For a chronological listing of publications by type (archival or conference), see the relevant section of my CV.


  1. Y. Li, K. He, D. Bindel, and J. Hopcroft, “Local Spectral Clustering for Overlapping Community Detection,” ACM Transactions on Knowledge Discovery from Data, vol. PP, no. 99, pp. 1–1, 2017.
    @article{2017-tkdd,
      author = {Li, Yixuan and He, Kun and Bindel, David and Hopcroft, John},
      title = {Local Spectral Clustering for Overlapping Community Detection},
      journal = {ACM Transactions on Knowledge Discovery from Data},
      volume = {PP},
      number = {99},
      pages = {1--1},
      year = {2017}
    }
    
  2. P. Shi, K. He, D. Bindel, and J. Hopcroft, “Local Lanczos Spectral Approximation for Community Detection,” in Proceedings of ECML-PKDD, 2017.
    networks communities
    @inproceedings{2017-ecml-pkdd,
      author = {Shi, Pan and He, Kun and Bindel, David and Hopcroft, John},
      title = {Local Lanczos Spectral Approximation for Community Detection},
      booktitle = {Proceedings of ECML-PKDD},
      year = {2017},
      month = sep
    }
    

    Abstract:

    We propose a novel approach called the Local Lanczos Spectral Approximation (LLSA) for identifying all latent members of a local community from very few seed members. To reduce the computation complexity, we first apply a fast heat kernel diffusing to sample a comparatively small subgraph covering almost all possible community members around the seeds. Then starting from a normalized indicator vector of the seeds and by a few steps of Lanczos iteration on the sampled subgraph, a local eigenvector is gained for approximating the eigenvector of the transition matrix with the largest eigenvalue. Elements of this local eigenvector is a relaxed indicator for the affiliation probability of the corresponding nodes to the target community. We conduct extensive experiments on real-world datasets in various domains as well as synthetic datasets. Results show that the proposed method outperforms state-of-the-art local community detection algorithms. To the best of our knowledge, this is the first work to adapt the Lanczos method for local community detection, which is natural and potentially effective. Also, we did the first attempt of using heat kernel as a sampling method instead of detecting communities directly, which is proved empirically to be very efficient and effective.

  3. C. Ponce and D. Bindel, “FLiER: Practical Topology Update Detection Using Sparse PMUs,” IEEE Transactions on Power Systems, vol. PP, no. 99, pp. 1–1, 2017.
    power
    @article{2017-tps,
      author = {Ponce, Colin and Bindel, David},
      title = {{FLiER}: Practical Topology Update Detection Using Sparse {PMU}s},
      journal = {IEEE Transactions on Power Systems},
      volume = {PP},
      number = {99},
      pages = {1--1},
      year = {2017},
      doi = {https://doi.org/10.1109/TPWRS.2017.2662002}
    }
    

    Abstract:

    {“Abstract”=>”In this paper, we present a Fingerprint Linear Estimation Routine (FLiER) to identify topology changes in power networks using readings from sparsely-deployed phasor measurement units (PMUs). When a power line, load, or generator trips in a network, or when a substation is reconfigured, the event leaves a unique “voltage fingerprint” of bus voltage changes that we can identify using only the portion of the network directly observed by the PMUs. The naive brute-force approach to identify a failed line from such voltage fingerprints, though simple and accurate, is slow.We derive an approximate algorithm based on a local linearization and a novel filtering approach that is faster and only slightly less accurate. We present experimental results using the IEEE 57-bus, IEEE 118-bus, and Polish 1999- 2000 winter peak networks.”}

  4. A. Hood and D. Bindel, “Pseudospectral bounds on transient growth for higher order and constant delay differential equations,” Nov. 2016. Submitted to SIAM Journal on Matrix Analysis and Applictions.
    @techreport{2016-transient-tr,
      author = {Hood, Amanda and Bindel, David},
      title = {Pseudospectral bounds on transient growth for higher order and constant delay differential equations},
      month = nov,
      year = {2016},
      arxiv = {1611.05130},
      link = {http://arxiv.org/pdf/1611.05130},
      status = {unrefereed},
      submit = {Submitted to SIAM Journal on Matrix Analysis and Applictions.}
    }
    
  5. K. Wilson, D. Bindel, and N. Snavely, “When is Rotations Averaging Hard?,” in Proceedings of ECCV 2016, 2016.
    vision
    @inproceedings{2016-rotations,
      author = {Wilson, Kyle and Bindel, David and Snavely, Noah},
      booktitle = {Proceedings of ECCV 2016},
      title = {When is Rotations Averaging Hard?},
      month = oct,
      year = {2016}
    }
    

    Abstract:

    Rotations averaging has become a key subproblem in global Structure from Motion methods. Several solvers exist, but they do not have guarantees of correctness. They can produce high-quality results, but also sometimes fail. Our understanding of what makes rotations averaging problems easy or hard is still very limited. To investigate the difficulty of rotations averaging, we perform a local convexity analysis under an $L_2$ cost function. Although a previous result has shown that in general, this problem is locally convex almost nowhere, we show how this negative conclusion can be reversed by considering the gauge ambiguity.

    Our theoretical analysis reveals the factors that determine local convexity—noise and graph structure—as well as how they interact, which we describe by a particular Laplacian matrix. Our results are useful for predicting the difficulty of problems, and we demonstrate this on practical datasets. Our work forms the basis of a deeper understanding of the key properties of rotations averaging problems, and we discuss how it can inform the design of future solvers for this important problem.

  6. K. He, P. Shi, J. Hopcroft, and D. Bindel, “Local Spectral Diffusion for Robust Community Detection,” in KDD Workshop on Mining and Learning with Graphs, 2016.
    networks communities
    @inproceedings{2016-losp-kdd,
      author = {He, Kun and Shi, Pan and Hopcroft, John and Bindel, David},
      booktitle = {KDD Workshop on Mining and Learning with Graphs},
      title = {Local Spectral Diffusion for Robust Community Detection},
      month = aug,
      year = {2016}
    }
    

    Abstract:

    We address a semi-supervised learning problem of identifying all latent members of a local community from very few labeled seed members in large networks. By a simple and efficient sampling method, we conduct a comparatively small subgraph encompassing most of the latent members such that the follow-up membership identification could focus on an accurate local region instead of the whole network. Then we look for a sparse vector, a relaxed indicator vector representing the subordinative probability of the corresponding nodes, that lies in a local spectral subspace defined by an order-$d$ Krylov subspace. The subspace serves as a local proxy for the invariant subspace spanned by leading eigenvectors of the Laplacian matrices. Based on Rayleigh quotients, we relate the local membership identification task as a local RatioCut or local normalized cut optimization problem, and provide some theoretical justifications.

    We thoroughly explore different probability diffusion methods for the subspace definition and evaluate our method on four groups with a total of 28 representative LFR benchmark datasets, and eight public available real-world networks with labeled ground truth communities across multiple domains. Experimental results exhibit the effectiveness and robustness of the proposed algorithm, and the local spectral communities perform better than those from the celebrated Heat Kernel diffusion and the PageRank diffusion.

  7. C. Ponce and D. Bindel, “FLiER: Practical Topology Update Detection Using Sparse PMUs,” Jul. 2016. Accepted by IEEE Transactions on Power Systems.
    power
    @techreport{2016-flier-tr,
      author = {Ponce, Colin and Bindel, David},
      title = {{FLiER}: Practical Topology Update Detection Using Sparse {PMU}s},
      month = jul,
      year = {2016},
      arxiv = {1409.6644},
      link = {http://arxiv.org/pdf/1409.6644v3},
      code = {https://github.com/cponce512/FLiER_Test_Suite/},
      status = {unrefereed},
      submit = {Accepted by IEEE Transactions on Power Systems.}
    }
    

    Abstract:

    In this paper, we present a Fingerprint Linear Estimation Routine (FLiER) to identify topology changes in power networks using readings from sparsely-deployed phasor measurement units (PMUs). When a power line, load, or generator trips in a network, or when a substation is reconfigured, the event leaves a unique “voltage fingerprint” of bus voltage changes that we can identify using only the portion of the network directly observed by the PMUs. The naive brute-force approach to identify a failed line from such voltage fingerprints, though simple and accurate, is slow. We derive an approximate algorithm based on a local linearization and a novel filtering approach that is faster and only slightly less accurate. We present experimental results using the IEEE 57-bus, IEEE 118-bus, and Polish 1999-2000 winter peak networks.

  8. E. Yilmaz and D. Bindel, “Temperature Sensitivity and Shape Optimization of Solid-State Wave Gyroscopes,” IEEE Sensors, vol. 16, no. 6, pp. 6213–6221, 2016.
    mems fea
    @article{2016-sensors,
      author = {Yilmaz, Erdal and Bindel, David},
      title = {Temperature Sensitivity and Shape Optimization of
                 Solid-State Wave Gyroscopes},
      journal = {IEEE Sensors},
      volume = {16},
      number = {6},
      pages = {6213--6221},
      year = {2016},
      doi = {10.1109/JSEN.2016.2580670}
    }
    

    Abstract:

    We analyze the change of angular gain and vibration frequency of solid-state wave gyroscopes as a result of geometry perturbations due to thermal expansion. We analyze sensitivity of the device to thermal expansion effects by an isoparametric finite element analysis method, and we analyze the sensitivity to thermal changes in the material properties assuming a linear dependence on temperature. We quantify these sensitivities for common device geometries, and use our analysis as the basis for a local optimization problem that minimizes temperature sensitivity as a function of device shape.

  9. E. Yilmaz and D. Bindel, “Temperature Sensitivity of Solid-Wave Gyroscopes (Late News),” in Proceedings of the Hilton Head Solid-Sate Sensor and Actuator Workshop 2016, 2016.
    mems fea
    @inproceedings{2016-hh-workshop,
      author = {Yilmaz, Erdal and Bindel, David},
      booktitle = {Proceedings of the Hilton Head Solid-Sate Sensor and
                     Actuator Workshop 2016},
      title = {Temperature Sensitivity of Solid-Wave Gyroscopes (Late News)},
      month = jun,
      year = {2016}
    }
    

    Abstract:

    We analyze the change of angular gain and vibration frequency of solid-wave gyroscopes as a result of geometry perturbations due to thermal expansion. We formulate a temperature sensitivity analysis by assuming a linear dependence of material properties to temperature, and quantify it for common device geometries.

  10. D. Bindel and A. Hood, “Localization Theorems for Nonlinear Eigenvalues,” SIAM Review, vol. 57, no. 4, pp. 585–607, Dec. 2015.
    SIGEST feature article.
    nep
    @article{2015-sirev,
      author = {Bindel, David and Hood, Amanda},
      title = {Localization Theorems for Nonlinear Eigenvalues},
      journal = {SIAM Review},
      publisher = {SIAM},
      volume = {57},
      number = {4},
      pages = {585--607},
      month = dec,
      year = {2015},
      notable = {SIGEST feature article.},
      doi = {10.1137/15M1026511}
    }
    

    Abstract:

    Let $T : \Omega \rightarrow {\Bbb C}^{n\times n}$ be a matrix-valued function that is analytic on some simply-connected domain $\Omega \subset {\Bbb C}$. A point $\lambda \in \Omega$ is an eigenvalue if the matrix $T(\lambda)$ is singular. In this paper, we describe new localization results for nonlinear eigenvalue problems that generalize Gershgorin’s theorem, pseudospectral inclusion theorems, and the Bauer-Fike theorem. We use our results to analyze three nonlinear eigenvalue problems: an example from delay differential equations, a problem due to Hadeler, and a quantum resonance computation.

  11. A. E. Gencer, E. G. Sirer, R. Van Renesse, and D. Bindel, “Configuring Distributed Computations Using Response Surfaces,” in Proceedings of Middleware 2015, 2015.
    Best student paper.
    systems opt
    @inproceedings{2015-middleware,
      author = {Gencer, Adam Efe and Sirer, Emin Gun and Van Renesse, Robbert and Bindel, David},
      title = {Configuring Distributed Computations Using Response Surfaces},
      booktitle = {Proceedings of Middleware 2015},
      month = dec,
      year = {2015},
      notable = {Best student paper.},
      doi = {10.1145/2814576.2814730}
    }
    

    Abstract:

    Configuring large distributed computations is a challenging task. Efficiently executing distributed computations requires configuration tuning based on careful examination of application and hardware properties. Considering the large number of parameters and impracticality of using trial and error in a production environment, programmers tend to make these decisions based on their experience and rules of thumb. Such configurations can lead to underutilized and costly clusters, and missed deadlines.

    In this paper, we present a new methodology for determining desired hardware and software configuration parameters for distributed computations. The key insight behind this methodology is to build a response surface that captures how applications perform under different hardware and software configuration. Such a model can be built through iterated experiments using the real system, or, more efficiently, using a simulator. The resulting model can then generate recommendations for configuration parameters that are likely to yield the desired results even if they have not been tried either in simulation or in real-life. The process can be iterated to refine previous predictions and achieve better results.

    We have implemented this methodology in a configuration recommendation system for MapReduce 2.0 applications. Performance measurements show that representative applications achieve up to $5 \times$ performance improvement when they use the recommended configuration parameters compared to the default ones.

  12. M. Lee, D. Bindel, and D. Mimno, “Robust Spectral Inference for Joint Stochastic Matrix Factorization,” in Proceedings of NIPS 2015, 2015, pp. 2710–2718.
    topics
    @inproceedings{2015-nips,
      author = {Lee, Moontae and Bindel, David and Mimno, David},
      title = {Robust Spectral Inference for
                 Joint Stochastic Matrix Factorization},
      booktitle = {Proceedings of NIPS 2015},
      pages = {2710--2718},
      month = dec,
      year = {2015}
    }
    

    Abstract:

    Spectral inference provides fast algorithms and provable optimality for latent topic analysis. But for real data these algorithms require additional ad-hoc heuristics, and even then often produce unusable results. We explain this poor performance by casting the problem of topic inference in the framework of Joint Stochastic Matrix Factorization (JSMF) and showing that previous methods violate the theoretical conditions necessary for a good solution to exist. We then propose a novel rectification method that learns high quality topics and their interactions even on small, noisy data. This method achieves results comparable to probabilistic techniques in several domains while maintaining scalability and provable optimality.

  13. K. He, Y. Sun, D. Bindel, J. Hopcroft, and Y. Li, “Detecting Overlapping Communities from Local Spectral Subspaces,” in Proceedings of ICDM 2015, 2015.
    networks communities
    @inproceedings{2015-icdm,
      author = {He, Kun and Sun, Yiwei and Bindel, David and Hopcroft, John and Li, Yixuan},
      title = {Detecting Overlapping Communities from
                 Local Spectral Subspaces},
      booktitle = {Proceedings of ICDM 2015},
      month = nov,
      year = {2015},
      doi = {10.1109/ICDM.2015.89},
      arxiv = {1509.08065}
    }
    

    Abstract:

    Based on the definition of local spectral subspace, we propose a novel approach called LOSP for local overlapping community detection. Using the power method for a few steps, LOSP finds an approximate invariant subspace, which depicts the embedding of the local neighborhood structure around the seeds of interest. LOSP then identifies the local community expanded from the given seeds by seeking a sparse indicator vector in the subspace where the seeds are in its support. We provide a systematic investigation on LOSP, and thoroughly evaluate it on large real world networks across multiple domains. With the prior information of very few seed members, LOSP can detect the remaining members of a target community with high accuracy. Experiments demonstrate that LOSP outperforms the Heat Kernel and PageRank diffusions. Using LOSP as a subroutine, we further address the problem of multiple membership identification, which aims to find all the communities a single vertex belongs to. High F1 scores are achieved in detecting multiple local communities with respect to arbitrary single seed for various large real world networks.

  14. W. Xie, D. Bindel, A. Demers, and J. Gehrke, “Edge-Weighted Personalized PageRank: Breaking A Decade-Old Performance Barrier,” in Proceedings of ACM KDD 2015, 2015.
    Best student paper award.
    systems networks
    @inproceedings{2015-edgeppr,
      author = {Xie, Wenlei and Bindel, David and Demers, Alan and Gehrke, Johannes},
      booktitle = {Proceedings of ACM KDD 2015},
      title = {Edge-Weighted Personalized {PageRank}:
                 Breaking A Decade-Old Performance Barrier},
      month = aug,
      year = {2015},
      doi = {10.1145/2783258.2783278},
      notable = {Best student paper award.},
      code = {https://github.com/wenleix/EdgePPR},
      slides = {present/2015-08-kdd-talk_kdd-aug15.pdf},
      talk = {https://www.youtube.com/watch?v=Cop9Arcw6wY}
    }
    

    Abstract:

    Personalized PageRank is a standard tool for finding vertices in a graph that are most relevant to a query or user. To personalize PageRank, one adjusts node weights or edge weights that determine teleport probabilities and transition probabilities in a random surfer model. There are many fast methods to approximate PageRank when the node weights are personalized; however, personalization based on edge weights has been an open problem since the dawn of personalized PageRank over a decade ago. In this paper, we describe the first fast algorithm for computing PageRank on general graphs when the edge weights are personalized. Our method, which is based on model reduction, outperforms existing methods by nearly five orders of magnitude. This huge performance gain over previous work allows us — for the very first time — to solve learning-to-rank problems for edge weight personalization at interactive speeds, a goal that had not previously been achievable for this class of problems.

  15. D. Bindel, J. Kleinberg, and S. Oren, “How Bad is Forming Your Own Opinion?,” Games and Economic Behavior, vol. 92, no. C, pp. 248–265, 2015.
    networks
    @article{2015-geb,
      author = {Bindel, David and Kleinberg, Jon and Oren, Sigal},
      title = {How Bad is Forming Your Own Opinion?},
      journal = {Games and Economic Behavior},
      volume = {92},
      number = {C},
      year = {2015},
      pages = {248--265},
      doi = {10.1016/j.geb.2014.06.004},
      arxiv = {1203.2973}
    }
    

    Abstract:

    The question of how people form their opinion has fascinated economists and sociologists for long time. In many of the models, a group of people in a social network, each holding a numerical opinion, arrive at a shared opinion through repeated averaging with their neighbors in the network. Motivated by the observation that in reality consensus is rarely reached, we study a related sociological model in which individuals’ intrinsic beliefs counterbalance the averaging process and yield a diversity of opinions.

    We interpret the repeated averaging process as best-response dynamics in an underlying game with natural payoffs and its limit as an equilibrium. This allows us to study the cost of disagreement by comparing between the cost at equilibrium and the social optimum. We also consider a natural network design problem in this setting: which links can we add to the underlying network to reduce the cost at equilibrium?

  16. J. Chadwick and D. Bindel, “An Efficient Solver for Sparse Linear Systems Based on Rank-Structured Cholesky Factorization,” Jul. 2015.
    la-sw
    @techreport{2015-rsc,
      author = {Chadwick, Jeffrey and Bindel, David},
      title = {An Efficient Solver for Sparse Linear Systems Based on
                 Rank-Structured {Cholesky} Factorization},
      month = jul,
      year = {2015},
      arxiv = {1507.05593},
      link = {http://arxiv.org/pdf/1507.05593},
      code = {https://github.com/jeffchadwick/rank_structured_cholesky},
      status = {unrefereed}
    }
    

    Abstract:

    Direct factorization methods for the solution of large, sparse linear systems that arise from PDE discretizations are robust, but typically show poor time and memory scalability for large systems. In this paper, we describe an efficient sparse, rank-structured Cholesky algorithm for solution of the positive definite linear system Ax=b when A comes from a discretized partial-differential equation. Our approach combines the efficient memory access patterns of conventional supernodal Cholesky algorithms with the memory efficiency of rank-structured direct solvers. For several test problems arising from PDE discretizations, our method takes less memory than standard sparse Cholesky solvers and less wall-clock time than standard preconditioned iterations.

  17. Y. Li, K. He, D. Bindel, and J. Hopcroft, “Uncovering the Small Community Structure in Large Networks: A Local Spectral Approach,” in Proceedings of WWW 2015, 2015.
    networks communities
    @inproceedings{2015-www,
      author = {Li, Yixuan and He, Kun and Bindel, David and Hopcroft, John},
      title = {Uncovering the Small Community Structure in Large Networks:
                 A Local Spectral Approach},
      booktitle = {Proceedings of WWW 2015},
      month = may,
      year = {2015},
      doi = {10.1145/2736277.2741676},
      arxiv = {1509.07715}
    }
    

    Abstract:

    Large graphs arise in a number of contexts and understanding their structure and extracting information from them is an important research area. Early algorithms on mining communities have focused on the global structure, and often run in time functional to the size of the entire graph. Nowadays, as we often explore networks with billions of vertices and find communities of size hundreds, it is crucial to shift our attention from macroscopic structure to microscopic structure when dealing with large networks. A growing body of work has been adopting local expansion methods in order to identify the community from a few exemplary seed members. Very few approaches can systematically demonstrate both high efficiency and effectiveness that significantly stands out amongst the divergent approaches in finding communities.

    In this paper, we propose a novel approach for finding overlapping communities called LEMON (Local Expansion via Minimum One Norm). Different from PageRank-like diffusion methods, LEMON finds the community by seeking a sparse vector in the span of the local spectra such that the seeds are in its support. We show that LEMON can achieve the highest detection accuracy among state-of-the-art proposals. The running time depends on the size of the community rather than that of the entire graph. The algorithm is easy to implement, and is highly parallelizable.

    Moreover, given that networks are not all similar in nature, a comprehensive analysis on how the local expansion approach is suited for uncovering communities in different networks is still lacking. We thoroughly evaluate our approach using both synthetic and real-world datasets across different domains, and analyze the empirical variations when applying our method to inherently different networks in practice. In addition, the heuristics on how the quality and quantity of the seed set would affect the performance are provided.

  18. K. Dong and D. Bindel, “Modified Kernel Polynomial Method for Estimating Graph Spectra,” in SIAM Network Science 2015 (poster), 2015.
    networks
    @inproceedings{2015-siam-ns,
      author = {Dong, Kun and Bindel, David},
      title = {Modified Kernel Polynomial Method for Estimating Graph Spectra},
      booktitle = {SIAM Network Science 2015 (poster)},
      month = may,
      year = {2015}
    }
    

    Abstract:

    The kernel polynomial method (KPM) is a standard tool in condensed matter physics to estimate the density of states for a quantum system. We use the KPM to instead estimate the eigenvalue densities of the normalized adjacency matrices of “natural” graphs. Because natural graph spectra often include high-multiplicity eigenvalues corresponding to certain motifs in the graph, we introduce a pre-processing phase that counts just these special eigenvalues, leaving the rest of the eigenvalue distribution to be estimated by the standard KPM.

  19. D. Bindel, M. Friedman, W. Govaerts, J. Hughes, and Y. A. Kuznetsov, “Numerical Computation of Bifurcations in Large Equilibrium Systems in MATLAB,” Journal of Computational and Applied Mathematics, vol. 261, pp. 232–248, 2014.
    la-sw cis
    @article{2014-matcont,
      author = {Bindel, David and Friedman, Mark and Govaerts, Willy and Hughes, Jeremy and Kuznetsov, Yuri A.},
      title = {Numerical Computation of Bifurcations in
                 Large Equilibrium Systems in {MATLAB}},
      journal = {Journal of Computational and Applied Mathematics},
      volume = {261},
      pages = {232--248},
      year = {2014},
      doi = {10.1016/j.cam.2013.10.034}
    }
    

    Abstract:

    The Continuation of Invariant Subspaces (CIS) algorithm produces a smoothly-varying basis for an invariant subspace R(s) of a parameter-dependent matrix $A(s)$. We have incorporated the CIS algorithm into Cl_matcont, a Matlab package for the study of dynamical systems and their bifurcations. Using subspace reduction, we extend the functionality of Cl_matcont to large-scale computations of bifurcations of equilibria. In this paper, we describe the algorithms and functionality of the resulting Matlab bifurcation package Cl_matcontL. The novel features include: new CIS-based, continuous, well-scaled test functions for codimension 1 and 2 bifurcations; detailed description of locators for large problems; and examples of bifurcation analysis in large sparse problems.

  20. D. Bindel and A. Hood, “Localization Theorems for Nonlinear Eigenvalues,” SIAM Journal on Matrix Analysis, vol. 34, no. 4, pp. 1728–1749, 2013.
    2015 SIAG/LA award (best journal paper in applied LA in three years).
    nep
    @article{2013-simax,
      author = {Bindel, David and Hood, Amanda},
      title = {Localization Theorems for Nonlinear Eigenvalues},
      journal = {SIAM Journal on Matrix Analysis},
      volume = {34},
      number = {4},
      pages = {1728--1749},
      year = {2013},
      doi = {10.1137/130913651},
      arxiv = {http://arxiv.org/abs/1303.4668},
      notable = {2015 SIAG/LA award (best journal paper in applied LA in three years).}
    }
    

    Abstract:

    Let $T : \Omega \rightarrow {\Bbb C}^{n \times n}$ be a matrix-valued function that is analytic on some simply-connected domain $\Omega \subset {\Bbb C}$. A point $\lambda \in \Omega$ is an eigenvalue if the matrix $T(\lambda)$ is singular. In this paper, we describe new localization results for nonlinear eigenvalue problems that generalize Gershgorin’s theorem, pseudospectral inclusion theorems, and the Bauer-Fike theorem. We use our results to analyze three nonlinear eigenvalue problems: an example from delay differential equations, a problem due to Hadeler, and a quantum resonance computation.

  21. D. Bindel and A. Hood, “Localization Theorems for Nonlinear Eigenvalues,” Aug. 2013. Appeared in SIAM Journal on Matrix Analysis and Applications in 2013.
    nep
    @techreport{2013-nep,
      author = {Bindel, David and Hood, Amanda},
      title = {Localization Theorems for Nonlinear Eigenvalues},
      month = aug,
      year = {2013},
      arxiv = {1303.4668},
      link = {http://arxiv.org/pdf/1303.4668},
      status = {unrefereed},
      submit = {Appeared in SIAM Journal on Matrix Analysis
                  and Applications in 2013.}
    }
    

    Abstract:

    Let $T : \Omega \rightarrow {\Bbb C}^{n \times n}$ be a matrix-valued function that is analytic on some simply-connected domain $\Omega \subset {\Bbb C}$. A point $\lambda \in \Omega$ is an eigenvalue if the matrix $T(\lambda)$ is singular. In this paper, we describe new localization results for nonlinear eigenvalue problems that generalize Gershgorin’s theorem, pseudospectral inclusion theorems, and the Bauer-Fike theorem. We use our results to analyze three nonlinear eigenvalue problems: an example from delay differential equations, a problem due to Hadeler, and a quantum resonance computation.

  22. E. Yilmaz and D. Bindel, “Effects of imperfections on solid-wave gyroscope dynamics,” in Proceedings of IEEE SENSORS 2013, 2013.
    mems fea
    @inproceedings{2013-sensors,
      author = {Yilmaz, Erdal and Bindel, David},
      title = {Effects of imperfections on solid-wave gyroscope dynamics},
      booktitle = {Proceedings of IEEE SENSORS 2013},
      month = nov,
      year = {2013},
      doi = {10.1109/ICSENS.2013.6688462}
    }
    

    Abstract:

    Solid-wave gyroscopes are symmetric resonators that sense rotation by measuring how Coriolis forces perturb a degenerate mode pair. The idealized dynamics of these devices are described by ODE models of two identical oscillators coupled by a perturbation due to rotation. In miniaturized solid-wave gyroscopes, geometric distortions due to imperfect fabrication also perturb the dynamics, and this limits sensing accuracy. In this work, we describe how geometric imperfections affect the dynamics of solid-wave gyroscopes. We also use selection rules both to find qualitative information about what types of geometry perturbations most affect sensor performance and to accelerate computations

  23. W. Xie, G. Wang, D. Bindel, A. Demers, and J. Gehrke, “Fast Iterative Graph Computation with Block Updates,” Proceedings of the VLDB Endowment, vol. 6, no. 14, pp. 2014–2025, 2013.
    systems
    @article{2013-blockgrace,
      author = {Xie, Wenlei and Wang, Guozhang and Bindel, David and Demers, Alan and Gehrke, Johannes},
      journal = {Proceedings of the VLDB Endowment},
      number = {14},
      pages = {2014--2025},
      publisher = {VLDB Endowment},
      title = {Fast Iterative Graph Computation with Block Updates},
      volume = {6},
      year = {2013},
      doi = {10.14778/2556549.2556581},
      code = {https://github.com/wenleix/BlockGRACE}
    }
    

    Abstract:

    Scaling iterative graph processing applications to large graphs is an important problem. Performance is critical, as data scientists need to execute graph programs many times with varying parameters. The need for a high-level, high-performance programming model has inspired much research on graph programming frameworks. In this paper, we show that the important class of computationally light graph applications – applications that perform little computation per vertex – has severe scalability problems across multiple cores as these applications hit an early “memory wall” that limits their speedup. We propose a novel block-oriented computation model, in which computation is iterated locally over blocks of highly connected nodes, significantly improving the amount of computation per cache miss. Following this model, we describe the design and implementation of a block-aware graph processing runtime that keeps the familiar vertex-centric programming paradigm while reaping the benefits of block-oriented execution. Our experiments show that block-oriented execution significantly improves the performance of our framework for several graph applications.

  24. W. He, D. Bindel, and S. Govindjee, “Topology Optimization in Micromechanical Resonator Design,” Optimization and Engineering, vol. 13, no. 2, 2012.
    mems opt
    @article{2012-mems-opt,
      author = {He, Wei and Bindel, David and Govindjee, Sanjay},
      title = {Topology Optimization in Micromechanical Resonator Design},
      journal = {Optimization and Engineering},
      volume = {13},
      number = {2},
      year = {2012},
      doi = {10.1007/s11081-011-9139-1}
    }
    

    Abstract:

    A topology optimization problem in micromechanical resonator design is addressed in this paper. The design goal is to control the first several eigenfrequencies of a micromechanical resonator using topology optimization. The design variable is the distribution of mass in a constrained domain which we model via (1) the Simple Isotropic Material with Penalization Model and (2) the Peak Function Model. The overall optimization problem is solved using the Method of Moving Asymptotes and a Genetic Algorithm combined with a local gradient method. A numerical example is presented to highlight the features of the methods in more detail. The advantages and disadvantages of each method are discussed.

  25. T. Zou, G. Wang, M. Vaz Salles, D. Bindel, A. Demers, J. Gehrke, and W. White, “Making Time-Stepped Applications Tick in the Cloud,” in Proceedings of the Second ACM Symposium on Cloud Computing (SOCC), 2011.
    systems
    @inproceedings{2011-socc,
      author = {Zou, Tao and Wang, Guozhang and Vaz Salles, Marcos and Bindel, David and Demers, Alan and Gehrke, Johannes and White, Walker},
      title = {Making Time-Stepped Applications Tick in the Cloud},
      booktitle = {Proceedings of the Second
                     ACM Symposium on Cloud Computing (SOCC)},
      month = oct,
      year = {2011},
      doi = {10.1145/2038916.2038936}
    }
    

    Abstract:

    Scientists are currently evaluating the cloud as a new platform. Many important scientific applications, however, perform poorly in the cloud. These applications proceed in highly parallel discrete time-steps or “ticks,” using logical synchronization barriers at tick boundaries. We observe that network jitter in the cloud can severely increase the time required for communication in these applications, significantly increasing overall running time.

    In this paper, we propose a general parallel framework to process time-stepped applications in the cloud. Our framework exposes a high-level, data-centric programming model which represents application state as tables and dependencies between states as queries over these tables. We design a jitter-tolerant runtime that uses these data dependencies to absorb latency spikes by (1) carefully scheduling computation and (2) replicating data and computation. Our data-driven approach is transparent to the scientist and requires little additional code. Our experiments show that our methods improve performance up to a factor of three for several typical time-stepped applications.

  26. D. Bindel, S. Oren, and J. Kleinberg, “How Bad is Forming Your Own Opinion?,” in Proceedings of the 52nd IEEE Symposium on Foundations of Computer Science (FOCS), 2011.
    networks
    @inproceedings{2011-focs,
      author = {Bindel, David and Oren, Sigal and Kleinberg, Jon},
      title = {How Bad is Forming Your Own Opinion?},
      booktitle = {Proceedings of the 52nd IEEE Symposium on
                     Foundations of Computer Science (FOCS)},
      month = oct,
      year = {2011},
      doi = {10.1109/FOCS.2011.43},
      arxiv = {1203.2973}
    }
    

    Abstract:

    A long-standing line of work in economic theory has studied models by which a group of people in a social network, each holding a numerical opinion, can arrive at a shared opinion through repeated averaging with their neighbors in the network. Motivated by the observation that consensus is rarely reached in real opinion dynamics, we study a related sociological model in which individuals’ intrinsic beliefs counterbalance the averaging process and yield a diversity of opinions. By interpreting the repeated averaging as best-response dynamics in an underlying game with natural payoffs, and the limit of the process as an equilibrium, we are able to study the cost of disagreement in these models relative to a social optimum. We provide a tight bound on the cost at equilibrium relative to the optimum, our analysis draws a connection between these agreement models and extremal problems for generalized eigenvalues. We also consider a natural network design problem in this setting, where adding links to the underlying network can reduce the cost of disagreement at equilibrium.

  27. W. He, D. Bindel, and S. Govindjee, “Topology Optimization in Micromechanical Resonator Design,” Structural Engineering Mechanics and Materials, Department of Civil and Environmental Engineering, University of California, Berkeley, UCB/SEMM-2009/04, Dec. 2009. Appeared in Optimization and Engineering in 2012
    mems
    @techreport{2009-topology,
      author = {He, Wei and Bindel, David and Govindjee, Sanjay},
      title = {Topology Optimization in Micromechanical Resonator Design},
      number = {UCB/SEMM-2009/04},
      institution = {Structural Engineering Mechanics and Materials,
                       Department of Civil and Environmental Engineering,
                       University of California, Berkeley},
      month = dec,
      year = {2009},
      status = {unrefereed},
      submit = {Appeared in Optimization and Engineering in 2012}
    }
    

    Abstract:

    A topology optimization problem in microelectromechanical resonator design is addressed in this paper. The design goal is to control the first several eigen-frequencies of a microelectromechanical resonator using topology optimization in order to improve the resonator’s quality of resonance. The design variable is the distribution of mass in a constrained domain which we model via (1) the Simple Isotropic Material with Penalization Model and (2) the Peak Function Model. The overall optimization problem is solved using the Method of Moving Asymptotes and a Genetic Algorithm combined with a local gradient method. A numerical example is presented to highlight the features of the methods in more detail. The advantages and disadvantages of each method are discussed.

  28. Y. Zhao, Y. Chen, and D. Bindel, “Towards Unbiased End-to-End Network Diagnosis,” IEEE/ACM Transactions on Networking, vol. 17, no. 6, pp. 1724–1737, Dec. 2009.
    systems tomography
    @article{2009-tons,
      author = {Zhao, Yao and Chen, Yan and Bindel, David},
      title = {Towards Unbiased End-to-End Network Diagnosis},
      journal = {IEEE/ACM Transactions on Networking},
      volume = {17},
      number = {6},
      pages = {1724--1737},
      month = dec,
      year = {2009},
      doi = {10.1109/TNET.2009.2022158}
    }
    

    Abstract:

    Internet fault diagnosis is extremely important for end-users, overlay network service providers (like Akamai ), and even Internet service providers (ISPs). However, because link-level properties cannot be uniquely determined from end-to-end measurements, the accuracy of existing statistical diagnosis approaches is subject to uncertainty from statistical assumptions about the network. In this paper, we propose a novel least-biased end-to-end network diagnosis (in short, LEND) system for inferring link-level properties like loss rate. We define a minimal identifiable link sequence (MILS) as a link sequence of minimal length whose properties can be uniquely identified from end-to-end measurements. We also design efficient algorithms to find all the MILSs and infer their loss rates for diagnosis. Our LEND system works for any network topology and for both directed and undirected properties and incrementally adapts to network topology and property changes. It gives highly accurate estimates of the loss rates of MILSs, as indicated by both extensive simulations and Internet experiments. Furthermore, we demonstrate that such diagnosis can be achieved with fine granularity and in near real-time even for reasonably large overlay networks. Finally, LEND can supplement existing statistical inference approaches and provide smooth tradeoff between diagnosis accuracy and granularity.

  29. D. Bindel, J. Demmel, and M. Friedman, “Continuation of Invariant Subspaces in Large Bifurcation Problems,” SIAM Journal on Scientific Computing, vol. 30, no. 2, pp. 637–656, Feb. 2008.
    la-sw cis
    @article{2008-cis,
      author = {Bindel, David and Demmel, James and Friedman, Mark},
      title = {Continuation of Invariant Subspaces in
                 Large Bifurcation Problems},
      journal = {SIAM Journal on Scientific Computing},
      volume = {30},
      number = {2},
      pages = {637--656},
      month = feb,
      year = {2008},
      doi = {10.1137/060654219}
    }
    

    Abstract:

    We summarize an algorithm for computing a smooth orthonormal basis for an invariant subspace of a parameter-dependent matrix, and describe how to extend it for numerical bifurcation analysis. We adapt the continued subspace to track behavior relevant to bifurcations, and use projection methods to deal with large problems. To test our ideas, we have integrated our code into MATCONT, a program for numerical continuation and bifurcation analysis.

  30. Y. Chen, D. Bindel, H. Song, B. Chavez, and R. Katz, “Algebra-Based Scalable Overlay Network Monitoring: Algorithms, Evaluation, and Applications,” ACM Transactions on Networking, vol. 15, no. 5, pp. 1084–1097, Oct. 2007.
    systems tomography
    @article{2007-tons,
      author = {Chen, Yan and Bindel, David and Song, Hanhee and Chavez, Brian and Katz, Randy},
      title = {Algebra-Based Scalable Overlay Network Monitoring:
                 Algorithms, Evaluation, and Applications},
      journal = {ACM Transactions on Networking},
      volume = {15},
      number = {5},
      pages = {1084--1097},
      month = oct,
      year = {2007},
      doi = {10.1109/TNET.2007.896251}
    }
    

    Abstract:

    Overlay network monitoring enables distributed Internet applications to detect and recover from path outages and periods of degraded performance within seconds. For an overlay network with end hosts, existing systems either require measurements, and thus lack scalability, or can only estimate the latency but not congestion or failures. Our earlier extended abstract [Y. Chen, D. Bindel, and R. H. Katz, “Tomography-based overlay network monitoring,” Proceedings of the ACM SIGCOMM Internet Measurement Conference (IMC), 2003] briefly proposes an algebraic approach that selectively monitors linearly independent paths that can fully describe all the paths. The loss rates and latency of these paths can be used to estimate the loss rates and latency of all other paths. Our scheme only assumes knowledge of the underlying IP topology, with links dynamically varying between lossy and normal. In this paper, we improve, implement, and extensively evaluate such a monitoring system. We further make the following contributions: i) scalability analysis indicating that for reasonably large n (e.g., 100), the growth of $k$ is bounded as $O(n \log n)$, ii) efficient adaptation algorithms for topology changes, such as the addition or removal of end hosts and routing changes, iii) measurement load balancing schemes, iv) topology measurement error handling, and v) design and implementation of an adaptive streaming media system as a representative application. Both simulation and Internet experiments demonstrate we obtain highly accurate path loss rate estimation while adapting to topology changes within seconds and handling topology errors.

  31. C. Bruyns-Maxwell and D. Bindel, “Modal Parameter Tracking for Shape Changing Objects,” in Proceedings of DAFx 2007, 2007.
    sound fea
    @inproceedings{2007-sound,
      author = {Bruyns-Maxwell, Cynthia and Bindel, David},
      title = {Modal Parameter Tracking for Shape Changing Objects},
      booktitle = {Proceedings of DAFx 2007},
      month = sep,
      year = {2007}
    }
    

    Abstract:

    For interactive sound synthesis, we would like to change the shape of a finite element model of an instrument and rapidly hear how the sound changes. Using modal synthesis methods, we would need to compute a new modal decomposition with each change in the geometry, making the analysis too slow for interactive use. However, by using modes computed for one geometry to estimate the frequencies for nearby geometries, we can hear much more quickly how changing the instrument shape changes the sound. In this paper, we describe how to estimate resonant frequencies of an instrument by combining information about the modes of two similar instruments. We also describe the balance between computational speed and accuracy of the computed resonances.

  32. D. Bindel and M. Zworski, “Symmetry of Bound and Antibound States in the Semiclassical Limit,” Letters in Math Physics, vol. 81, no. 2, pp. 107–117, Aug. 2007.
    @article{2007-symmetry,
      author = {Bindel, David and Zworski, Maciej},
      title = {Symmetry of Bound and Antibound States in the Semiclassical Limit},
      journal = {Letters in Math Physics},
      volume = {81},
      number = {2},
      pages = {107--117},
      month = aug,
      year = {2007},
      doi = {10.1007/s11005-007-0178-7}
    }
    

    Abstract:

    Motivated by a recent numerical observation we show that in one dimensional scattering a barrier separating the interaction region from infinity implies approximate symmetry of bound and antibound states. We also outline the numerical procedure used for an efficient computation of one dimensional resonances.

  33. J. Demmel, J. Dongarra, B. Parlett, W. Kahan, M. Gu, D. Bindel, Y. Hida, X. Li, O. Marques, J. Riedy, C. Voemel, J. Langou, P. Lusczek, J. Kurzak, A. Butarri, J. Langou, and S. Tomov, “Prospectus for the Next LAPACK and ScaLAPACK Libraries,” in Proceedings of PARA 2006, 2006, pp. 11–23.
    la-sw
    @inproceedings{2006-para,
      author = {Demmel, James and Dongarra, Jack and Parlett, Beresford and Kahan, William and Gu, Ming and Bindel, David and Hida, Yozo and Li, Xiaoye and Marques, Osni and Riedy, Jason and Voemel, Christof and Langou, Julien and Lusczek, Piotr and Kurzak, Jakub and Butarri, Alfredo and Langou, Julie and Tomov, Stanimire},
      title = {Prospectus for the Next {LAPACK} and {ScaLAPACK} Libraries},
      booktitle = {Proceedings of PARA 2006},
      pages = {11--23},
      year = {2006}
    }
    

    Abstract:

    New releases of the widely used LAPACK and ScaLAPACK numerical linear algebra libraries are planned. Based on an on-going user survey (<www.netlib.org/lapack-dev>) and research by many people, we are proposing the following improvements: Faster algorithms, including better numerical methods, memory hierarchy optimizations, parallelism, and automatic performance tuning to accommodate new architectures; More accurate algorithms, including better numerical methods, and use of extra precision; Expanded functionality, including updating and downdating, new eigenproblems, etc. and putting more of LAPACK into ScaLAPACK; Improved ease of use, e.g., via friendlier interfaces in multiple languages. To accomplish these goals we are also relying on better software engineering techniques and contributions from collaborators at many institutions.

  34. C. Bruyns and D. Bindel, “Shape Changing Symmetric Objects for Sound Synthesis,” in Proceedings of 121st AES, 2006.
    sound fea
    @inproceedings{2006-sound,
      author = {Bruyns, Cynthia and Bindel, David},
      title = {Shape Changing Symmetric Objects for Sound Synthesis},
      booktitle = {Proceedings of 121st AES},
      month = oct,
      year = {2006}
    }
    

    Abstract:

    In the last decade, many researchers have used modal synthesis for sound generation. Using a modal decomposition, one can convert a large system of coupled differential equations into simple, independent differential equations in one variable. To synthesize sound from the system, one solves these decoupled equations numerically, which is much more efficient than solving the original coupled system. For large systems, such as those obtained from finite-element analysis of a musical instrument, the initial modal decomposition is time-consuming. To design instruments from physical simulation, one would like to be able to compute modes in real-time, so that the geometry, and therefore spectrum, of an instrument can be changed interactively. In this paper, we describe how to quickly compute modes of instruments which have rotational symmetry in order to synthesize sounds of new instruments quickly enough for interactive instrument design.

  35. D. Bindel, “Structured and Parameter-Dependent Eigensolvers for Simulation-Based Design of Resonant MEMS,” PhD thesis, University of California, Berkeley, 2006. Appears as Tech Report EECS-2006-109.
    2008 Householder Award (best NLA thesis over three years)
    mems la-sw fea cis
    @phdthesis{2006-dissertation,
      author = {Bindel, David},
      title = {Structured and Parameter-Dependent Eigensolvers for
                 Simulation-Based Design of Resonant {MEMS}},
      school = {University of California, Berkeley},
      month = aug,
      year = {2006},
      status = {unrefereed},
      submit = {Appears as Tech Report EECS-2006-109.},
      notable = {2008 Householder Award (best NLA thesis over three years)}
    }
    

    Abstract:

    This dissertation is about computational tools to aid in the design of resonant Micro-Electro-Mechanical Systems (MEMS), tiny vibrating devices built by processes like those used to make integrated circuits. Vibrating MEMS are used in accelerometers and gyroscopes, in sensors to detect chemicals and to measure pressure, and in communication devices such as cell phones. MEMS engineers can use computer simulations to design devices using fewer costly and time-consuming prototype tests, but these simulations are only as useful as the models on which they are built. In this work, we contribute new mathematical models, numerical methods, and software tools to simulate resonant MEMS, and apply these tools to analyze specific devices. We describe physical models of damped vibrations of MEMS, including anchor loss and thermoelastic effects which are widely recognized as important, but not modeled in generality by existing tools. Though the resulting systems of equations are large and non-Hermitian, and depend nonlinearly on frequency, we use the equation structure to develop efficient structured Krylov subspace projection methods for computing free vibrations and reduced-order models. We also provide efficient continuation methods for re-computing eigendecompositions under changes to design parameters or operating conditions. Our models and analysis methods are integrated into HiQLab, a new finite element tool with a particularly flexible architecture which we have designed. Using HiQLab, we simulate example resonator designs, and compare our results to laboratory measurements. Our simulations reveal a previously-unknown mode interference phenomenon, subsequently observed in experiments, which dramatically affects the amount of damping near certain critical values of geometric parameters.

  36. Y. Zhao, Y. Chen, and D. Bindel, “Toward Unbiased End-to-End Network Diagnosis,” in Proceedings of SIGCOMM 2006, 2006, pp. 219–230.
    systems tomography
    @inproceedings{2006-sigcomm,
      author = {Zhao, Yao and Chen, Yan and Bindel, David},
      title = {Toward Unbiased End-to-End Network Diagnosis},
      booktitle = {Proceedings of SIGCOMM 2006},
      pages = {219--230},
      year = {2006},
      doi = {10.1145/1151659.1159939}
    }
    

    Abstract:

    Internet fault diagnosis is extremely important for end users, overlay network service providers (like Akamai [1]) and even Internet service providers (ISPs). However, because link-level properties cannot be uniquely determined from end-to-end measurements, the accuracy of existing statistical diagnosis approaches is subject to uncertainty from statistical assumptions about the network. In this paper, we propose a novel Least-biased End-to-end Network Diagnosis (in short, LEND) system for inferring link-level properties like loss rate. We define a minimal identifiable link sequence (MILS) as a link sequence of minimal length whose properties can be uniquely identified from end-to-end measurements. We also design efficient algorithms to find all the MILSes and infer their loss rates for diagnosis. Our LEND system works for any network topology and for both directed and undirected properties, and incrementally adapts to network topology and property changes. It gives highly accurate estimates of the loss rates of MILSes, as indicated by both extensive simulations and Internet experiments. Furthermore, we demonstrate that such diagnosis can be achieved with fine granularity and in near real-time even for reasonably large overlay networks. Finally, LEND can supplement existing statistical inference approaches and provide smooth tradeoff between diagnosis accuracy and granularity.

  37. Y. Zhao, Y. Chen, and D. Bindel, “Toward Deterministic Overlay Diagnosis,” in ACM SIGMETRICS/Performance 2006, 2006, pp. 387–388.
    systems tomography
    @inproceedings{2006-sigmetrics,
      author = {Zhao, Yao and Chen, Yan and Bindel, David},
      title = {Toward Deterministic Overlay Diagnosis},
      booktitle = {ACM SIGMETRICS/Performance 2006},
      pages = {387--388},
      year = {2006},
      doi = {10.1145/1140277.1140333}
    }
    
  38. D. Bindel and J. Demmel, “Continuation of Invariant Subspaces for Large Bifurcation Problems,” UC Berkeley Computer Science Division, EECS-2006-13, Feb. 2006. Appeared in SIAM Journal on Scientific Computing in 2008.
    la-sw cis
    @techreport{2006-cis,
      author = {Bindel, David and Demmel, James},
      title = {Continuation of Invariant Subspaces for Large Bifurcation Problems},
      number = {EECS-2006-13},
      institution = {UC Berkeley Computer Science Division},
      month = feb,
      year = {2006},
      status = {unrefereed},
      submit = {Appeared in SIAM Journal on Scientific Computing in 2008.}
    }
    

    Abstract:

    We summarize an algorithm for computing a smooth orthonormal basis for an invariant subspace of a parameter-dependent matrix, and describe how to extend it for numerical bifurcation analysis. We adapt the continued subspace to track behavior relevant to bifurcations, and use projection methods to deal with large problems. To test our ideas, we have integrated our code into MATCONT, a program for numerical continuation and bifurcation analysis.

  39. T. Koyama, D. Bindel, W. He, E. Quevy, J. Demmel, S. Govindjee, and R. Howe, “Simulation Tools for Damping in High Frequency Resonators,” in Proceedings of IEEE SENSORS 2005, 2005.
    mems fea
    @inproceedings{2005-sensors,
      author = {Koyama, Tsuyoshi and Bindel, David and He, Wei and Quevy, Emmanuel and Demmel, James and Govindjee, Sanjay and Howe, Roger},
      title = {Simulation Tools for Damping in High Frequency Resonators},
      booktitle = {Proceedings of IEEE SENSORS 2005},
      month = nov,
      year = {2005},
      doi = {10.1109/ICSENS.2005.1597708}
    }
    

    Abstract:

    This paper presents the development of HiQLab, a simulation tool to compute the effect of damping in high frequency resonators. Existing simulation tools allow designers to compute resonant frequencies but few tools provide estimates of damping, which is crucial in evaluating the performance of such devices. In the current code, two damping mechanisms: thermoelastic damping and anchor loss, have been implemented. Thermoelastic damping results from irreversible heat flow due to mechanically-driven temperature gradients, while anchor loss occurs when high-frequency mechanical waves radiate away from the resonator and into the substrate. Our finite-element simulation tool discretizes PDE models of both phenomena, and evaluates the quality factor ($Q$), a measure of damping in the system, with specialized eigencomputations and model reduction techniques. The core functions of the tool are written in C++ for performance. Interfaces are in Lua and MATLAB, which give users access to powerful visualization and pre- and postprocessing capabilities.

  40. D. Bindel and S. Govindjee, “Elastic PMLs for Resonator Anchor Loss Simulation,” International Journal for Numerical Methods in Engineering, vol. 64, no. 6, pp. 789–818, Oct. 2005.
    mems fea
    @article{2005-ijnme,
      author = {Bindel, David and Govindjee, Sanjay},
      title = {Elastic {PMLs} for Resonator Anchor Loss Simulation},
      journal = {International Journal for Numerical Methods in Engineering},
      volume = {64},
      number = {6},
      pages = {789--818},
      month = oct,
      year = {2005},
      doi = {10.1002/nme.1394}
    }
    

    Abstract:

    Electromechanical resonators and filters, such as quartz, ceramic, and surface-acoustic wave devices, are important signal-processing elements in communication systems. Over the past decade, there has been substantial progress in developing new types of miniaturized electromechanical resonators using microfabrication processes. For these micro-resonators to be viable they must have high and predictable quality factors ($Q$). Depending on scale and geometry, the energy losses that lower $Q$ may come from material damping, thermoelastic damping, air damping, or radiation of elastic waves from an anchor. Of these factors, anchor losses are the least understood because such losses are due to a complex radiation phenomena in a semi-infinite elastic half-space. Here, we describe how anchor losses can be accurately computed using an absorbing boundary based on a perfectly matched layer (PML) which absorbs incoming waves over a wide frequency range for any non-zero angle of incidence. We exploit the interpretation of the PML as a complex-valued change of coordinates to illustrate how one can come to a simpler finite element implementation than was given in its original presentations. We also examine the convergence and accuracy of the method, and give guidelines for how to choose the parameters effectively. As an example application, we compute the anchor loss in a micro disk resonator and compare it to experimental data. Our analysis illustrates a surprising mode-mixing phenomenon which can substantially affect the quality of resonance.

  41. Y. Zhao, Y. Chen, and D. Bindel, “Scalable and Deterministic Overlay Network Diagnosis,” in Proceedings of ACM SIGCOMM 2005 (poster), 2005.
    @inproceedings{2005-sigcomm,
      author = {Zhao, Yao and Chen, Yan and Bindel, David},
      title = {Scalable and Deterministic Overlay Network Diagnosis},
      booktitle = {Proceedings of ACM SIGCOMM 2005 (poster)},
      year = {2005}
    }
    
  42. D. Bindel, S. Chandresekaran, J. Demmel, D. Garmire, and M. Gu, “A Fast and Stable Nonsymmetric Eigensolver for Certain Structured Matrices,” May 2005.
    la-sw
    @techreport{2005-compan,
      author = {Bindel, David and Chandresekaran, Shivkumar and Demmel, James and Garmire, David and Gu, Ming},
      title = {A Fast and Stable Nonsymmetric Eigensolver for
                 Certain Structured Matrices},
      month = may,
      year = {2005},
      status = {unrefereed}
    }
    

    Abstract:

    We consider the set of matrices which differ from symmetric, skew symmetric, or unitary by only a low rank modification. This class of matrices includes companion matrices, arrow matrices, and matrices corresponding to mechanical oscillators with localized damping. We show that Hessenberg and Schur forms for such matrices have semi-separable structure, and we use this fact to construct a backward stable eigensolver for such matrices which requires $O(n)$ space and runs in $O(n^2)$ time. We evaluate the performance and accuracy of our approach for several test problems, including the computation of all the roots of a polynomial or a matrix polynomial.

  43. D. Bindel, J. Demmel, W. Govaerts, and Y. Kuznetsov, “Bifurcation Analysis of Large Equilibrium Systems in MATLAB,” in Proceedings of ICCS 2005, 2005, vol. 3514, pp. 50–57.
    la-sw cis
    @inproceedings{2005-iccs,
      author = {Bindel, David and Demmel, James and Govaerts, Willy and Kuznetsov, Yuri},
      title = {Bifurcation Analysis of Large Equilibrium Systems in {MATLAB}},
      booktitle = {Proceedings of ICCS 2005},
      volume = {3514},
      series = {Springer LNCS},
      pages = {50--57},
      month = apr,
      year = {2005},
      doi = {10.1007/11428831_7}
    }
    

    Abstract:

    The Continuation of Invariant Subspaces (CIS) algorithm produces a smoothly varying basis for an invariant subspace $R(s)$ of a parameter-dependent matrix $A(s)$. In the case when $A(s)$ is the Jacobian matrix for a system that comes from a spatial discretization of a partial differential equation, it will typically be large and sparse. Cl_matcont is a user-friendly MATLAB package for the study of dynamical systems and their bifurcations. We incorporate the CIS algorithm into Cl_matcont to extend its functionality to large scale bifurcation computations via subspace reduction

  44. D. Bindel and S. Govindjee, “Elastic PMLs for Resonator Anchor Loss Simulation,” Structural Engineering Mechanics and Materials, Department of Civil and Environmental Engineering, University of California, Berkeley, UCB/SEMM-2005/01, Feb. 2005. Appeared in International Journal on Numerical Methods in Engineering in 2005.
    mems fea
    @techreport{2005-pml-tr,
      author = {Bindel, David and Govindjee, Sanjay},
      title = {Elastic {PML}s for Resonator Anchor Loss Simulation},
      number = {UCB/SEMM-2005/01},
      institution = {Structural Engineering Mechanics and Materials,
                       Department of Civil and Environmental Engineering,
                       University of California, Berkeley},
      month = feb,
      year = {2005},
      status = {unrefereed},
      submit = {Appeared in International Journal on Numerical Methods in Engineering in 2005.}
    }
    

    Abstract:

    Electromechanical resonators and filters, such as quartz, ceramic, and surface-acoustic wave devices, are important signal-processing elements in communication systems. Over the past decade, there has been substantial progress in developing new types of miniaturized electromechanical resonators using microfabrication processes. For these micro-resonators to be viable they must have high and predictable quality factors ($Q$). Depending on scale and geometry, the energy losses that lower $Q$ may come from material damping, thermoelastic damping, air damping, or radiation of elastic waves from an anchor. Of these factors, anchor losses are the least understood because such losses are due to a complex radiation phenomena in a semi-infinite elastic half-space. Here, we describe how anchor losses can be accurately computed using an absorbing boundary based on a perfectly matched layer (PML) which absorbs incoming waves over a wide frequency range for any non-zero angle of incidence. We exploit the interpretation of the PML as a complex-valued change of coordinates to illustrate how one can come to a simpler finite element implementation than was given in its original presentations. We also examine the convergence and accuracy of the method, and give guidelines for how to choose the parameters effectively. As an example application, we compute the anchor loss in a micro disk resonator and compare it to experimental data. Our analysis illustrates a surprising mode-mixing phenomenon which can substantially affect the quality of resonance.

  45. D. Bindel, E. Quevy, T. Koyama, J. Demmel, and R. Howe, “Anchor Loss Simulation in Resonators,” in Proceedings of MEMS 2005, 2005.
    mems fea
    @inproceedings{2005-mems,
      author = {Bindel, David and Quevy, Emmanuel and Koyama, Tsuyoshi and Demmel, James and Howe, Roger},
      title = {Anchor Loss Simulation in Resonators},
      booktitle = {Proceedings of MEMS 2005},
      month = feb,
      year = {2005},
      doi = {10.1109/MEMSYS.2005.1453885}
    }
    

    Abstract:

    Surface-micromachined resonators and filters are attractive for many RF applications. While existing simulation tools allow designers to compute resonant frequencies, few tools provide estimates of the damping in these devices. This paper reports on a new tool that allows designers, for the first time, to compute anchor losses in high-frequency resonators and account for sub-surface scatterers. By exercising the tool on a family of radially driven disk resonators, we show that the anchor loss mechanism for this class of devices involves a parasitic mixed-mode bending action that pumps energy into the substrate. Further, using the tool, we predict a large variation in resonator quality depending upon film thickness. Our simulation shows that the source of this variation is a complex radial-to-bending motion interaction, which we visualize with a root-locus diagram. We experimentally verify this predicted sensitivity using poly-SiGe disk resonators having $Q$’s ranging from 200 to 54,000.

  46. Y. Chen, D. Bindel, H. Song, and R. Katz, “An Algebraic Approach to Practial and Scalable Overlay Network Monitoring,” in Proceedings of ACM SIGCOMM 2004, 2004.
    systems tomography
    @inproceedings{2004-sigcomm,
      author = {Chen, Yan and Bindel, David and Song, Hanhee and Katz, Randy},
      title = {An Algebraic Approach to Practial and Scalable
                 Overlay Network Monitoring},
      booktitle = {Proceedings of ACM SIGCOMM 2004},
      year = {2004},
      doi = {10.1145/1015467.1015475}
    }
    

    Abstract:

    Overlay network monitoring enables distributed Internet applications to detect and recover from path outages and periods of degraded performance within seconds. For an overlay network with $n$ end hosts, existing systems either require $O(n^2)$ measurements, and thus lack scalability, or can only estimate the latency but not congestion or failures. Our earlier extended abstract briefly proposes an algebraic approach that selectively monitors $k$ linearly independent paths that can fully describe all the $O(n^2)$ paths. The loss rates and latency of these $k$ paths can be used to estimate the loss rates and latency of all other paths. Our scheme only assumes knowledge of the underlying IP topology, with links dynamically varying between lossy and normal.In this paper, we improve, implement and extensively evaluate such a monitoring system. We further make the following contributions: i) scalability analysis indicating that for reasonably large n (e.g., 100), the growth of $k$ is bounded as $O(n \log n)$, ii) efficient adaptation algorithms for topology changes, such as the addition or removal of end hosts and routing changes, iii) measurement load balancing schemes, and iv) topology measurement error handling. Both simulation and Internet experiments demonstrate we obtain highly accurate path loss rate estimation while adapting to topology changes within seconds and handling topology errors.

  47. D. Bindel, Z. Bai, and J. Demmel, “Model Reduction for RF MEMS Simulation,” in Proceedings of PARA 2004, 2004.
    mems fea
    @inproceedings{2004-para,
      author = {Bindel, David and Bai, Zhaojun and Demmel, James},
      title = {Model Reduction for {RF MEMS} Simulation},
      booktitle = {Proceedings of PARA 2004},
      month = jun,
      year = {2004},
      doi = {10.1007/11558958_34}
    }
    

    Abstract:

    Radio-frequency (RF) MEMS resonators, integrated into CMOS chips, are of great interest to engineers planning the next generation of communication systems. Fast simulations are necessary in order to gain insights into the behavior of these devices. In this paper, we discuss two structure-preserving model-reduction techniques and apply them to the frequency-domain analysis of two proposed MEMS resonator designs.

  48. Y. Chen, D. Bindel, and R. Katz, “Tomography-Based Overlay Network Monitoring,” in Proceedings of ACM SIGCOMM Internet Measurement Conference (IMC), 2003.
    systems tomography
    @inproceedings{2003-imc,
      author = {Chen, Yan and Bindel, David and Katz, Randy},
      title = {Tomography-Based Overlay Network Monitoring},
      booktitle = {Proceedings of ACM SIGCOMM Internet
                     Measurement Conference (IMC)},
      year = {2003},
      doi = {10.1145/948205.948233}
    }
    

    Abstract:

    Overlay network monitoring enables distributed Internet applications to detect and recover from path outages and periods of degraded performance within seconds. For an overlay network with $n$ end hosts, existing systems either require $O(n^2)$ measurements, and thus lack scalability, or can only estimate the latency but not congestion or failures. Unlike other network tomography systems, we characterize end-to-end losses (this extends to any additive metrics, including latency) rather than individual link losses. We find a minimal basis set of $k$ linearly independent paths that can fully describe all the $O(n^2)$ paths. We selectively monitor and measure the loss rates of these paths, then apply them to estimate the loss rates of all other paths. By extensively studying synthetic and real topologies, we find that for reasonably large n (e.g., 100), $k$ is only in the range of $O(n \log n)$. This is explained by the moderately hierarchical nature of Internet routine.Our scheme only assumes the knowledge of underlying IP topology, and any link can become lossy or return to normal. In addition, our technique is tolerant to topology measurement inaccuracies, and is adaptive to topology changes.

  49. Y. Chen, D. Bindel, H. Song, and R. Katz, “Tomography-Based Overlay Network Monitoring,” UC Berkeley Computer Science Division, CSD-03-1252, Jun. 2003. Appeared in SIGCOMM IMC 2003
    systems tomography
    @techreport{2003-tomography-tr,
      author = {Chen, Yan and Bindel, David and Song, Hanhee and Katz, Randy},
      title = {Tomography-Based Overlay Network Monitoring},
      number = {CSD-03-1252},
      institution = {UC Berkeley Computer Science Division},
      month = jun,
      year = {2003},
      status = {unrefereed},
      submit = {Appeared in SIGCOMM IMC 2003}
    }
    

    Abstract:

    Overlay network monitoring enables distributed Internet applications to detect and recover from path outages and periods of degraded performance within seconds. For an overlay network with $n$ end hosts, existing systems either require $O(n^2)$ measurements, and thus lack scalability, or can only estimate the latency but not congestion or failures. Unlike other network tomography systems, we characterize end-to-end losses (this extends to any additive metrics, including latency) rather than individual link losses. We find a minimal basis set of $k$ linearly independent paths that can fully describe all the $O(n^2)$ paths. We selectively monitor and measure the loss rates of these paths, then apply them to estimate the loss rates of all other paths. By extensively studying synthetic and real topologies, we find that for reasonably large n (e.g., 100), $k$ is only in the range of $O(n \log n)$. This is explained by the moderately hierarchical nature of Internet routine.Our scheme only assumes the knowledge of underlying IP topology, and any link can become lossy or return to normal. In addition, our technique is tolerant to topology measurement inaccuracies, and is adaptive to topology changes.

  50. D. Bindel, J. Demmel, W. Kahan, and O. Marques, “On Computing Givens Rotations Reliable and Efficiently,” ACM Transactions on Mathematical Software, vol. 28, no. 2, pp. 206–238, Jun. 2002.
    la-sw
    @article{2002-toms,
      author = {Bindel, David and Demmel, James and Kahan, William and Marques, Osni},
      title = {On Computing {Givens} Rotations Reliable and Efficiently},
      journal = {ACM Transactions on Mathematical Software},
      volume = {28},
      number = {2},
      pages = {206--238},
      month = jun,
      year = {2002},
      doi = {10.1145/567806.567809}
    }
    

    Abstract:

    We consider the efficient and accurate computation of Givens rotations. When $f$ and $g$ are positive real numbers, this simply amounts to computing the values of $c = f/\sqrt{f^2 + g^2}$, $s = g/\sqrt{f^2 + g^2}$, and $r = \sqrt{f^2 + g^2}$. This apparently trivial computation merits closer consideration for the following three reasons. First, while the definitions of $c$, $s$ and $r$ seem obvious in the case of two nonnegative arguments $f$ and $g$, there is enough freedom of choice when one or more of $f$ and $g$ are negative, zero or complex that LAPACK auxiliary routines SLARTG, CLARTG, SLARGV and CLARGV can compute rather different values of $c$, $s$ and $r$ for mathematically identical values of $f$ and $g$. To eliminate this unnecessary ambiguity, the BLAS Technical Forum chose a single consistent definition of Givens rotations that we will justify here. Second, computing accurate values of $c$, $s$ and $r$ as efficiently as possible and reliably despite over/underflow is surprisingly complicated. For complex Givens rotations, the most efficient formulas require only one real square root and one real divide (as well as several much cheaper additions and multiplications), but a reliable implementation using only working precision has a number of cases. On a Sun Ultra-10, the new implementation is slightly faster than the previous LAPACK implementation in the most common case, and 2.7 to 4.6 times faster than the corresponding vendor, reference or ATLAS routines. It is also more reliable; all previous codes occasionally suffer from large inaccuracies due to over/underflow. For real Givens rotations, there are also improvements in speed and accuracy, though not as striking. Third, the design process that led to this reliable implementation is quite systematic, and could be applied to the design of similarly reliable subroutines.

  51. J. Clark, D. Bindel, W. Kao, E. Zhu, A. Kuo, N. Zhou, J. Nie, J. Demmel, Z. Bai, S. Govindjee, K. S. J. Pister, M. Gu, and A. Agogino, “Addressing the Needs of Complex MEMS Design,” in Proceedings of MEMS 2002, 2002.
    mems sugar
    @inproceedings{2002-mems,
      author = {Clark, Jason and Bindel, David and Kao, Wayne and Zhu, Ernest and Kuo, Andrew and Zhou, Ningning and Nie, Jiawang and Demmel, James and Bai, Zhaojun and Govindjee, Sanjay and Pister, Kristofer S. J. and Gu, Ming and Agogino, Alice},
      title = {Addressing the Needs of Complex {MEMS} Design},
      booktitle = {Proceedings of MEMS 2002},
      month = jan,
      year = {2002},
      doi = {10.1109/MEMSYS.2002.984240}
    }
    

    Abstract:

    In this paper, we report several advances in the Sugar 2.0 MEMS system simulation package, including reduced-order modeling techniques, simple hierarchical description of complex structures, synthesis tools, a variety of models, and a web-based interface. Examples include the modeling of a torsional micromirror with lateral actuators compared to experiment, and the prototyping of a microrobot.

  52. Y. Chen, A. Bargteil, D. Bindel, R. Katz, and J. Kubiatowicz, “Quantifying Network Denial of Service: A Location Service Case Study,” in Proceedings of the International Conference on Information and Communications Security (ICICS), 2001, vol. 2229, pp. 340–351.
    systems
    @inproceedings{2001-icics,
      author = {Chen, Yan and Bargteil, Adam and Bindel, David and Katz, Randy and Kubiatowicz, John},
      title = {Quantifying Network Denial of Service:
                 A Location Service Case Study},
      booktitle = {Proceedings of the International Conference on
                     Information and Communications Security (ICICS)},
      volume = {2229},
      series = {LNCS},
      publisher = {Springer},
      pages = {340--351},
      month = nov,
      year = {2001},
      doi = {10.1007/3-540-45600-7_37}
    }
    

    Abstract:

    Network Denial of Service (DoS) attacks are increasing in frequency, severity and sophistication, making it desirable to measure the resilience of systems to DoS attacks. In this paper, we propose a simulation-based methodology and apply it to attacks on object location services such as DNS. Our results allow us to contrast the DoS resilience of three distinct architectures for object location.

  53. J. Clark, D. Bindel, N. Zhou, S. Bhave, Z. Bai, J. Demmel, and K. S. J. Pister, “SUGAR: Advancements in a 3D Multi-Domain Simulation Package for MEMS,” in Proceedings of the Microscale Systems: Mechanics and Measurements Symposium, 2001.
    mems sugar
    @inproceedings{2001-sugar,
      author = {Clark, Jason and Bindel, David and Zhou, Ningning and Bhave, Sunil and Bai, Zhaojun and Demmel, James and Pister, Kristofer S. J.},
      title = {{SUGAR}: Advancements in a 3D Multi-Domain Simulation Package for {MEMS}},
      booktitle = {Proceedings of the Microscale Systems:
                     Mechanics and Measurements Symposium},
      month = jun,
      year = {2001}
    }
    

    Abstract:

    Advancements in Sugar include 1) parameterizable netlists, 2) nonlinear frequency response analysis, 3) subnets, 4) improved MNA, 5) reduced order modeling, and 6) a more accurate nonlinear beam model. Examples of these features include the simulation of a two-axis mirror with over 10,000 degrees of freedom, the reduced order modeling applied of an electrostatic gap actuator, the parameterized deflection space of a thermal actuator and serpentine flexure, and the nonlinear response of a fixed-fixed beam.

  54. Z. Bai, D. Bindel, J. Clark, N. Zhou, J. Demmel, and K. S. J. Pister, “New Numerical Techniques and Tools in SUGAR for 3D MEMS Simulation,” in Proceedings of the Fourth International Conference on Modeling and Simulation of Microsystems (MSM), 2001.
    mems sugar
    @inproceedings{2001-msm,
      author = {Bai, Zhaojun and Bindel, David and Clark, Jason and Zhou, Ningning and Demmel, James and Pister, Kristofer S. J.},
      title = {New Numerical Techniques and Tools in {SUGAR} for {3D MEMS} Simulation},
      booktitle = {Proceedings of the Fourth International Conference on
                     Modeling and Simulation of Microsystems (MSM)},
      month = mar,
      year = {2001}
    }
    

    Abstract:

    SUGAR is a nodal analysis package for 3D MEMS simulation that owes its heritage and its name to the SPICE family of circuit simulation. SUGAR has undergone the stage of proof-of-concept which showed that nodal analysis was in fact just as accurate and much faster than finite element simulation on many MEMS problems. The upcoming major release of SUGAR is version 2.0, which includes a number of new features, such as 3D beam and gap elements, thermal expansion, linearly and rotationally accelerating frames, and user-defined models.

  55. D. Bindel, J. Demmel, W. Kahan, and O. Marques, “On Computing Givens Rotations Reliable and Efficiently,” LAPACK Working Notes, 128, Jan. 2001. Appeared in ACM Transactions on Mathematical Software in 2002.
    la-sw
    @techreport{2001-givens,
      author = {Bindel, David and Demmel, James and Kahan, William and Marques, Osni},
      title = {On Computing {Givens} Rotations Reliable and Efficiently},
      institution = {LAPACK Working Notes},
      number = {128},
      month = jan,
      year = {2001},
      status = {unrefereed},
      submit = {Appeared in ACM Transactions on Mathematical Software in 2002.}
    }
    

    Abstract:

    We consider the efficient and accurate computation of Givens rotations. When $f$ and $g$ are positive real numbers, this simply amounts to computing the values of $c = f/\sqrt{f^2 + g^2}$, $s = g/\sqrt{f^2 + g^2}$, and $r = \sqrt{f^2 + g^2}$. This apparently trivial computation merits closer consideration for the following three reasons. First, while the definitions of $c$, $s$ and $r$ seem obvious in the case of two nonnegative arguments $f$ and $g$, there is enough freedom of choice when one or more of $f$ and $g$ are negative, zero or complex that LAPACK auxiliary routines SLARTG, CLARTG, SLARGV and CLARGV can compute rather different values of $c$, $s$ and $r$ for mathematically identical values of $f$ and $g$. To eliminate this unnecessary ambiguity, the BLAS Technical Forum chose a single consistent definition of Givens rotations that we will justify here. Second, computing accurate values of $c$, $s$ and $r$ as efficiently as possible and reliably despite over/underflow is surprisingly complicated. For complex Givens rotations, the most efficient formulas require only one real square root and one real divide (as well as several much cheaper additions and multiplications), but a reliable implementation using only working precision has a number of cases. On a Sun Ultra-10, the new implementation is slightly faster than the previous LAPACK implementation in the most common case, and 2.7 to 4.6 times faster than the corresponding vendor, reference or ATLAS routines. It is also more reliable; all previous codes occasionally suffer from large inaccuracies due to over/underflow. For real Givens rotations, there are also improvements in speed and accuracy, though not as striking. Third, the design process that led to this reliable implementation is quite systematic, and could be applied to the design of similarly reliable subroutines.

  56. J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, “OceanStore: An Architecture for Global-Scale Persistent Storage,” in Procedings of the Ninth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2000), 2000.
    systems
    @inproceedings{2000-asplos,
      author = {Kubiatowicz, John and Bindel, David and Chen, Yan and Czerwinski, Steven and Eaton, Patrick and Geels, Dennis and Gummadi, Ramakrishna and Rhea, Sean and Weatherspoon, Hakim and Weimer, Westley and Wells, Chris and Zhao, Ben},
      title = {{OceanStore}: An Architecture for Global-Scale Persistent Storage},
      booktitle = {Procedings of the Ninth International Conference on
                     Architectural Support for Programming Languages and
                     Operating Systems (ASPLOS 2000)},
      month = nov,
      year = {2000},
      doi = {10.1145/356989.357007}
    }
    

    Abstract:

    OceanStore is a utility infrastructure designed to span the globe and provide continuous access to persistent information. Since this infrastructure is comprised of untrusted servers, data is protected through redundancy and cryptographic techniques. To improve performance, data is allowed to be cached anywhere, anytime. Additionally, monitoring of usage patterns allows adaptation to regional outages and denial of service attacks; monitoring also enhances performance through pro-active movement of data. A prototype implementation is currently under development.

  57. J. Clark, N. Zhou, D. Bindel, L. Schenato, W. Wu, J. Demmel, and K. S. J. Pister, “3D MEMS Simulation Modeling Using Modified Nodal Analysis,” in Proceedings of the Microscale Systems: Mechanics and Measurements Symposium, 2000, pp. 68–75.
    mems sugar
    @inproceedings{2000-mems,
      author = {Clark, Jason and Zhou, Ningning and Bindel, David and Schenato, Luca and Wu, W. and Demmel, James and Pister, Kristofer S. J.},
      title = {{3D} {MEMS} Simulation Modeling Using Modified Nodal Analysis},
      booktitle = {Proceedings of the Microscale Systems:
                     Mechanics and Measurements Symposium},
      pages = {68--75},
      month = jun,
      year = {2000}
    }
    

    Abstract:

    The modeling, simulation, and experimental verification of several MEMS devices are presented. Simulated results include 3D mode analysis, residual stress effects, thermal expansion, nonlinear deflections, time-varying electrostatic forces, process sensitivities, induced currents, and the transient performance in accelerated reference frames. To simulate the performance of these MEMS devices a modified nodal analysis approach is used to formulate a system of ODEs that is solved by static, steady state, and transient solvers.

  58. J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, “OceanStore: An Architecture for Global-Scale Persistent Storage,” UC Berkeley Computer Science Division, CSD-00-1102, Mar. 2000. Appeared in ASPLOS 2000.
    systems
    @techreport{2000-oceanstore-tr,
      author = {Kubiatowicz, John and Bindel, David and Chen, Yan and Czerwinski, Steven and Eaton, Patrick and Geels, Dennis and Gummadi, Ramakrishna and Rhea, Sean and Weatherspoon, Hakim and Weimer, Westley and Wells, Chris and Zhao, Ben},
      title = {{OceanStore}: An Architecture for Global-Scale Persistent Storage},
      number = {CSD-00-1102},
      institution = {UC Berkeley Computer Science Division},
      month = mar,
      year = {2000},
      status = {unrefereed},
      submit = {Appeared in ASPLOS 2000.}
    }
    

    Abstract:

    OceanStore is a utility infrastructure designed to span the globe and provide continuous access to persistent information. Since this infrastructure is comprised of untrusted servers, data is protected through redundancy and cryptographic techniques. To improve performance, data is allowed to be cached anywhere, anytime. Additionally, monitoring of usage patterns allows adaptation to regional outages and denial of service attacks; monitoring also enhances performance through pro-active movement of data. A prototype implementation is currently under development.