
matexpr User Guide

D. Bindel

January 9, 2012

1 Introduction

matexpr is a source-to-source translator for embedding simple MATLAB-like matrix expres-
sions in C/C++. matexpr interprets specially-formatted comments in a source file and uses
them to generate ordinary C code. For example, the following code computes a Rayleigh
quotient for two three-by-three matrices:

double rayleigh_quotient3d(double* K, double* M, double* v)

{

double rq;

/* <generator matexpr>

// Compute the Rayleigh quotient for a 3-by-3 pencil (K,M)

output rq;

input K(3,3), M(3,3), v(3);

rq = (v’*K*v)/(v’*M*v);

*/

return rq;

}

In addition to MATLAB-like matrix construction and arithmetic, matexpr also provides
simple symbolic differentiation.

matexpr is not a full package for numerical linear algebra, nor even a particularly good
substitute for a decent C++ matrix class. The purpose of matexpr is to make it easy to avoid
index errors and unnecessary overhead when evaluating the sorts of small matrix expressions
that arise in coding finite elements and other similar tasks.

2 matexpr command line

The matexpr command line has the following form:

matexpr [-comment] [-nogen] [-check] infile

where

1

matexpr

• -comment specifies that matexpr should output labels in generated code to specify
corresponding source lines. This is mostly useful for debugging generated code.

• -line specifies that matexpr should output C preprocessor #line labels so that error
diagnostics from the C/C++ compiler will point to the appopriate place in the input
file.

• -nogen specifies that matexpr should remove all automatically generated code from
the output file.

• -check specifies that matexpr should check the input file without generating any other
output.

• -c99complex specifies that matexpr should use C99-style complex numbers (as opposed
to C++ style complex).

3 Interface syntax

The complete syntax for matexpr is given in Figure 1. Matrices must have known constant
dimensions. Variables that are not explicitly declared for input or output are assumed to be
scratch variables.

matexpr expressions are embedded in C-style comments that begin with the start-of-
comment string /* <generator matexpr>. The starting tag can include an optional assign-
ment of the form complex=’’name’’ to specify a type to be used locally for complex inputs.
The generator finishes processing at the end of the C comment. C++-style line comments
may be used to document the generator code. The output of the generator is also marked
off by special comments, i.e.

/* <generated matexpr> */ {

... Generated source goes here ...

} /* </generated> */

The generator will skip any code in the input file which has this form. Consequently, if
foo1.cc is a valid input file and we run

matexpr foo1.cc > foo2.cc

matexpr foo2.cc > foo3.cc

then the files foo2.cc and foo3.cc will be identical.

4 Array handling

Matrices are represented as C arrays, but with Fortran-style column-major storage. Input
arrays can be declared symmetric, in which case only the upper triangle is accessed; a matrix
declared as complex and symmetric is not Hermitian. An array used for input or output
can be specified with a leading dimension given in brackets; this is used, for example, to

2

matexpr

statement := var-id = expr ;
:= var-id += expr ;
:= function id (formals) = expr ;
:= iospec decls ;

iospec := input | output | inout | complex input | complex inout

decls := decl initializer , decl initializer , . . .
decl := var-id | var-id (m)

:= var-id (m , n) | var-id symmetric (m) | var-id [lda] (m , n)

initializer := = expr | ε
formals := id , id , . . .

expr := expr : expr
:= expr + expr
:= expr - expr
:= expr * expr
:= expr / expr
:= - expr
:= expr ’
:= (expr)
:= var-id
:= number
:= matrix
:= func-id (expr , expr , . . .)
:= var-id (expr) | var-id (expr , expr)

matrix := [rows]

rows := row ; row ; . . .
row := expr , expr , . . .

Figure 1: matexpr call syntax

3

matexpr

pass submatrices into matexpr-generated expressions. The array dimensions and the leading
dimension must all be integer constants.

Expressions of the form A(i) or A(i, j) where A is an array are interpreted as subscript
operations. At present, the subscripts must be compile-time integer constants. If only one
index is given for a two-dimensional array, it is interpreted as the index when the entries are
listed in column-major order. Indexing is one-based.

5 Functions

If matexpr sees an expression of the form f(...), where f is not known to be a variable, it
interprets the expression as a function call. If f corresponds to a declared function name, the
function is called inline; if it is a special function, it is handled appropriately; and otherwise,
it is interpreted as a C function call. If f is known to be a variable, the expression is
interpreted as a subscript operation.

matexpr recognizes two special functions:

• deriv(f, x) – differentiate the function f with respect to the input variable(s) x.
The second argument can be a matrix; for example, deriv(f, [x, y]) is equivalent
to [deriv(f, x), deriv(f, y)]. Similarly, deriv(f, [x; y]) is equivalent to
[deriv(f,x); deriv(f,y)]. matexpr only does forward-mode differentiation, and
only handles basic arithmetic operations and a few elementary transcendental func-
tions.

• eye(n) – produce an n-by-n identity matrix. n must be a compile time constant.

For C functions, matexpr currently only allows functions of one argument. If the argu-
ment specified is a matrix, matexpr evaluates the function elementwise.

4

