeling. To capture their interac-
tions, we present two types of joint approaches: (1)
joint learning approaches, which combine opinion
segment detection and attribute labeling into a sin-
gle probabilistic model, and estimate parameters for
this joint model; and (2) joint inference approaches,
which build separate models for opinion segment
detection and attribute labeling at training time, and
jointly apply these (via a single objective function)
only at test time to identify the best “combined” de-
cision of the two models.

To investigate the effectiveness of our approaches,
we conducted extensive experiments on a standard
corpus for fine-grained opinion analysis (the MPQA
corpus (Wiebe et al., 2005)). We found that
all of our proposed approaches provide substan-
tial improvements over the previously published re-
sults. We also compared our approaches to a strong
pipeline baseline and observed that joint learning re-
sults in a significant boost in precision while joint
inference, with an appropriate objective, can signifi-
cantly boost both precision and recall and obtain the
best overall performance. Error analysis provides
additional understanding of the differences between
the joint learning and joint inference approaches,
and suggests that joint inference can be more effec-
tive and more efficient for the task in practice.

2 Related Work

Significant research effort has been invested in
the task of fine-grained opinion analysis in recent
years (Wiebe et al., 2005; Wilson et al., 2009). Wil-
son et al. (2005) first motivated and studied phrase-
level polarity classification on an open-domain cor-
pus. Choi and Cardie (2008) developed inference
rules to capture compositional effects at the lexical
level on phrase-level polarity classification. Yesse-
nalina and Cardie (2011) and Socher et al. (2013)
learn continuous-valued phrase representations by
combining the representations of words within an
opinion expression and using them as features for
classifying polarity and intensity. All of these ap-
proaches assume the opinion expressions are avail-
able before training the classifiers. However, in
real-world settings, the spans of opinion expres-
sions within the sentence are not available. In fact,
Choi and Cardie (2008) demonstrated that the per-
formance of expression-level polarity classification
degrades as more surrounding (but irrelevant) con-
text is considered. This motivates the additional task
of identifying the spans of opinion expressions.

Opinion expression extraction has been success-
fully tackled via sequence tagging methods. Breck
et al. (2007) applied conditional random fields to as-
sign each token a label indicating whether it belongs
to an opinion expression or not. Yang and Cardie
(2012) employed a segment-level sequence labeler
based on semi-CRFs with rich phrase-level syntac-
tic features. In this work, we also utilize semi-CRFs
to model opinion expression extraction.

There has been limited work on the joint mod-
eling of opinion expression extraction and attribute
classification. Choi and Cardie (2010) first devel-
oped a joint sequence labeler that jointly tags opin-
ions, polarity and intensity by training CRFs with
hierarchical features (Zhao et al., 2008). One ma-
jor drawback of their approach is that it models both
opinion extraction and attribute labeling as token-
level sequence labeling tasks, and thus cannot cap-



ture their interactions at the expression level. Jo-
hansson and Moschitti (2011) and Johansson and
Moschitti (2013) proposed a joint approach to opin-
ion expression extraction and polarity classification
by re-ranking the k-best outputs at each stage using
global features. One major issue with their approach
is that the k-best candidates were obtained without
global reasoning about the relative uncertainty in the
individual stages. As the number of considered at-
tributes grows, it also becomes harder to decide how
to set k for each attribute classifier.

Compared to the existing approaches, our joint
models have the advantage of modeling opinion ex-
pression extraction and attribute classification at the
segment level, and more importantly, they com-
bine the segmentation and classification components
probabilistically.

Our work follows a long line of joint modeling re-
search that has demonstrated great success for vari-
ous NLP tasks (Roth and Yih, 2004; Punyakanok et
al., 2004; Finkel and Manning, 2010; Rush et al.,
2010; Choi et al., 2006; Yang and Cardie, 2013).
Methods tend to fall into one of two joint model-
ing frameworks: the first trains a single joint model
that estimates the parameters of different tasks si-
multaneously; the other trains independent models
for different tasks and combines them only during
inference. In this work, we explore both types of
joint models.

3 Approach

In this section, we present our approaches for joint
opinion expression extraction and attribute classifi-
cation. Specifically, given a sentence, our goal is
to identify the spans of opinion expressions, and
simultaneously assign their polarity and intensity.
Training data consists of a collection of sentences
with manually annotated opinion expression spans,
each associated with a polarity label that takes val-
ues from {positive, negative, neutral}, and an inten-
sity label, taking values from {high, medium, low}.

In the following, we first describe how we model
opinion expression extraction as a segment-level se-
quence labeling problem and model attribute predic-
tion as a classification problem. Then we propose
our approaches to joint modeling of opinion seg-
mentation and attribute classification.

3.1 Opinion Expression Extraction

The problem of opinion expression extraction as-
sumes tokenized sentences as input and outputs
the spans of the opinion expressions in each sen-
tence. Previous work has tackled this problem us-
ing token-based sequence labeling methods such as
CRFs (e.g. Breck et al. (2007), Yang and Cardie
(2012)). However, semi-Markov CRFs (Sarawagi
and Cohen, 2004) (henceforth semi-CRF) have been
shown more appropriate for the task than CRFs since
they allow contiguous spans in the input sequence
(e.g. a noun phrase) to be treated as a group rather
than as distinct tokens. Thus, they can easily capture
segment-level information like syntactic constituent
structure (Yang and Cardie, 2012). Therefore we
adopt the semi-CRF model for opinion expression
extraction here.

Given a sentence X, denote an opinion seg-

mentation as ys = ((so,bo), ..., (Sk, br)), where
the sgp.x are consecutive segments that form a
segmentation of x; each segment s; = (t;,u;)

consists of the positions of the start token ¢; and
an end token wu;; and each s; is associated with
a binary variable b; € {I,O}, which indicates
whether it is an opinion expression (/) or not
(O). Take the sentence in Figure 1, for exam-
ple. The corresponding opinion segmentation is
vs = (((0,0),0), ((1,1),0),((2,6), 1), ((7,8),0)
,((9,9),0),((10,12),1),((13,13),0)), where
each segment corresponds to an opinion expression
or to a phrase unit that does not express any opinion.

Using a semi-Markov CRF, we model the condi-
tional distribution over all possible opinion segmen-
tations given the input x:

exp{Y 0 f(yss vs 1, %)}

S yrey exp{PH 0 f(yh vl %))
(1)

where 6 denotes the model parameters, ys, = (s;, b;)
and f denotes a feature function that encodes the po-
tentials of the boundaries for opinion segments and
the potentials of transitions between two consecutive
labeled segments.

Note that the probability is normalized over all
possible opinion segmentations. To reduce the train-
ing complexity, we adopted the method described
in Yang and Cardie (2012), which only normalizes

P(ys|x) =




over segment candidates that are plausible accord-
ing to the parsing structure of the sentence. Figure 2
shows some candidate segmentations generated for
an example sentence. Such a technique results in a
large reduction in training time and was shown to be
effective for identifying opinion expressions.

The standard training objective of a semi-CREF, is
to minimize the log loss

N
= in— (1) |5 (0)
L(0) = arg min glogP(ys xD) (@

It penalizes any predicted opinion expression whose
boundaries do not exactly align with the boundaries
of the correct opinion expressions using 0-1 loss.
Unfortunately, exact boundary matching is often not
used as an evaluation metric for opinion expres-
sion extraction since it is hard for human annota-
tors to agree on the exact boundaries of opinion ex-
pressions.! Most previous work used proportional
matching (Johansson and Moschitti, 2013) as it takes
into account the overlapping proportion of the pre-
dicted and the correct opinion expressions to com-
pute precision and recall. To incorporate this eval-
uation metric into training, we use softmax-margin
(Gimpel and Smith, 2010) that replace P(y{"[x(?))
in (2) with Pwst(yéi) |X(i)), which equals

exp{F% 0 f(ys,, s, 1, %))
>y eyexp{Z|YS|9 Fhvs_ %) +1U(ys, ys)}

and we define the loss function I(y%,ys) as
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which is the sum of the precision and recall errors of
segment labeling using proportional matching. The
loss-augmented probability is only computed during
training. The more the proposed labeled segmenta-
tion overlaps with the true labeled segmentation for
X, the less it will be penalized.

!The inter-annotator agreement on boundaries of opinion
expressions is not stressed in MPQA (Wiebe et al., 2005).
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During inference, we can obtain the best labeled
segmentation by solving

lys|
argmaxP(ys|x) = argmaxZQ f(Ys; Ys; 1, X)
s =1

This can be done efficiently via dynamic program-
ming:

argmax
S:(uzt) €8:t 7y:('57b)7y/

V(t) = G(y,y)+V(u—-1) 3)

where s.; denotes all candidate segments ending at
position ¢ and G(y,y’) = 0- f(y,y’, x). The optimal
ys™ can be obtained by computing V'(n), where n is
the length of the sentence.

3.2 Opinion Attribute Classification

We consider two types of opinion attributes: polar-
ity and intensity. For each attribute, we model the
multinomial distribution of an attribute class given a
text segment. Denoting the class variable for each
attribute as a’, we have

exp{¢; - gj(a’,%,)}
Za’EA]- exp{QSj * g (a/’ XS)}

P(a’|x,) =

“)

where 1z, denotes a text segment, ¢; is a pa-
rameter vector and g; denotes feature functions
for attribute a/. The label space for polarity
classification is {positive, negative, neutral,d}
and the label space for intensity classification is
{high, medium,low,@}. We include an empty
value & to denote assigning no attribute value to
those text segments that are not opinion expressions.
In the following description of our joint mod-
els, we omit the superscript on the attribute variable
and derive our models with one single opinion at-
tribute for simplicity. The derivations can be carried
through with more than one opinion attribute by as-
suming the independence of different attributes.



3.3 The Joint Models

We propose two types of joint models for opinion
segmentation and attribute classification: (1) joint
learning models, which train a single sequence la-
beling model that maximizes a joint probability dis-
tribution over segmentation and attribute labeling,
and infers the most probable labeled segmentations
according to the joint probability; and (2) joint infer-
ence models, which train a sequence labeling model
for opinion segmentation and separately train classi-
fication models for attribute labeling, and combine
the segmentation and classification models during
inference to make global decisions. In the follow-
ing, we first present the joint learning models and
then introduce the joint inference models.

3.3.1 Joint Sequence Labeling

We can formulate joint opinion segmentation and
classification as a sequence labeling problem on the
label space YV = {yly = ((s0,b0);---, (s, b))}
where b; = (b;,a;) € {I,0} x A, where b; is
a binary variable as described before and a; is an
attribute class variable associated with segment s;.
Since only opinion expressions should be assigned
opinion attributes, we consider the following label-
ing constraints: a; = & if and only if b; = O.

We can apply the same training and inference pro-
cedure described in Section 3.1 by replacing the la-
bel space ys with the joint label space y. Note that
the feature functions are shared over the joint label
space. For the loss function in the loss-augmented
objective, the opinion segment label b is also re-
placed with the augmented label b.

3.3.2 Hierarchical Joint Sequence Labeling

The above joint sequence labeling model cannot
capture the specific properties of opinion segmen-
tation and of attribute classification. In the follow-
ing, we introduce an alternative approach that allows
different features for opinion segmentation, polarity
and intensity classification.

Note that the joint label space naturally forms
a hierarchical structure: the process of choosing a
joint label y can be interpreted as first choosing an
opinion segmentation ys = ((so,bp), ..., (Sk,bx))
and then choosing a sequence of attribute labels
ya = (ag,...,ar) given the chosen segment se-
quence. Following this intuition, we can define the

joint probability P(ys,ya|X) as

lys|
1
exp 9f Ys;yYs;_ 1, X
Zp,6(%) ;( ( %)

®)
+ d) : g(aiaysiax)>

where ¢ denotes a feature vector that encodes
attribute-specific information, and Zj 4 is a normal-
ization function.

For training, we can also add a loss function
l(y',y) to Zg 4 (as in the basic joint sequence la-
beling model described in Section 3.3.1).

With the estimated parameters, we can infer the
optimal opinion segmentation and attribute labeling
by solving

lys|

argmax Z (9 : f(y5i7 Ysi—1s x) + ¢ - g(ai, ySiaX))

yeYa =1 ‘
(6)

We can apply a similar dynamic programming pro-
cedure as in Equation (3).

Our decomposition of features is similar to the hi-
erarchical construction of CRF features in Choi and
Cardie (2010). The difference is that our model is
based on semi-CRFs and the decomposition is based
on a joint probability. We will show that this results
in better performance than the methods in Choi and
Cardie (2010) in our experiments.

3.4 Joint Inference Models

Modeling the joint probability of opinion segmenta-
tion and attribute labeling is arguably elegant. How-
ever, training can be expensive as the computation
involves normalizing over all possible segmenta-
tions and all possible attribute labelings for each
segment. Thus, we also investigate joint inference
approaches which combine the separately-trained
models during inference.

For opinion segmentation, we train a semi-CRF-
based model using the approach described in Sec-
tion 1. For attribute classification, we train a Max-
Ent model by maximizing the likelihood based on
Equation (4). As we only need to estimate the prob-
ability of an attribute label given individual text seg-
ments, the training data can be constructed by col-
lecting a list of text segments labeled with correct at-
tribute labels. The text segments do not need to form



all possible sentence segmentations. To construct
such training examples, we collected from each sen-
tence all opinion expressions labeled with their cor-
responding attributes and use the remaining text seg-
ments as examples for the empty attribute value. The
training of the MaxEnt model is much more efficient
than the training of the segmentation model.

3.4.1 Joint Inference with Probability-based
Estimates

To combine the separately-trained models at in-
ference time, a natural inference objective is to
jointly maximize the probability of opinion segmen-
tation and the probability of attribute labeling given
the chosen segmentation

argmaxP(ys|x)P(yalys, X) (7
YsiYa

We can optimize it in the log space and rewrite the
problem as

‘YS‘

argmaxz (0 f(Ysis Ysi_1>Xx) + Clay, ysi,x)>

Ys:Ya 4 (8)

where C'(ai, ys,,x) = log P(ai|xs,) can be viewed
as the log value of a potential function for assigning
an attribute value a; to the text segment x,,. Note
that the optimization problem becomes very simi-
lar to Equation 6. In implementation, we compute
C(a;,ys;,x) = alog P(a;|xs;) where o € (0, 1] is
a weight parameter. We found that o« < 1 provides
better performance than oo = 1 empirically.

3.4.2 Joint Inference with Loss-based
Estimates

Instead of directly using the output probabilities
of the attribute classifiers, we explore an alternative
that estimates C'(a;, ys,, X) as:

C(aia Ys;» X) = - log(Eai\xsi [l(ai7 a;)]) )]

C(a;,ys,;,x) can be viewed as an uncertainty mea-
sure about the classifier’s uncertainty in its assign-
ment of attribute value a; to segment x,,. Intuitively,
we want to penalize attribute assignments that are
uncertain or favor attribute assignments with low un-
certainty. The prediction uncertainty is measured us-
ing the expected loss. The expected loss for a pre-

dicted label a’ can be written as

Ea\xsi [(a, a,)] = Z P(a|xsi)l(a, a/)

where [(a, a’) is a loss function over o’ and the true
label a. We used the standard 0-1 loss function in
our experiments?.

4 Features

We consider a set of basic features as well as task-
specific features for opinion segmentation and at-
tribute labeling, respectively.

4.1 Basic Features

Unigrams: word unigrams and POS tag unigrams
for all tokens in the segment candidate.

Bigrams: word bigrams and POS bigrams within
the segment candidate.

Phrase embeddings: for each segment candidate,
we associate with it a 300-dimensional phrase em-
bedding as a dense feature representation for the seg-
ment. We make use of the recently published word
embeddings trained on Google News (Mikolov et
al., 2013). For each segment, we compute the av-
erage of the word embedding vectors that comprise
the phrase. We omit words that are not found in the
vocabulary. If no words are found in the text seg-
ment, we assign a feature vector of zeros.

Opinion lexicon: For each word in the segment can-
didate, we include its polarity and intensity as indi-
cated in an existing Subjectivity Lexicon (Wilson et
al., 2005).

4.2 Segmentation-specific Features

Boundary words and POS tags: word-level fea-
tures (words, POS, lexicon) before and after the seg-
ment candidate.

Phrase structure: the syntactic categories of the
deepest constituents that cover the segment in the
parse tree, e.g. NP, VP, TO_VB.

VP patterns: VP-related syntactic patterns de-
scribed in Yang and Cardie (2012), e.g. VPsubj,
VParg, which have been shown useful for opinion
expression extraction.

The loss function can be tuned to better tradeoff precision
and recall according to the applications at hand. We did not
explore this option in this paper.



4.3 Polarity-specific Features

Polarity count: counts of positive, negative and
neutral words within the segment candidate accord-
ing to the opinion lexicon.

Negation: indicator for negators within the segment
candidate.

4.4 Intensity-specific Features

Intensity count: counts of words with strong and
weak intensity within the segment candidate accord-
ing to the opinion lexicon.

Intensity dictionary: As suggested in Choi
and Cardie (2010), we include features indicat-
ing whether the segment contains an intensifier
(e.g. highly, really), a diminisher (e.g. little, less),
a strong modal verb (e.g. must, will), and a weak
modal verb (e.g. may, could).

5 Experiments

All our experiments were conducted on the MPQA
corpus (Wiebe et al., 2005), a widely used corpus
for fine-grained opinion analysis. We used the same
evaluation setting as in Choi and Cardie (2010),
where 135 documents were used for development
and 10-fold cross-validation was performed on a dif-
ferent set of 400 documents. Each training fold con-
sists of sentences labeled with opinion expression
boundaries and each expression is labeled with po-
larity and intensity. Table 1 shows some statistics of
the evaluation data.

We used precision, recall and F1 as evaluation
metrics for opinion extraction and computed them
using both proportional matching and binary match-
ing criteria. Proportional matching considers the
overlapping proportion of a predicted expression s
and a gold standard expression s*, and computes
precision as Y | ¢ > .cg %AS\ and recall as

D oseS Dsres %AS*L where S and S* denote
the set of predicted opinion expressions and the set
of correct opinion expressions, respectively. Binary
matching is a more relaxed metric that considers a
predicted opinion expression to be correct if it over-
laps with a correct opinion expression.

We experimented with the following models:

(1) PIPELINE: first extracts the spans of opinion

expressions using the semi-CRF model in Section

Number of Opinion Expressions
Positive | Negative | Neutral
2170 4863 6368
High Medium Low
2805 5721 4875
Number of Documents 400
Number of Sentences 8241
Average Length of Opinion Expressions | 2.86 words

Table 1: Statistics of the evaluation corpus

3.1, and then assigns polarity and intensity to the ex-
tracted opinion expressions using MaxEnt models in
Section 3.2. Note that the label space of the MaxEnt
models does not include & since they assume that
all the opinion expressions extracted by the previous
stage are correct.

(2) JSL: the joint sequence labeling method de-
scribed in Section 3.3.1.

(3) HJSL: the hierarchical joint sequence labeling
method described in Section 3.3.2.

(4) JI-PROB: the joint inference method using
probability-based estimates (Equation 8).

(5) JI-LosS: the joint inference method using
loss-based estimates (Equation 9).

We also compare our results with previously pub-
lished results from Choi and Cardie (2010) on the
same task.

All our models are log linear models. We use L-
BFGS with L2 regularization for training and set the
regularization parameter to 1.0. We set the scaling
parameter « in JI-PROB and JI-LOSS via grid search
over values between 0.1 and 1 with increments of
0.1 using the development set.

We consider the same set of features described in
Section 4 in all the models. For the pipeline and
joint inference models where the opinion segmen-
tator and attribute classifiers are separately trained,
we employ basic features plus segmentation-specific
features in the opinion segmentator; and employ ba-
sic features plus attribute-specific features in the at-
tribute classifiers.

5.1 Results

We would like to first investigate how much we can
gain from using the loss-augmented training com-
pared to using the standard training objective. Loss-
augmented training can be applied to the training of



the opinion segmentation model used in the pipeline
method and the joint inference methods, or be ap-
plied to the training of the joint sequence labeling
approaches, JSL and HJSL (the loss function takes
into account both the span overlap and the match-
ing of attribute values). We evaluate two versions of
each method: one uses loss-augmented training and
one uses standard log-loss training. Table 2 shows
the results of opinion expression detection without
evaluating their attributes. Similar trends can be ob-
served in the results of opinion expression detection
with respect to each attribute. We can see that in-
corporating the evaluation-metric-based loss func-
tion during training consistently improves the per-
formance for all models in terms of F1 measure.
This confirms the effectiveness of loss-augmented
training of our sequence models for opinion extrac-
tion. As a result, all following results are based on
the loss-augmented version of our models.

Comparing the results of different models in Ta-
ble 2, we can see that PIPELINE provides a strong
baseline. In comparison, JSL and HJSL signifi-
cantly improve precision but fail in recall, which
indicates that joint sequence labeling is more con-
servative and precision-biased for extracting opinion
expressions. HJSL significantly outperforms JSL,
and this confirms the benefit of modeling differ-
ent properties of opinion segmentation and attribute
classification. In addition, we see that combin-
ing opinion segmentation and attribute classification
without joint training (JI-PROB and JI-LOSS) hurt
precision but improves recall (vs. JSL and HJSL).
JI-LOSS presents the best F1 performance and sig-
nificantly outperforms the PIPELINE baseline in all
evaluation metrics. This suggests that JI-LOSS pro-
vides an effective joint inference objective and is
able to provide more balanced precision and recall
than other joint approaches.

Table 3 shows the performance on opinion extrac-
tion with respect to polarity and intensity attributes.
Similarly, we can see that JI-LOSS outperforms all
other baselines in F1; HJSL outperforms JSL but
is slightly worse than PIPELINE in F1; JI-PROB is
recall-oriented and less effective than JI-LOSS.

We hypothesize that the worse performance of
joint sequence labeling is due to its strong assump-
tion on the dependencies between opinion segmen-
tation and attribute labeling in the training data.

For example, the expression “fundamentally unfair
and unjust” as a whole is labeled as an opinion ex-
pression with negative polarity. However, the sub-
expression “unjust” can be also viewed as a nega-
tive expression but it is not annotated as an opinion
expression in this example (as MPQA does not con-
sider nested opinion expressions). As a result, the
model would wrongly prefer an empty attribute to
the expression “unjust”. However, in our joint in-
ference approaches, the attribute classification mod-
els are trained independently from the segmentation
model, and the training examples for the classifiers
only consist of correctly labeled expressions (“un-
just” as a nested opinion expression in this exam-
ple would not be considered in the training data for
the attribute classifier). Therefore, the joint infer-
ence approaches do not suffer from this issue. Al-
though joint inference does not account for task de-
pendencies during training, the promising perfor-
mance of JI-LOSS demonstrates that modeling de-
pendencies during inference can be more effective
than the PIPELINE baseline.

In Table 3, we can see that the improvement of JI-
LOSS is less significant in the positive class and the
high class. This is due to the lack of training data in
these classes. The improvement in the medium class
is also less significant. This may be because it is in-
herently harder to disambiguate medium from low.
In general, we observe that extracting opinion ex-
pressions with correct intensity is a harder task than
extracting opinion expressions with correct polarity.

Table 4 presents the F1 scores (due to space limit
only F1 scores are reported) for all subtasks using
the binary matching metric. We include the previ-
ously published results of Choi and Cardie (2010)
for the same task using the same fold split and eval-
vation metric. CRF-JSL and CRF-HJSL are both
joint sequence labeling methods based on CRFs.
Different from JSL and HJSL, they perform se-
quence labeling at the token level instead of the seg-
ment level, and in HJSL. We can see that both the
pipeline and joint methods clearly outperform previ-
ous results in all evaluation criteria.> We can also see
that JI-LOSS provides the best performance among
all baselines.

3Significance test was not conducted over the results in Choi
and Cardie (2010) as we do not have their 10 fold results.



Loss-augmented Training Standard Training
P R F1 P R F1
PIPELINE | 60.96 | 63.29 | 62.10 | 60.05 | 60.59 | 60.32
JSL 64.987 | 54.60 | 59.29 | 67.097 | 5056 | 57.62
HISL | 66.16° | 56.77 | 61.05 | 67.98" | 50.81 | 58.11
JI-PROB | 50.95 | 77.44* | 61.32 | 50.06 | 76.98" | 60.54
JI-Loss | 63.777 | 64.517 | 64.04" | 64.977 | 61557 | 63.12*

Table 2: Opinion Expression Extraction (Proportional Matching). In all tables, we use bold to indicate the
highest score among all the methods; use * to indicate statistically significant improvements (p < 0.05) over
all the other methods under the paired-t test; use T to denote statistically significance (p < 0.05) over the

pipeline baseline.

Positive Negative Neutral

P R Fl 3 R Fl 3 R Fl
PIPELINE | 4526 | 43.07 | 44.04 | 5059 | 4791 | 49.11 | 4098 | 4930 | 4457
JSL 50.587 | 3234 | 39.37 | 5022 | 44.01 | 46.81 | 46.837 | 39.81 | 42.85
HISL 50347 | 37.06 | 4259 | 53.297 | 43.98 | 48.07 | 47.297 | 4327 | 45.03
JI-PROB | 3647 | 47.81° | 4124 | 40.83 | 54.40° | 4651 | 3359 | 59.22 | 42.66
JI-Loss | 46.447 | 44587 | 4540 | 54.88* | 48.50 | 51.40* | 43.427 | 52.02T | 47.09*

High Medium Low

P R Fl P R F1 3 R F1
PIPELINE | 4098 | 28.10 | 33.25 | 3544 | 4472 | 39.36 | 31.19 | 34.46 | 32.63
JSL 3791 | 30.837 | 33.88 | 39.077 | 37.31 | 38.05 | 40.957 | 26.71 | 32.24
HISL 41.05 | 28.80 | 33.63 | 39.06" | 39.71 | 39.17 | 40.017 | 29.88 | 34.12
JI-PROB | 34.82 | 30.947 | 3254 | 29.16 | 50.89* | 36.89 | 25.06 | 42.99* | 31.53
JI-Loss | 4611 | 2636 | 3339 | 37.58T | 43.58 | 40.15* | 33.857 | 40.92F | 36.93*

Table 3: Opinion Extraction with Correct Attributes (Proportional Matching)

5.1.1 Error Analysis

Joint vs. Pipeline We found that many errors
made by the pipeline system are due to error prop-
agation. Table 5 lists three examples, representing
three types of the propagated errors:(1) the attribute
classifiers miss the prediction since the opinion ex-
pression extractor fails to identify the opinion ex-
pression; (2) the attribute classifiers assign attributes
to a non-opinionated expression since it was mistak-
enly extracted; (3) the attribute classifiers misclas-
sify the attributes since the boundaries of opinion ex-
pressions are not correctly determined by the opin-
ion expression extractor. Our joint models are able
to correct many of these errors, such as the examples
in Table 5.

Joint Learning vs. Joint Inference Note that
JSL and HJSL both employ joint learning while JI-
PROB and JI-LOSS employ joint inference. To in-
vestigate the difference between these two types of
joint models, we look into the errors made by HISL

and JI-LOSS. In general, we observed that HISL ex-
tracts many fewer opinion expressions compared to
JI-LOSS, and as a result, it presents high precision
but low recall. The first two examples in Table 6
are cases where HJSL gains in precision and loses
in recall, respectively. The last example in Table 6
shows an error made by HJSL but corrected by JI-
LOSS. Theoretically, joint learning is more powerful
than joint inference as it models the joint distribution
during training. However, we only observe improve-
ments on precision and see drops in recall. As dis-
cussed before, we hypothesize that this is due to the
mismatch of assumptions between the model and the
jointly annotated data. We found that joint inference
can be superior to both pipeline and joint learning,
and it is also much more efficient in training. In our
experiments on an Amazon EC2 instance with 64-
bit processor, 4 CPUs and 15GB memory, training
for the joint learning approaches took one hour for
each training fold, but only 5 minutes for the joint



Extraction | Positive | Negative | Neutral | High | Medium | Low
PIPELINE 73.30 51.50 58.45 52.45 39.34 47.08 39.05
JSL 69.76 45.24 57.11 50.25 | 41.487 45.88 36.49
HISL 71.43 49.08 58.38 5225 | 41.067 46.82 38.45
JI-PROB 74.37" 50.93 58.20 | 54.037 | 39.80 | 46.65 | 40.73
JI-LOsS 75.11" 53.02° | 62.01° | 54337 | 41.79T | 4738 | 42.53"
Previous work (Choi and Cardie (2010))
CRF-JSL 60.5 41.9 50.3 41.2 384 37.6 28.0
CRF-HIJSL 62.0 43.1 52.8 43.1 36.3 40.9 30.7
Table 4: Opinion Extraction Results (Binary Matching)
Example Sentences Pipeline Joint Models
Itis .the victim of an explosive situation ;e at the eco- No opinions X v
nomic, ...
A white farmer who was shot dead Monday was the .
L0th to be killed the 10th to be killed eqium X v
They would “ fall below minimum standards ,.eqium for minimum standards for humane v
humane ,cqivm treatment”. treatment juedivm X

Table 5: Examples of mistakes made by the pipeline baseline that are corrected by the joint models

inference approaches.

5.2 Additional Experiments
5.2.1 Evaluation with Reranking

Previous work (Johansson and Moschitti, 2011)
showed that reranking is effective in improving the
pipeline of opinion expression extraction and polar-
ity classification. We extended their approach to
handle both polarity and intensity and investigated
the effect of reranking on both the pipeline and joint
models. For the pipeline model, we generated 64-
best (distinct) output with 4-best labeling at each
pipeline stage; for the joint models, we generated
50-best (distinct) output using Viterbi-like dynamic
programming. We trained the reranker using the on-
line PassiveAggressive algorithm (Crammer et al.,
2006) as in Johansson and Moschitti (2013) with
100 iterations and a regularization constant C' =
0.01. For features, we included the probability out-
put by the base models, the polarity and intensity of
each pair of extracted opinion expressions, and the
word sequence and the POS sequence between the
adjacent pairs of extracted opinion expressions.

Table 7 shows the reranking performance (F1) for
all subtasks. We can see that after reranking, JI-
LOSS still provides the best performance and HISL
achieves comparable performance to PIPELINE. We

also found that reranking leads to less performance
gain for the joint inference approaches than for the
joint learning approaches. This is because the k-best
output of JI-PROB and JI-LOSS present less diver-
sity than JSL and HJSL. A similar issue for rerank-
ing has also been discussed in Finkel et al. (2006).

5.2.2 Evaluation on Sentence-level Tasks

As an additional experiment, we consider a su-
pervised sentence-level sentiment classification task
using features derived from the prediction output
of different opinion extraction models. As a stan-
dard baseline, we train a MaxEnt classifier using
unigrams, bigrams and opinion lexicon features ex-
tracted from the sentence. Using the prediction out-
put of an opinion extraction model, we construct fea-
tures by using only words from the extracted opinion
expressions, and include the predicted opinion at-
tributes as additional features. We hypothesize that
the more informative the extracted opinion expres-
sions are, the more they can contribute to sentence-
level sentiment classification as features. Table 8
shows the results in terms of classification accuracy
and F1 score in each sentiment category. BOW is
the standard MaxEnt baseline. We can see that us-
ing features constructed from the opinion expres-
sions always improved the performance. This con-
firms the informativeness of the extracted opinion



Example Sentences

JointLearn JointInfer

The expression is undoubtedly strong and well

thOUght out pigh.

v well thought out egivm X

But the Sadc Ministerial Task Force said the election
was free and fair ,,,.qium-

v

No opinions x

The president branded j;y; as the “axis of evil” 1, in
his statement

v

of evil high X

Table 6: Examples of mistakes that are made by the joint learning model but are corrected by the joint
inference model and vice versa. We use the same colored box notation as before, and use yellow color to

denote neutral sentiment.

Extraction | Positive | Negative | Neutral | High | Medium Low

PIPELINE + reranking 73.72 51.45 60.51 53.24 40.07 47.65 40.47
JSL + reranking 72.02 47.52 59.81 52.84 | 41.04" 46.58 39.40
HIJSL + reranking 72.60 50.78 60.85 53.45 | 41.047 47.75 40.08
JI-PROB + reranking 74.817 51.45 59.59 53.98 40.66 46.87 40.80
JI-LOSS + reranking 75.597 53.29* 62.50" 54.94* | 41.79* 47.67 42.66"

Table 7: Opinion Extraction with Reranking (Binary Matching)

Features Acc Positive | Negative | Neutral
BOW 65.26 51.90 77.47 36.41
PIPELINE-OP | 67.41 55.49 79.42 39.48
JSL-OP 65.86 55.97 77.68 36.46
HISL-OP 66.79 55.12 79.29 37.56
JI-PROB-OP 67.13 56.49 79.30 38.49
JI-LOSs-OP | 68.23" | 57.32* 80.12" 40.45"

Table 8: Sentence-level Sentiment Classification

expressions. In particular, using the opinion expres-
sions extracted by JI-LOSS gives the best perfor-
mance among all the baselines in all evaluation crite-
ria. This is consistent with its superior performance
in our previous experiments.

6 Conclusion

We address the problem of opinion expression ex-
traction and opinion attribute classification by pre-
senting two types of joint models: joint learning,
which optimizes the parameters of different sub-
tasks in a joint probabilistic framework; joint infer-
ence, which optimizes the separately-trained mod-
els jointly during inference time. We show that
our models achieve substantially better performance
than the previously published results, and demon-
strate that joint inference with an appropriate objec-
tive can be more effective and efficient than joint

learning for the task. We also demonstrate the use-
fulness of output of our systems for sentence-level
sentiment analysis tasks. For future work, we plan
to improve joint modeling for the task by capturing
semantic relations among different opinion expres-
sions.
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