MATFEAP programmer documentation

David Bindel

December 6, 2011

Contents

MATFEAP basics

1.1 Imtroduction L e
1.2 Code organization
1.3 Running MATFEAP e
1.4 Simple example

Setting up the C server

2.1 Reaping child processes L e
2.2 Receiving TCP socket connections o
2.3 Receiving local socket connections oL oL oL oL
2.4 Deciding on a socket connectionso e e
2.5 Redirecting I/O streams
2.6 The main daemon L L e e

The feapsrv interface

3.1 Synchronization L e e
3.2 Type conversion e e e
3.3 Sending parameter values L L L
3.4 Sending binary arrays oL e e e e
3.5 Receiving binary arrayso e e e
3.6 Sending Sparse arrays w e e e e e e e e e e e e e
3.7 The feapsrv dispatcher
FORTRAN support routines
4.1 Adding synchronization on input
4.2 Getting and setting scalarso L
4.3 Sending matrices e
4.4 Receiving matrices Lol e
4.5 FORTRAN sparse matrix output support
4.6 Clearing the solution flag
4.7 The FEAP dispatch macro e
4.8 Generated files
MATLAB client
5.1 Communication performance e
5.2 Interface to the Java socket helpero
5.3 Interface to the C socket helper
5.4 Communication setup L e
5.4.1 Setting up pipe communication oL L
5.4.2 Setting up TCP socket communication

=W w NN

o 00~ S Ut gt G

18
18
18
19
19
19
20
20
21

5.5

5.6

5.7

5.8

5.9

5.10

5.4.3 Setting up UNIX socket communication 26

Starting FEAP o 27
5.5.1 Merging global parameters L L L 27
5.5.2 Special parameterso 27
5.5.3 Imput deck directory 28
5.5.4 Opening FEAP e 29
5.5.0 Passing parameters Lo 29
5.5.6 Setting the current directory L L 30
5.5.7 Sending the file names oL 30
User commandso e e e e e 31
5.6.1 Invoking FEAP macro commands 31
5.6.2 Exiting FEAP e 31
5.6.3 Putting MATFEAP into verbose mode 32
Basic getter / setter interfaces 32
5.7.1 Getting scalar values L 32
5.7.2 Getting arrays e e 33
B.7.3 Setting arrays e e e e 33
5.7.4 Getting sparse matrices 34
Getting stiffness, mass, and dampingo o 35
5.8.1 Tangent matrix 35
5.8.2 Massmatrix Lo e 35
5.8.3 Damping matrix L. e 36
Getting and setting X, U, and F vectors 36
5.9.1 Getting the displacemento 36
5.9.2 Setting the displacement L oL 36
5.9.3 Getting the nodal positions L L oo 37
5.9.4 Getting the residual 37
Utility commands Lo e e e e 38
5.10.1 Waiting for synchronization L Lo 38
5.10.2 Waiting for FEAPSRV e 38
5.10.3 Verbose output L 39
5.10.4 Index mappingo e 39

Chapter 1

MATFEAP basics

1.1

Introduction

MATFEAP is an interface between MATLAB and the finite element analysis program FEAP. MATFEAP is
meant to be a successor to FEAPMEX, an earlier interface project which used MATLAB’s MEX system for
interfacing with external codes. MATFEAP differs from FEAPMEX primarily in that it runs MATLAB and
FEAP in different processes which communicate with each other via either a network socket (or optionally

a pipe):

MATLAB Stream FEAP
(client) (TCP) (server)

There are several advantages to this socket-based architecture:

The text command interface to FEAP has remained more stable than the internal architecture. By
building the communication between MATLAB and FEAP on this text interface, rather than by calling
FEAP’s internal routines directly from MATLAB, it is less difficult to keep MATFEAP working with
multiple FEAP versions than it was to keep FEAPMEX working.

When debugging problems with FEAP, it is possible to run gdb, valgrind, and other debugging tools
directly on the FEAP server. Also, if FEAP crashes, it will not take MATLAB down with it.

Because each FEAP simulation runs in a separate process, there are no issues with initializing the
global segment (and all the common block variables that FEAP uses) on initialization, nor are there
issues with releasing system resources on exit. In contrast, getting the global FEAP initialization and
shutdown right was always tricky with FEAPMEX.

Also because each FEAP simulation runs in a separate process, it is possible to have multiple FEAP
simulations open simultaneously.

The FEAP server does not need to be on the same machine as the MATLAB client. This could be
useful for running MATLAB on a laptop or other “front-end” machine and running the FEAP server
on a higher-power remote system.

MATFEAP does not need a MEX component. Therefore, there are no issues of compatibility with the
compilers used by the MEX interface. Users can compile the FEAP server using the same compilers
and flags that they use to compile FEAP, and the client support code needs only MATLAB and Java.

1.2

Code organization

The server code is made up of three basic modules:

The server daemon module is responsible for setting up a socket connection on the server side, setting up
a new child processes to handle each incoming simulation request, and cleaning up the child processes
when simulations are finished. The call to the server module is transparent from the perspective of the
FORTRAN code that calls it. When the server module returns control to a child process, that child
communicates with the client via its standard input and output streams, just as it would if the client
were someone entering commands at the terminal.

The feapsrv module provides a command line interface for accessing FEAP’s internal state, and
implements the server side of the data transfer protocols used by MATFEAP. This command line
interface is invoked at the start of each simulation, and it can be invoked during the simulation through
a FEAP user macro.

There are several FORTRAN support routines called by feapsrv. Some of these routines are simple
interfaces to ordinary FEAP functions; the rest are modifications to FEAP functions, mostly automat-
ically generated. These FORTRAN routines serve two purposes. First, they let us call a few FEAP
routines from feapsrv without worrying about proper cross-language binding of FEAP’s common
block variables. Second, they add synchronization messages to existing routines in order to make it
easy for the client to tell when input is expected.

In addition to the FORTRAN support routines, the server is also linked to the standard FEAP library.

The support on the client side consists of two pieces: a Java class that manages the socket connection
(there is also an optional MEX library), and a library of MATLAB routines that manage the protocol by
which MATLAB communicates with the FEAP server.

The documentation that follows is largely automatically extracted from specially-formatted comments in
the MATFEAP source files. The documentation tool we use is available at

http://www.cims.nyu.edu/ dbindel/code/dsbweb.c

1.3

Running MATFEAP

To run a MATFEAP simulation, you have to build the feaps (FEAP server) executable and run it on
the machine where the simulation is to take place. Once the FEAP server is running, start MATLAB and
execute the matfeap_init script to set the system paths correctly:

% matfeap_init.m
% Initializes paths used by the MATFEAP interface

addpath([pwd, ’/mlab’]l);
cd mlab/csock
if exist(’csockmex’)
fprintf (’Using C socket bindings\n’);

cd .

S

addpath([pwd, ’/mlab/csock’]);
feaps_unix;

else

fprintf (’Using Java socket bindings\n’);

cd .

S

addpath([pwd, ’/mlab/jsock’]);
javaaddpath([pwd, ’/mlab/jsock’]);

feaps_pipe;
end

This initialization routine should work fine with MATLAB versions 7+, including the student edition. In
MATLAB 6.5, the class path used by MATLAB’s JVM cannot be dynamically modified, so one has to set
that variable in another way — see the Mathworks site for details.

1.4 Simple example

To give the flavor for how MATFEAP works in practice, we give a simple example that uses several of
MATFEAP’s capabilities.

The Iblock2 input deck in the example subdirectory describes a square mesh with n elements on a side,
where the parameter n is not defined in the input deck. We start a FEAP simulation with n = 10, get the
tangent stiffness and residual into MATLAB, solve the linear system and write the results back to FEAP,
and then use FEAP’s X11 graphics to show the displaced shape. Once the user has finished admiring our
deformed block, he can press a key (at which point the FEAP simulation will exit and the graphics will
disappear).

10; % Parameter to the FEAP input deck
1; % See everything that FEAP sends

param.n
param.verbose

p = feapstart(’Iblock2’, param); % Start FEAP simulation
K = feaptang(p); % Form the tangent matrix

R = feapresid(p); % Form the residual force vector

du = K\R; % Compute a Newton update

feapsetu(p, du); % Set the displacement vector

% Plot the results
feapcmd(p, ’plot’, ’defo’, ’mesh’, ’boun’, ’load’, ’end’);

% Quit

disp(’Press any key to exit’);
pause;

feapquit(p);

Chapter 2

Setting up the C server

The feapserver routine provides a fairly generic way to turn a console-based FORTRAN program into a
UNIX server daemon. From the perspective of the FORTRAN program, very little changes on return from
a call to feapserver, except that the input and output terminals are now connected to a remote client via a
socket. Ordinary FORTRAN read and write statements directed to the standard output will go over that
socket. The caller doesn’t need to know anything about the details that turn the program into a network
server daemon on this call. However, these details and their implementation are spelled out below.

2.1 Reaping child processes

In UNIX, child processes are not released to the system until after the parent process checks the child process
exit status using wait or waitpid. We install a handler on SIGCHLD events (change of child status) that
checks the exit status of any child processes that are finished.

This is a standard piece of most UNIX daemons.

static void sigchld_handler(int s)

{
while (waitpid(-1, NULL, WNOHANG) > 0);
}
static void install_reaper()
{
struct sigaction sa;
sa.sa_handler = sigchld_handler;
sigemptyset (&sa.sa_mask);
sa.sa_flags = SA_RESTART;
ec(sigaction(SIGCHLD, &sa, NULL));
}

2.2 Receiving TCP socket connections

On the server side, there are two phases to setting up a socket connection. First, we need to set up a
socket — create it, give it an address with bind, and use listen to tell the system that we can receive
connections on it. By default, the server listens on MYPORT (3490), but this value can be changed by setting
the MATFEAP_PORT environment variable.

static int tcp_socket_setup(int port)

{
int sockfd; /* socket file descriptor */
struct sockaddr_in my_addr; /* my address information */
int yes=1;

memset (&my_addr, 0, sizeof(my_addr));
my_addr.sin_family = AF_INET;
my_addr.sin_port = htons(port);
my_addr.sin_addr.s_addr = INADDR_ANY;

ec(sockfd = socket(AF_INET, SOCK_STREAM, 0));

ec(setsockopt (sockfd, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof (int)));
ec(bind(sockfd, (struct sockaddr#*) &my_addr, sizeof (my_addr)));
ec(listen(sockfd, BACKLOG));

printf ("Server listening on port %d\n", port);
return sockfd;

}

static int tcp_handle_connection(int sockfd)
{
struct sockaddr_in their_addr;
socklen_t sin_size = sizeof(struct sockaddr_in);
while (1) {
int new_fd = accept(sockfd, (struct sockaddr*) &their_addr, &sin_size);
if (new_fd < 0)
perror("accept");
else {
time_t ¢ = time(NULL);
printf ("Connection from %s -- %s",
inet_ntoa(their_addr.sin_addr), ctime(&c));
return new_fd;

2.3 Receiving local socket connections

In addition to TCP socket connections, we allow the server to use UNIX domain socket connections. UNIX
domain sockets are used in various other system servers as well, including X11. The primary advantage of
UNIX-domain sockets over TCP sockets is performance: if you’re going to run both the client and the server
on the same machine and you use a UNIX-domain socket, then the operating system can handle context
switches a little more intelligently. The disadvantage of using UNIX domain sockets is that Java doesn’t
know about them at this time — you have to use the MEX-based socket infrastructure to connect to the
UNIX domain server.

UNIX domain sockets differ from TCP sockets primarily in the setup phase — afterward, everything works
the same. The location of a UNIX domain socket is specified as a filesystem location rather than a port
number. We use the existence of a port name to tell MATFEAP to listen on a UNIX domain socket.

static int local_socket_setup(const char* sockname)

{

}

int sockfd; /* socket file descriptor */
struct sockaddr_un my_addr; /* my address information */
int len;

/* Remove any previous socket */
unlink(sockname) ;

memset (&my_addr, 0, sizeof(my_addr));

my_addr.sun_family = AF_UNIX;

strcpy (my_addr.sun_path, sockname);

len = sizeof (my_addr.sun_family) + strlen(my_addr.sun_path) + 1;

ec(sockfd = socket (AF_UNIX, SOCK_STREAM, 0));
ec(bind(sockfd, (struct sockaddr*) &my_addr, len));
ec(listen(sockfd, BACKLOG));

printf ("Server listening on local socket %s\n", sockname);
return sockfd;

static int local_handle_connection(int sockfd)

{

struct sockaddr_un their_addr;
socklen_t sin_size = sizeof (struct sockaddr_un);
while (1) {
int new_fd = accept(sockfd, (struct sockaddr*) &their_addr, &sin_size);
if (new_fd < 0)
perror ("accept") ;

else {
time_t ¢ = time(NULL);
printf ("Connection -- %s", ctime(&c));

return new_fd;

2.4 Deciding on a socket connections

We decide whether to use TCP or UNIX domain sockets based on the setting of the environment variables.
If MATFEAP_SOCKNAME is set, we use that as the address for a local UNIX-domain socket. Otherwise, if
MATFEAP PORT is set, we use that as the port number for a TCP-based socket. If no relevant environment
variable is set, then we default to a TCP-based server listening on port 3490.

static int feapsock_local_socket;

static int socket_setup()

{

int port = MYPORT;

char* port_env = getenv(PORT_ENV_VAR);
char* sockname = getenv(SOCKNAME_ENV_VAR) ;
if (port_env)

port = atoi(port_env);

feapsock_local_socket = (sockname != 0);
if (feapsock_local_socket)

return local_socket_setup(sockname);
else

return tcp_socket_setup(port);

}
static int handle_connection(int sockfd)
{
if (feapsock_local_socket)
return local_handle_connection(sockfd);
else
return tcp_handle_connection(sockfd) ;
}

2.5 Redirecting I/0O streams

UNIX treats socket file descriptors like any other file descriptors. That means the socket input and output
streams can be connected to stdin (fd 0) and stdout (fd 1) using the dup or dup2 system calls. I leave
stderr alone so that the FEAP server can send debugging information to the terminal without breaking the
protocol used to communicate between the server and the client.

static void send_std_to_socket(int new_£fd)

{
dup2 (new_£fd, 0);
dup2(new_£fd, 1);
/*dup2(new_fd, 2);*/
close(new_fd);

}

2.6 The main daemon

The main loop is a Fortran-callable routine that accepts incoming socket connections from clients and assigns
to each a simulation process. The call to feapserver in the original process never exits. In child processes
created to handle incoming connections, feapserver returns control to the calling routine, allowing FEAP
to continue running as it usually would.

int feapserver_()

{
int sockfd = socket_setup();
install_reaper();

while (1) {
int new_fd = handle_connection(sockfd);

if (Mfork()) { /* This is the child process */
close(sockfd);
send_std_to_socket (new_£fd);

return 0O;
}
close(new_fd); /* Parent doesn’t need this */
}
exit(0);

10

Chapter 3

The feapsrv interface

When running feapsrv, the client can access most MATFEAP-specific functions using a text-based command
interface. These include things like changing the working directory, setting FEAP parameters, and sending
or receiving FEAP’s internal arrays and common block entries. The C code is in the driver’s seat when
feapsrv is active, though there are frequent calls back into the FORTRAN code.

3.1 Synchronization

In order to communicate over a socket, we need some protocol for telling who is writing and who is reading.
Otherwise, it’s easy to get into a deadlock, where the client is trying to send a command while the server is
itself blocked on a send. The feapsync function sends a string that can be used as a synchronization point
by the client, so that (for example) the client won’t send one command until the previous command has
finished. This isn’t a perfect solution, but it is a useful primitive.

Synchronization messages are accompanied by an integer label — 0 is a sort of don’t care label, and is
what we use for all the synchronization messages that aren’t explicitly requested by the client.

The feapsync routine is called in four places:

1. During file name entry, the server sends a synchronization message just before waiting on each read.
This is mostly so that I don’t have to recognize what constitutes a prompt for a filename (the prompts
changed between FEAP 7.x and 8.0).

2. Just before requesting input during a tinput call, the server sends a synchronization message. Like
the previous class of messages, these messages are mainly to prevent me from having to understand
what constitutes a prompt.

3. The last message sent by the server before exit is a synchronization message. We use this to keep the
client from closing the connection too soon — in a well-behaved shutdown, the client shouldn’t close
the connection until that last message says that the server is ready.

4. The client can explicitly request a labeled synchronization message via the FEAP user macro serv.

int feapsync_(int* marker)

{
printf ("\nMATFEAP SYNC %d\n", *marker);
fflush(stdout) ;
return O;

}

11

3.2 Type conversion

Even on a single machine, we need to convert all binary data transfered to wire format. This is because
the Java input functions assume wire format independent of what architecture we use. The hton[sl] and
ntoh[1ls] functions convert between host and network long (32-bit) and short (16-bit) integers, but there is
no such standard function for double precision floating point data. This is what ntohd and htond are for.

double ntohd(double x)

{
double one = 1;
if (x((char*) &one) == 0) {
double tmp;
char* src = (charx) &x;
char* dst = (char*) &tmp;
dst[0] = src([7];
dst[1] = srcl6];
dst[2] = src[5];
dst[3] = srcl4];
dst[4] = srcl3];
dst[5] = src[2];
dst[6] = src[1];
dst[7] = srcl0];
return tmp;
} else {
return Xx;
}
}
double htond(double x)
{
return ntohd(x);
}

3.3 Sending parameter values

FEAP has a routine pconst() that reads in parameter values, but it turns out not to be optimal for
MATFEAP for two reasons. First, if the parameter happens to be invalid, FEAP crashes — not exactly the
ideal behavior. Second, pconst() sends a prompt to the standard output, and that prompt can screw up
the message synchronization used by MATFEAP.

void feapsrv_param(const char* var, double val)
{
extern int servparam_(int*, int*, doublex);
int iil;
int 1i2;

if (var[0] >= ’A’ && var[0] <= ’Z’)
il = 1+var[0]-’A’;

else if (var[0] >= ’a’ && var[0] <= ’z’)
il = 1+var([0]-’a’;

else

12

return; /* Invalid name */

if (var[1] == ’\0’)
i2 = 0;

else if (var[1] >= ’A’ && var[1] <= °Z’)
i2 = 1+(var[1]-’4A2);

else if (var[1] >= ’a’ && var[1] <= ’z’)
i2 = 1+(var[1]-’a’);

else if (var[1] >= ’0’ && var[1] <= ’9?)
i2 = 27+(var[1]-707);

else
return; /* Invalid name */

servparam_(&il, &i2, &val);

3.4 Sending binary arrays

To send an array to the client, we use the following protocol.

1. Server sends: Send type count, where typeis i (integer) or d (double), and count is an integer indicating
the number of values to be sent.

2. Client sends: text or binary or cancel.

3. Server sends: nothing if the client requested cancel; a stream of 32-bit integers or 64-bit doubles in
wire format if the client requested binary; or ordinary text representations of the array data, printed
one per line, if the client requested text.

All this assumes that the array was found — if not, the server would send Not found instead of sending
a Send line, and the interaction would stop there.

int fmsendint_(int* data, int* len)
{

char buf [256];

char* token;

int 1i;

printf("Send int %d\n", *len);

fflush(stdout);

if (fgets(buf, sizeof(buf), stdin) == NULL)
return O;

token = strtok(buf, " \t\r\n");
if (strcmp(token, "text") == 0) {
for (i = 0; i < *len; ++i)
printf ("%d\n", datalil);
} else if (strcmp(token, "binary") == 0) {
for (i = 0; i < *len; ++i) {
int32_t datum = htonl(datali]);
furite(&datum, sizeof(int32_t), 1, stdout);

13

int

}
3
fflush(stdout) ;

return O;

fmsenddbl_(double* data, int* len)

char buf [256] ;
char* token;
int 1i;

printf ("Send double %d\n", *len);

fflush(stdout) ;

if (fgets(buf, sizeof(buf), stdin) == NULL)
return 0;

token = strtok(buf, " \t\r\n");
if (strcmp(token, "text") == 0) {
for (i = 0; i < *len; ++i)
printf("%g\n", datalil);
} else if (strcmp(token, "binary") == 0) {
for (i = 0; i < *len; ++i) {
double datum = htond(datalil);
furite(&datum, sizeof(double), 1, stdout);
}
}
fflush(stdout) ;

return O;

3.5 Receiving binary arrays

To receive an array to the client, we use a protocol very similar to the one used for sending:

1. Server sends: Recv type count, where typeis i (integer) or d (double), and count is an integer indicating

the number of values to be sent.

2. Client sends: text or binary or cancel.

3. Client sends: nothing if the client requested cancel; a stream of 32-bit integers or 64-bit doubles in
wire format if the client requested binary; or ordinary text representations of the array data, printed

one per line, if the client requested text.

All this assumes that the array was found — if not, the server would send Not found instead of sending

a Send line, and the interaction would stop there.

It is much more likely that a receive request will be canceled than that a send request will be canceled.
When the client wants to receive some data, it dynamically allocates as much space as needed to hold the
response; but when the client wants to send data, it has to send exactly as much as the FEAP array wants.

14

int fmrecvint_(int* data, int* len)

{
char buf [256];
char* token;
int 1i;
printf ("Recv int %d\n", *len);
fflush(stdout);
if (fgets(buf, sizeof(buf), stdin) == NULL)
return O;
token = strtok(buf, " \t\r\n");
if (strcmp(token, "text") == 0) {
for (i = 0; i < *len; ++i)
scanf ("%d", &(datalil));
} else if (strcmp(token, "binary") == 0) {
for (i = 0; 1 < *len; ++i) {
int32_t datum;
fread(&datum, sizeof(int32_t), 1, stdin);
datal[i] = ntohl(datum);
}
}
return O;
}
int fmrecvdbl_(double* data, int* len)
{
char buf [256];
char* token;
int 1i;
printf ("Recv double %d\n", *len);
fflush(stdout) ;
if (fgets(buf, sizeof(buf), stdin) == NULL)
return O;
token = strtok(buf, " \t\r\n");
if (strcmp(token, "text") == 0) {
for (i = 0; i < *len; ++i)
scanf ("}1g", &(datalil));
} else if (strcmp(token, "binary") == 0) {
for (i = 0; i < *len; ++i) {
double datum;
fread(&datum, sizeof(double), 1, stdin);
datal[i] = ntohd(datum);
}
}
return O;
}

15

3.6 Sending sparse arrays

Sparse arrays are sent from FEAP to MATLAB in coordinate form. Transfer from MATLAB back to FEAP
is currently not supported. There was already a FORTRAN routine in place to print various FEAP sparse
matrices to a file for later retrieval in MATLAB; I adapted that routine for use in MATFEAP by changing
all the file I/O routines into calls to writeaij (below). Sending an array consists of two steps:

1. A call to matspew to accumulate a count of the number of nonzero coordinates to be sent during the
data transfer. After making the count, we send a message nnz count to the client.

2. A second call to matspew to send the data. For the binary version of the protocol, the data is sent in
triplets: i, j, Aij, where i and j are 32-bit integers in wire format and Aij is a wire format double.
For text versions of the protocol, the data is sent with one triple per line.

int writeaij_(int* i, int* j, double* aij, int* count)

{
/* Cases:
* count >= 0 -- accumulate count
* count == -1 -- output as text
* count == -2 -- output as binary
*/
if (kcount >= 0) {
++(*count) ;
} else if (xcount == -1) {
printf("%d %d %lg\n", *i, *j, *aij);
} else if (*count == -2) {
double coord[3];
coord[0] = htond(*i);
coord[1] = htond(*j);
coord[2] = htond(*aij);
furite(coord, sizeof(double), 3, stdout);
}
return 0;
}

void sparse_write(char* types, char* var)
{
extern int matspew_(char* var, int* cnt);
int type = 0;
if (strcmp(types, "text") == 0)
type = -1;
else if (strcmp(types, "binary") == 0)
type = -2;
if (type && var) {
int cnt = O;
matspew_(var, &cnt);
printf ("nnz %d\n", cnt);
cnt = type;
matspew_(var, &cnt);

16

3.7 The feapsrv dispatcher

The feapsrv routine is called both at the beginning of the MATFEAP run and whenever the user macro serv
is invoked. This routine provides a common interface for receiving and dispatching most of the commands
used by MATFEAP. In order to keep me honest — and in order to aid debugging — I have tried to make it
possible to use the feapsrv subcommands as an ordinary user at a terminal interface. This means, among

other things, that there is a help string.

char* FEAPSRV_HELP =
"Commands are:\n"

int

start

quit

help

cd DIR

cd

param

set VAR

get VAR

getm VAR

setm VAR
sparse FMT VAR
clear_isformed

Il\nll
"You can enter server mode from FEAP using the ’serv’ macro.\n"

"See the source code / documentation for more information on the\n

Start / resume ordinary FEAP interaction\n"
Terminate this FEAP process\n"

Get this message\n"

Change to directory DIR\n"

Print current working directory\n"

Set FEAP parameters\n"

Set FEAP common block variable\n"

Print FEAP common block variable\n"

Start get of FEAP array\n"

Start set FEAP array\n"

Get FEAP sparse matrix as binary or text\n"
Clear with the ’resid formed’ flag\n"

"protocols used to exchange arrays and sparse matrices\n";

feapsrv_Q)

char buf [256];

printf ("FEAPSRV>\n");

fflush(stdout);
while (fgets(buf, sizeof(buf), stdin) != NULL) {

char* token =

strtok(buf, " \t\r\n");

if (token == NULL) {

continue;

} else if (strcmp(token,

return 0;

} else if (strcmp(token,

exit(0);

} else if (strcmp(token,

"start") == 0) {
"quit") == 0) {

"help") - O) {

printf (FEAPSRV_HELP) ;

} else if (strcmp(token,
strtok (NULL,

token =

"Cd") J— O) {
" \t\r\n");

if (token == NULL)

printf ("PWD: Y%s\n", getcwd(buf, sizeof (buf)));
else if (chdir(token) < 0)

perror("chdir");

17

} else if (strcmp(token, "param") == 0) {
char* name = strtok(NULL, " \t\r\n");
char*x valtok = strtok(NULL, " \t\r\n");
double val = atof(valtok);
feapsrv_param(name, val);
} else if (strcmp(token, "set") == 0) {
extern int feapget_(char* var, char* mode);
token = strtok(NULL, " \t\r\n");
if (token) {
int n = strlen(token);
token[n] =’ ’;
feapget_(token, "w");
token[n] = 0;

}
} else if (strcmp(token, "get") == 0) {
extern int feapget_(char* var, char* mode);
token = strtok(NULL, " \t\r\n");
if (token) {
int n = strlen(token);
token[n] =’ ’;
feapget_(token, "r");
token[n] = 0;

}

} else if (strcmp(token, "getm") == 0) {
extern int feapgetm_(char* var, int len);
token = strtok(NULL, " \t\r\n");
if (token)

feapgetm_(token, strlen(token));

} else if (strcmp(token, "setm") == 0) {
extern int feapsetm_(char* var, int len);
token = strtok(NULL, " \t\r\n");
if (token)

feapsetm_(token, strlen(token));

} else if (strcmp(token, "sparse") == 0) {
char* transfertype = strtok(NULL, " \t\r\n");
char* varname = strtok(NULL, " \t\r\n");
if (transfertype && varname)

sparse_write(transfertype, varname);

} else if (strcmp(token, "clear_isformed") == 0)
extern int feaptformed_();
feaptformed_Q);

} else {
printf ("Unrecognized command: %s\n", token);

}
printf("FEAPSRV>\n");
fflush(stdout) ;

}

return 0;

18

Chapter 4

FORTRAN support routines

The FORTRAN support routines really play a secondary role to the C routines. They are almost all either
modifications of existing FEAP routines or thin wrappers over top of existing FEAP routines. The main
reason that some of these routines exist is that it is much easier to access the FORTRAN common block
data used by FEAP directly from FORTRAN than it is to access it from C.

4.1 Adding synchronization on input

We have our own version of the input routine tinput, which mediates most of the console input in FEAP.
Our version calls feapsync to allow the client to sync up with the server, then calls tinput2, which is
generated from the ordinary tinput routine in FEAP.

logical function tinput(tx,mt,d,nn)
include ‘’iofile.h’

logical tinput2

integer mt ,nn, bnum

character tx(*)*15

real*8 d(*)

save

if (ior.1t.0) then

bnum = 0
call feapsync(bnum)
end if

tinput = tinput2(tx,mt,d,nn)

end

4.2 Getting and setting scalars

The feapget routine either reads a common block variable from the standard input or writes a common
block variable to the standard output, depending on whether the mode is r or w. If no such variable is
available, the routine doesn’t do anything. The data is always sent in text format.

19

NOTE: The FORTRAN read statement is not very smart, so if the client tries to write a double value
into an integer variable, the FORTRAN I/O library is likely to complain and abort the program.

subroutine feapget(var, mode)

4.3 Sending matrices

The feapgetm(var) command fetches the named array from FEAP’s dynamic memory system using pgetd.
If the array is found, feapgetm calls feapsendint or feapsenddbl in order to return the data to the client.
Otherwise, it prints a “Not found” message.

There are two variants of this routine. The code below works with newer versions of FEAP (8.04) in
which the p_point.h header declares an integer variable capable of storing a FEAP pointer. The code in
feapgetm7.f works with earlier versions of FEAP in which pointers are always represented as 32-bit integers.

subroutine feapgetm(var)
implicit none

include ’comblk.h’
include ’pointer.h’
include ’p_point.h’

character var ()
logical flag
integer lengt, prec

save

call pgetd(var, point, lengt, prec, flag)
if (flag) then
if (prec.eq.1) then
call fmsendint(mr(point), lengt)
else
call fmsenddbl(hr(point), lengt)
endif
else
print *, ’Not found’
endif

end

4.4 Receiving matrices

The feapsetm command is exactly analogous to feapgetm, except that it receives data from the client using
feaprecvint and feaprecvdbl where feapgetm sends data.

subroutine feapsetm(var)

4.5 FORTRAN sparse matrix output support

The matspew command is based on the sparse matrix output routine available at www.ce.berkeley.edu/ rlt/feap/umacr3.f
The matspew routine differs from the original routine primarily in that it calls a function writeaij where

20

the original routine would write a coordinate triple to file. The writeaij routine takes i, j, and Aij, but

it also takes an additional argument that controls the precise behavior of the routine — if negative, it tells

writeaij to write binary or text data. If the argument is non-negative, writeaij writes no output, but

increments the argument with each call in order to compute the number of nonzeroes that would be written.
The routine can output the following matrices:

e Tangent (tang) and unsymmetric tangent(utan)
e Consistent mass (mass or cmas), lumped mass (1mas), or unsymmetric mass (umas)

e Consistent damping (damp or cdam) or unsymmetric damping (udam)

subroutine matspew(lct, cnt)

4.6 Clearing the solution flag

The FEAP common block flag £1(8) is used to keep track of whether or not the residual has been formed
since the last solv call. If it has already been formed, there’s no reason to form it again. But when we do
a calculation on MATLAB and directly write to the FEAP vectors containing the current state, whatever
residual might be in FEAP’s memory is invalidated. We therefore use feaptformed to clear the value of
£1(8) so that FEAP will know when such an event has happened.

subroutine feaptformed()
implicit none

include ’fdata.h’

save

£1(8) = .false.

end

4.7 The FEAP dispatch macro

The FEAP user macro serv plays two roles. If called with a positive integer argument (e.g. serv,,1), FEAP
will call feapsync to output a string that the MATLAB client can use for synchronization. Otherwise, FEAP
will call the feapsrv dispatcher routine, which allows the MATLAB client to access most of the MATFEAP-
specific functionality available.

subroutine umacrl(lct,ctl,prt)
c * *x F EAP * x A Finite Element Analysis Program

Copyright (c) 1984-2006: Regents of the University of California
A1l rights reserved

c————- [t]
c Modification log Date (dd/mm/year)
c Original version 01/11/2006

c———-- [—= e e]

21

c Purpose: TUser interface for adding solution command language

C instructions.
c Inputs:
c 1ct - Command character parameters
c ctl(3) - Command numerical parameters
C prt - Flag, output if true
C Outputs:
c N.B. Users are responsible for command actions. See
c programmers manual for example.
c———-- [-.——t+————]
implicit mnone
include ’iofile.h’
include ‘’umacl.h’
logical pcomp,prt
character lct*15
real*8 ctl(3)
integer ival
save
C Set command word
if (pcomp(uct,’macl’,4)) then ! Usual form
uct = ’serv’ ! Specify ’name’
elseif (urest.eq.1) then ! Read restart data
elseif (urest.eq.2) then ! Write restart data
else ! Perform user operation

ival = ct1(1)
if(ival.gt.0) then
call feapsync(ival)
else
call feapsrv()
endif
endif

end

4.8 Generated files

We mostly augment FEAP by adding new files, but there are a few minor changes that we have to make
to the existing files as well. Because MATFEAP is supposed to work with different versions of FEAP, and
because some of the files we need to modify vary between FEAP versions, we automatically rewrite the
FEAP sources with scripts, rather than trying to come up with a one or more modified routine that will be
compatible with all the relevant versions.

The most obvious change is to the FEAP front-end routine. We add calls to feapserver (to start the

22

socket server) and to feapsrv (so that the user can set parameters, change directories, etc. before entering

filenames and processing the input file.

feap.f: $(FEAPMAIN)
$(AWK) 7\
/call pstart/ { \
print " call feapserver()"; \
print " call feapsrv(" } \

{ print }’ $(FEAPMAIN) > feap.f

FEAP calls the plstop routine to close files, clear memory, and otherwise clean up before exiting. It causes
problems on some systems to close the socket connection before FEAP finishes writing whatever it will to
the standard output, so we add a synchronization call at the very end of plstop, just before the true exit.

plstop.f: $(PLSTOP)
$(AWK) > \
/" [1*stop/ { print "

call feapsync(1)" } \

{ print }’ $(PLSTOP) > plstop.f

The filnam routine, which reads in file names from the standard input, requires four modifications:

1. We need to make sure that filnam doesn’t decide to use the default file names saved in the feapname
file (which is what the ordinary FEAP routine does). So we strategically insert the statement 1£fil =
.false. (indicating that there’s no feapname to read) immediately before where FEAP tests 1fil.

. We add initialization routines for the various filename variables, fixing a bug in FEAP that would
otherwise cause the program to go into a tailspin if we tried to quit rather than entering filenames.

. We make a call to cleannam to turn any carriage returns and line feeds received by FEAP into ordinary
spaces (it’s unclear to me why these characters show up when I send the data over a socket and not
over the terminal, but it seems that they do).

. We add a call to feapsync before each read, so that the client will know when it’s supposed to provide

input.
filnam.f:
$(AWK) 7\
/if\(1£i1\) then/ { print " 1fil = .false."; init =1 } \
init == 1 && /~ else/ { init = 2 } \
init == 2 && /°[1*p/ { print; sub(/ p/, " £") } \
init == 2 && /~[J*end/ { init = 0 } \
/" [0-9 \t]l*read/ { print " call feapsync(0)" } \
/ .not.pcomp\ (filein/ { print " call cleannam(filein)" } \

{ print }’ $(FEAPHOME)/program/filnam.f > filnam.f

The tinput routine mediates most (though not all) of FEAP’s standard input. Prior to version 8.0, tinput
was in the program subdirectory. Since 8.0, there has been a special UNIX version of tinput that uses a
select loop to keep X11 plots up to date while waiting for user input at the console. We just need to find
the version that’s appropriate, copy it to the local directory, and rename it to tinput2. We have our own
version of tinput that will call tinput2 and then call feapsync to allow the client to synchronize with the

server.

23

tinput2.f:
if grep "function tinput" $(FEAPHOME)/program/*.f > /dev/null ; \

then cp $(FEAPHOME)/program/tinput.f tinputO.f ; \

else cp $(FEAPHOME) /unix/tinput.f tinputO.f ; \

fi
$(AWK) ’{ gsub(/tinput/, "tinput2"); print }’ tinputO.f > tinput2.f
rm tinputO.f

24

Chapter 5

MATLAB client

The MATLAB client uses a thin Java client class to manage sending and receiving data over a pipe or TCP
socket. There is also a C-language MEX file which can be compiled to send and receive data over a TCP
or UNIX-domain socket (this C language MEX file is required to run MATFEAP with Octave). Except
when using the feapsrv interface, the protocol is that the FEAP server will send a synchronization method
whenever it is waiting for input and when it is ready to quit. In this mode, the client does not send data
except immediately after receiving a synchronization message from FEAP.

When using the feapsrv interface documented previously, the generic protocol is to wait for the FEAPSRV
prompt, then send a command, then wait for the next FEAPSRV prompt. However, there are more elaborate
protocols for transferring arrays between FEAP and MATLAB, and these are documented along with the
feapsrv module.

5.1 Communication performance

Of the three communication models offered by MATFEAP, the TCP socket communication is the most
flexible (since it can connect to servers on remote machines). At the same time, for single-machine use,
it is the slowest of the methods. On the UNIX and OS X boxes where I have done tests, both the pipe
communication mechanism and the UNIX-domain socket mechanism seem to achieve reasonable performance.
The default behavior as set in matfeap_init is to use UNIX-domain sockets with the C MEX client, and
pipes with the Java client.

5.2 Interface to the Java socket helper

The Java socket helper class is a thin layer that lets us use Java stream descriptors and binary I/O routines.
We use it to establish socket connections, send an recieve lines of data, etc.
The socket routines are

e sock new(hostname,port) - start a socket connection
e sock new(command) - start a pipe connection

e sock_close(js) - close a socket

e sock_recv(js) - read a line of data

e sock_send(js) - send a line of data

e sock_readdarray(js, len) - read len 64-bit doubles into an array

25

e sock readiarray(js, len) - read len 32-bit integers into an array
e sock_senddarray(js, array) - send an array of 64-bit doubles

e sock_sendiarray(js, array) - send an array of 32-bit integers

5.3 Interface to the C socket helper

The C socket library provides a MEX interface to both TCP and UNIX domain sockets. This library can
be used with MATLAB as an alternative to the Java socket library; or it can be used with recent versions
of Octave.

The C socket routines are identical to the Java socket routines, save for sock new:

e sock_new(hostname,port) - start a TCP socket connection
e sock_new(sockname) - start a UNIX socket connection

In addition, we provide a routine that queries the environment to figure out an appropriate name for a
UNIX-domain socket to the server:

e sock_default_unix - return the default UNIX socket name

5.4 Communication setup

These routines are used to specify which of the three communication modes available to MATFEAP should
be used.

5.4.1 Setting up pipe communication

The feaps_pipe function tells MATFEAP to manage communication over a bidirectional pipe managed by
Java. This method is not available in the C interface — there the prefered connection method is a UNIX-
domain socket.

The default location for the FEAP executable used by in pipe mode is MATFEAP/srv/feapp. The
location of the feaps_pipe.m file should be MATFEAP/srv/feaps_pipe.m. Since the latter file is obviously
on the MATLAB path, we can get the fully qualified name from MATLAB and extract the location of the
MATFEAP home directory from it.

function feaps_pipe(cmd)

global matfeap_globals

matfeap_globals.sockname = [];
matfeap_globals.server 1;
matfeap_globals.port 1;

if nargin < 1
s = which(’feaps_pipe.m’);
i = strfind(s, ’feaps_pipe.m’)-length(’mlab/’);
matfeap_globals.command = [s(1:i-1), ’srv/feapp’];
fprintf (’Using FEAP in pipe mode: %s\n’, matfeap_globals.command) ;
elseif isempty(cmd)
matfeap_globals.command = [];
fprintf (’Turning off FEAP pipe mode\n’);
else

26

matfeap_globals.command = cmd;
end

5.4.2 Setting up TCP socket communication

The feaps_tcp function tells MATFEAP to manage communication over a TCP socket (which may be
managed by Java or C). The default location for the server is the local host on port 3490.

function feaps_tcp(server, port)

global matfeap_globals

matfeap_globals.command = [];
matfeap_globals.sockname = [];
matfeap_globals.server = [];
matfeap_globals.port = [1;
if nargin < 1
matfeap_globals.server = ’127.0.0.1°;
matfeap_globals.port = 3490;

elseif nargin ==
if isempty(server)
fprintf (’Turning off FEAP TCP mode\n’);
return;
elseif isnumeric(server)
matfeap_globals.server = ’127.0.0.17;

matfeap_globals.port = server;
else
matfeap_globals.server = server;
matfeap_globals.port = 3490;
end
else
matfeap_globals.server = server;
matfeap_globals.port = port;
end

fprintf (’Using FEAP in TCP mode: %s:%d\n’,
matfeap_globals.server, matfeap_globals.port);

5.4.3 Setting up UNIX socket communication

The feaps_unix function tells MATFEAP to manage communication over a UNIX-domain socket. This
option is only available with the C interface. UNIX-domain sockets are identified by filesystem locations,
typically placed under /tmp. For MATFEAP, we use the default name /tmp/feaps-USER, where USER is
the user name in the current environment. Because MATLAB doesn’t have direct access to the environment,
we fetch the default socket name through the wrapper function sock_default_unix.

function feaps_unix(sockname)

global matfeap_globals
matfeap_globals.command = [];

27

matfeap_globals.sockname = [];
matfeap_globals.server = [];
matfeap_globals.port 1;

if nargin < 1
matfeap_globals.sockname = sock_default_unix;
elseif nargin ==
if isempty(sockname)
fprintf (’Turning off FEAP UNIX mode\n’);
return;
else
matfeap_globals.sockname = sockname;
end
end

fprintf (’Using FEAP on UNIX socket: %s\n’, matfeap_globals.sockname) ;

5.5 Starting FEAP

The feapstart command is used to launch a new FEAP process:
function p = feapstart(fname, params)

The file name argument is required. The optional params argument plays double duty: a set of special
parameters are used to control things about the MATFEAP interface, and the remaining parameters are
used to initialize the FEAP variable list before opening the designated input deck.

5.5.1 Merging global parameters

The matfeap_globals variable is used to provide default values for the fields in the params structure, if
explicit values are not otherwise provided.

global matfeap_globals;

if isstruct(matfeap_globals)
if isempty(params)
params = matfeap_globals;
else
pnames = fieldnames(matfeap_globals) ;
for k = 1:length(pnames)
if "isfield(params, pnames{k})
pvalue = getfield(matfeap_globals, pnames{k});
params = setfield(params, pnames{k}, pvalue);
end
end
end
end

5.5.2 Special parameters

The special parameters are

28

e verbose: if true, output all the stuff that FEAP sends
e server and port: the server host name (string) and port number (integer)

e command: if defined, this string says how to execute the extended FEAP directly from the command
line. Used as an alternative to opening a socket connection.

e dir: the starting directory to change to after connecting to the FEAP server. By default we use the
client’s present working directory.

At the same time we process these parameters, we remove them from the param structure. That way,
everything remaining in the param structure after this step can be interpreted as a FEAP input parameter.

verb = 0; % Are we in verbose mode?

server = ’127.0.0.1°; % Server where FEAP is located

port = 3490; % Port where FEAP is located

dir = pwd; % Base directory to use for rel paths
command = []; % Command string to use with pipe interface
sockname = []; % UNIX domain socket name

if “isempty(params)
if isfield(params, ’verbose’)
verb = params.verbose;
params = rmfield(params, ’verbose’);
end
if isfield(params, ’server’)
server = params.server;
params = rmfield(params, ’server’);
end
if isfield(params, ’port’)
port = params.port;
params = rmfield(params, ’port’);
end
if isfield(params, ’command’)
command = params.command;
params = rmfield(params, ’command’) ;
end
if isfield(params, ’sockname’)
sockname = params.sockname;
params = rmfield(params, ’sockname’);
end
if isfield(params, ’dir’)
dir = params.dir;
params = rmfield(params, ’dir’);
end
end

5.5.3 Input deck directory

I assume that the file name does not contain any slashes or backslashes; if those occur in the input deck
name, then we’ll split the name argument into pathname and fname.

29

lastslash = max([strfind(fname, ’/’), strfind(fname, ’\’)]);
if “isempty(lastslash)
pathname = fname(1:lastslash-1);
fname = fname(lastslash+1l:end);
else
pathname = [];
end

5.5.4 Opening FEAP

If sockname is nonempty, then the user has specified a UNIX domain socket to connect to the FEAP server.
Otherwise if command is nonempty, then the user has specified the name of a command to start the (extended)
FEAP. This FEAP executable has the same interface as the socket-based version, but it communicates using
the ordinary standard I/O streams, which we will connect to a pipe. Otherwise, we’ll try to communicate
with the server via TCP. We give the same generic error message in the event of any error — “is the server
there?”

Once a connection to the FEAP process has been established, we save the relevant Java helper (or C
handle) and the verbosity flag together in a handle structure. This structure is the first argument to all the
high-level MATFEAP interface functions.

try
if “isempty(sockname)
fd = sock_new(sockname) ;
elseif “isempty(command)
fd = sock_new(command) ;
else
fd
end
catch
fprintf (’Could not open connection -- is the FEAP server running?\n’);
error (lasterr) ;
end

sock_new(server, port);

5.5.5 Passing parameters

The param command in the feapsrv interface allows the user to send parameters to FEAP. Parameter
assignments have the form “param var val”. Invalid assignments are (perhaps suboptimally) simply ignored.

feapsrvp(p);
if “isempty(params)
pnames = fieldnames(params) ;
for k = 1:length(pnames)
pvar = pnames{k};
pval = getfield(params, pnames{k});
if “isnumeric(pval)

30

fprintf (’Ignoring non-numeric parameter %s\n’, pvar);
else
sock_send(fd, sprintf(’param %s %g’, pvar, pval));
feapsrvp(p);
end
end
end

5.5.6 Setting the current directory

If a home directory was specified via a dir special argument, we first change to that directory (by default,
we change to the client’s present working directory). If a path was specified as part of the input deck name,
we then change to that directory. If both dir and pathname are non-empty and the pathname specifies a
relative path, we will end up in the path relative to the specified base directory.

The feapsrv command to change directories will return a diagnostic message if for any reason the
directory change doesn’t go through. We ignore said message.

if “isempty(dir)
sock_send(fd, [’cd ’, dirl);
feapsrvp(p);

end

if “isempty(pathname)
sock_send(fd, [’cd ’, pathname]);
feapsrvp(p);

end

5.5.7 Sending the file names

Once we’ve set up the parameter string and changed to the proper directory, we're ready to actually start
processing an input deck. The start command gets us out of the feapsrv interface and into ordinary FEAP
interactions. We now need to send to FEAP:

1. The name of the input deck.

2. Blank lines to say “we accept the default names for the auxiliary files.” The number of auxiliary files
has changed over time, which is why we don’t use a counter — we just send a blank line at every
synchronization message until we see a string that indicates that we’ve entered all the desired file
names.

3. A string “y” for when we’re asked if the file names are correct.

If an error occurs during entering the file name, we send the “quit” string and get out of dodge. In
response to a request to quit, FEAP will go through the ordinary shutdown procedure, so we’ll wait for the
last synchronization message before closing the connection.

sock_send(fd, ’start’);
feapsync(p);
sock_send(fd, fname);

doneflag = O;

while 1
s = sock_recv(fd);

31

if strfind(s, ’*ERRORx*’)
p.verb = 1;
feapsync(p);
sock_send(fd, ’quit’);
feapsync(p);
sock_close(fd);
p = [1;
return;

elseif strfind(s, ’Files are set’)
feapdispv(p, s);
feapsync(p);
sock_send(fd, ’y’)
feapsync(p);
return;

elseif strfind(s, ’MATFEAP SYNC’)
sock_send(fd, ’’);

else
feapdispv(p, s);

end

end

5.6 User commands

These are the main routines in the interface used directly by MATFEAP users.

5.6.1 Invoking FEAP macro commands

The feapcmd routine is used to invoke FEAP macro routines. It’s up to the user to ensure that after the end
of the last command in the list, FEAP is back at a prompt involving a tinput command (e.g. the macro
prompt or a plot prompt).

The feapcmd routine should not be used to quit FEAP; use feapquit for that.

function feapcmd(p, varargin)

for k = 1l:length(varargin)
sock_send(p.fd, varargin{k});
feapsync(p);

end

5.6.2 Exiting FEAP

The feapquit command invokes the quit command, says “n” when asked whether we would like to continue,
waits for the sign-off synchronization message, and shuts down the connection. This is the graceful way
to exit from FEAP. In contrast, the feapkill command should be treated as a last-ditch effort to kill a
misbehaving FEAP process.

function feapquit (p)

sock_send(p.fd, ’quit’);
feapsync(p);
sock_send(p.fd, ’n’);
feapsync(p,1);

32

sock_close(p.fd);

function feapkill (p)

sock_close(p.fd);

5.6.3 Putting MATFEAP into verbose mode

In verbose mode, you can see all the interactions between MATFEAP and FEAP. It’s possible to switch
to verbose mode by setting the verbose field in the parameter structure for feapstart, or by setting the
matfeap_globals structure directly; but I find myself wanting to see verbose output fairly regularly, so it
seemed worthwhile to have a special method for it.

function feaps_verb

global matfeap_globals;
matfeap_globals.verbose = 1;

5.7 Basic getter / setter interfaces

These are the MATLAB interface routines that get and set FEAP matrices, arrays, and scalars.

5.7.1 Getting scalar values

To get a scalar variable, we enter the feapsrv interface and issue a get it varname request. Either it
succeeds, in which case the variable is printed; or it fails, in which case nothing is printed. We silently return
an empty array to indicate the latter case. After retrieving the variable, we issue a start command to exit
the feapsrv interface and get back to the FEAP macro prompt.

function val = feapget(p, var)

if nargin < 2, error (’Missing required argument’); end
if “ischar(var), error(’Variable name must be a string’); end

sock_send(p.fd, ’serv’);
feapsrvp(p);

cmd = sprintf(’get %s’, lower(var));
feapdispv(p, cmd);

sock_send(p.fd, cmd);

val = [];

resp = sock_recv(p.fd);

if “strcmp(resp, ’FEAPSRV>)
val = sscanf(resp, ’*%g’);
feapdispv(p, resp);
feapsrvp(p);

end

sock_send(p.fd, ’start’);

feapsync(p);

33

5.7.2 Getting arrays

This routine implements the client side of the array fetch protocol described in the feapsrv documentation.
We enter the feapsrv command interface, issue a request for a matrix, read the server’s description of the
matrix size and type, and then either start an appropriate binary data transfer or bail if something looks
malformed. After all this, we return to the FEAP macro interface.

function val = feapgetm(p, var)

if nargin < 2, error(’Missing required argument’); end
if “ischar(var), error(’Variable name must be a string’); end

sock_send(p.fd, ’serv’);

feapsrvp(p);

cmd = sprintf(’getm %s’, upper(var));
feapdispv(p, cmd);

sock_send(p.fd, cmd);

resp = sock_recv(p.fd);
[s, resp]l = strtok(resp);
val = [];
if strcmp(s, ’Send’)
[datatype, resp] = strtok(resp); % Data type (int | double)
[len, resp] = strtok(resp); ' Number of entries
len = str2num(len);
if strcmp(datatype, ’int’)
feapdispv(p, sprintf(’Receive J%d ints...’, len));
sock_send(p.fd, ’binary’)
val = sock_recviarray(p.fd, len);
elseif strcmp(datatype, ’double’)
feapdispv(p, sprintf(’Receive ’%d doubles...’, len));
sock_send(p.fd, ’binary’)
val = sock_recvdarray(p.fd, len);
else
feapdispv(p, ’Did not recognize response, bailing’);
sock_send(p.fd, ’cancel’)
end
end

feapsrvp(p);
sock_send(p.fd, ’start’)
feapsync(p);
5.7.3 Setting arrays

This routine implements the client side of the array set protocol described in the feapsrv documentation.
It is exactly analogous to feapgetm, except that now we have to make sure that we’re sending the right
amount of data. We should almost certainly advertize more clearly when we’ve exited because the specified
array was the wrong size.

function feapsetm(p, var, val)

sock_send(p.fd, ’serv’);

34

feapsrvp(p);

cmd = sprintf(’setm %s’, upper(var));
feapdispv(p, cmd);

sock_send(p.fd, cmd);

resp = sock_recv(p.fd);
[s, resp] = strtok(resp);
if strcmp(s, ’Recv’)
[datatype, resp] = strtok(resp);
[len, resp] = strtok(resp);
len = str2num(len);
if len "= prod(size(val))
feapdispv(p, sprintf(’Expected size %d; bailing’, len));
sock_send(p.fd, ’cancel’);
elseif strcmp(datatype, ’int’)
feapdispv(p, sprintf(’Sending ’%d ints...’, len));
sock_send(p.fd, ’binary’)
sock_sendiarray(p.fd, val);
elseif strcmp(datatype, ’double’)
feapdispv(p, sprintf(’Sending %d doubles...’, len));
sock_send(p.fd, ’binary’)
sock_senddarray(p.fd, val);
else
feapdispv(p, ’Did not recognize response, bailing’);
sock_send(p.fd, ’cancel’)
end
end

feapsrvp(p);
sock_send(p.fd, ’start’)
feapsync(p);

5.7.4 Getting sparse matrices

This routine implements the client side of the sparse matrix fetch protocol described in the feapsrv docu-
mentation. We start the feapsrv command interface, request the array, read the number of nonzero entries,
and either fetch a block of binary data and convert it to a sparse matrix, or bail if we saw something
unexpected.

function val = feapgetsparse(p, var)

if nargin < 2, error (’Wrong number of arguments’); end
if “ischar(var), error(’Variable name must be a string’); end
if length(var) < 1, error(’Variable name must be at least one char’); end

sock_send(p.fd, ’serv’);

feapsrvp(p);

cmd = sprintf (’sparse binary %s’, lower(var));
feapdispv(p, cmd);

sock_send(p.fd, cmd);

resp = sock_recv(p.fd);

35

[s, resp] = strtok(resp);
val = [1;
if strcmp(s, ’nnz’)
[len, resp] = strtok(resp);
len = str2num(len);
feapdispv(p, sprintf(’Receive %d matrix entries...’, len));
val = sock_recvdarray(p.fd, 3*len);
val = reshape(val, 3, len);

val = sparse(val(l,:), val(2,:), val(3,:));
end
feapsrvp(p);
sock_send(p.fd, ’start’)
feapsync(p);

5.8 Getting stiffness, mass, and damping

These are the high-level interface routines that fetch or write the main FEAP sparse matrices.

5.8.1 Tangent matrix

The feaptang and feaputan routines call FEAP macros to form the tangent stiffness matrix (symmetric or
unsymmetric) without factoring it, and then retrieve the matrix into MATLAB.

function K = feaptang(p)

feapcmd(p, ’tang,,-1’);
K = feapgetsparse(p, ’tang’);

function K = feaputan(p)

feapcmd(p, ’utan,,-17);
K = feapgetsparse(p, ’utan’);

5.8.2 Mass matrix

The feapmass and feapumass routines call FEAP macros to form the mass (symmetric or unsymmetric),
and then retrieve the matrix into MATLAB. This high-level interface only allows you to get the consistent
mass, and not the lumped mass.

function M = feapmass(p)

feapcmd(p, ’mass’);
M = feapgetsparse(p, ’mass’);

function M = feapumass(p)

feapcmd(p, ’mass,unsy’);
M = feapgetsparse(p, ’umas’);

36

5.8.3 Damping matrix

The feapdamp and feapudamp routines call FEAP macros to form the damping (symmetric or unsymmetric),
and then retrieve the matrix into MATLAB.

function D = feapdamp(p)

feapcmd(p, ’damp’);
D = feapgetsparse(p, ’damp’);

function D = feapudamp(p)

feapcmd(p, ’damp,unsy’);
D = feapgetsparse(p, ’damp’);

5.9 Getting and setting X, U, and F vectors

These are the high-level interface routines that fetch or write the node position, displacement, and residual
vectors.

5.9.1 Getting the displacement

The feapgetu command retrieves the full displacement array U and returns some subset of it. By default,
we extract the active degrees of freedom in the reduced order, using map2full to retrieve the appropriate
reindexing vector.

function u = feapgetu(p, id)

if nargin < 2, id = map2full(p); end
u = feapgetm(p, ’u’);
u = u(id);

5.9.2 Setting the displacement

The feapsetu command sets some subset of the displacement array U (by default, we set the active degrees
of freedom). If we don’t provide a vector to write out, then the assumption is that we want to clear the
displacement vector to zero, save for any essential boundary conditions (which FEAP keeps in the second
part of the F array).

function feapsetu(p,u, id)

if nargin < 3, [id, bc_id] = map2full(p); end
ul = feapgetm(p,’u’);

if nargin < 2
nneq = feapget(p,’nneq’);

£ = feapgetm(p,’f’);
ul(bc_id) = f(bc_id + nneq);
end
ul(id) = u;

feapsetm(p, ’u’, ul);

37

5.9.3 Getting the nodal positions

The feapgetx command gets the nodal position matrix X and, optionally, a parallel matrix of displacements.
These displacements can be extracted from a displacement vector passed in as an argument, or they can be
retrieved from the FEAP U array.

function [xx, uu]l = feapgetx(p,u)

% Get mesh parameters

nnp = feapget(p,’numnp’); % Number of nodal points

nneq = feapget(p,’nneq’); ¥ Number of unreduced dof

neq feapget(p,’neq’); ' Number of dof

ndm = feapget(p,’ndm’); 7 Number of spatial dimensions
ndf feapget(p,’ndf’); % Maximum dof per node

% Get node coordinates from FEAP
xx = feapgetm(p,’x’);
xx = reshape(xx, ndm, length(xx)/ndm);

if nargout > 1

% Extract u if not provided
if nargin < 1, u = feapgetu(p); end

% Find out how to map reduced to full dof set

id = feapgetm(p,’id’);
id = reshape(id(1:nneq), ndf, nnp);
idnz = find(id > 0);

% Get full dof set

uu = zeros(ndf, nnp);
uu(idnz) = u(id(idnz));
end

5.9.4 Getting the residual

The feapresid function forms the residual and fetches it from FEAP memory. If the user provides a reduced
displacement vector u as an argument, then that vector will be written to FEAP’s array of nodal unknowns
before evaluating the residual.

The one thing that’s a little tricky about feapresid has to do with an optimization in FEAP. Usually,
calls to the FEAP macro to form the residual don’t do anything unless there has been a solve step since
the previous request for a residual form. But when we modify the displacements and boundary conditions
behind FEAP’s back, we typically invalidate the current residual, whatever it may be. So before requesting
that FEAP form a new residual, we use the feapsrv interface to clear the flag that says that the residual
has already been formed.

function R = feapresid(p, u, id)

if nargin ==
feapsetu(p,uw);

elseif nargin ==
feapsetu(p,u, id);

38

end

sock_send(p.fd, ’serv’);
feapsrvp(p);

feapdispv(p, ’clear_isformed’);
sock_send(p.fd, ’clear_isformed’);
feapsrvp(p);

sock_send(p.fd, ’start’);
feapsync(p);

feapcmd(p,’form’);
R = feapgetm(p,’dr’);
R = R(1:feapget(p,’neq’));

5.10 Utility commands

These are low-level routines that should generally be invisible to the user.

5.10.1 Waiting for synchronization

The feapsync command is used to wait for a synchronization message sent by the server. For the moment,
we don’t use the synchronization labels.

function feapsync(p, barriernum)
if nargin == 1, barriernum = 0; end

while 1
s = sock_recv(p.fd);
if strfind(s, ’MATFEAP SYNC’)
if barriernum ==
break;
elseif strcmp(s, sprintf(’MATFEAP SYNC %d’, barriernum))
break
else
feapdispv(p, ’Unexpected barrier’);
feapdispv(p, s);
end
else
feapdispv(p, s);
end
end

5.10.2 Waiting for FEAPSRV

The feapsrvp command is used to wait for the server to send a FEAPSRV prompt when using the feapsrv
command interface.

function s = feapsrvp(p, prompt)

while 1
s = sock_recv(p.fd);

39

feapdispv(p, s);
if strfind(s, ’FEAPSRV>’), break; end
end

5.10.3 Verbose output

The feapdispv routine is used to write messages to the standard output conditioned on the FEAP server
being in verbose mode. This is useful if you want to look at the output of FEAP for debugging purposes.

function feapdispv(p, msg)

if p.verb
if length(msg) == 0, msg = ’ ’; end
disp(msg) ;

end

5.10.4 Index mapping

The ID array in FEAP is used to keep track of which nodal variables are active and which are determined
by some boundary condition. We return the relevant portion of the ID array along with:

1. The indices of all active degrees of freedom (full_id).
2. The indices of all variables subject to BCs (bc_id).

3. An array to map the indices of the active degrees of freedom in the full vector to indices in a reduced
vector (reduced_id).

function [full_id, bc_id, reduced_id, id] = map2full(p)

% Get mesh parameters

nneq = feapget(p, ’nneq’); % Number of unreduced dof
numnp = feapget(p, ’numnp’); % Number of dof

ndf feapget(p, ’ndf’); % Maximum dof per node

% Get the index map
id = feapgetm(p, ’id’);
id = reshape(id(1l:nneq), ndf, numnp);

% Find the index set for free vars in full and reduced vectors
full_id = find(id > 0);

bc_id find(id <= 0);

reduced_id id(full_id);

40

