
Process Replication for HPC Applications on the Cloud

Scott Purdy and Pete Hunt
Advised by Prof. David Bindel

December 17, 2010

1 Abstract

Cloud computing has emerged as a new
paradigm in large-scale computing. High-
performance computing (HPC) is an important
research tool for a variety of fields. HPC re-
quires a large investment in specialized comput-
ing infrastructure. While these costs could be
alleviated by commercial cloud computing envi-
ronments, standard clouds have extremely vari-
able latency and reliability characteristics and
are unsuitable for traditional HPC applications.
In this paper we explore an approach to alleviate
the latency limitations of cloud environments for
HPC applications.

2 Introduction

Traditional HPC applications perform poorly in
cloud computing environments because of the la-
tency and, sometimes, bandwidth characteristics
of the cloud. On Amazon EC2, currently one of
the most widely used cloud computing environ-
ments [4], the point-to-point latency between all
instances (virtualized HPC nodes) is extremely
variable. Due to this variability, many classes
of HPC applications, such as bulk-synchronous
parallel (BSP) applications, perform poorly be-
cause they are bound by the highest observed

latency per iteration. This is unfortunate, as
cloud computing is touted to be the platform of
the future and represents attractive economics
for HPC researchers.

Additionally, the failure rate in a virtualized
cloud environment is higher than that of a tradi-
tional, dedicated HPC cluster [1]. In many HPC
applications a single node failure will require a
restart of the entire computation since the last
checkpoint.

We propose a new model called process repli-
cation that can be used to improve performance
and fault-tolerance of HPC applications on the
cloud. HPC applications involve a set of pro-
cesses coordinating across a cluster of machines
using message passing. The defacto standard for
message passing is known as the Message Pass-
ing Interface, or MPI. We propose using state-
machine replication [9] to create several replicas
of each process across different instances in the
cloud.

Because each replica sends and receives the
same set of messages, the latency of the first
message an individual receives from the set of
replicas will be lower on average than without
replication. For messages sent simultaneously
from each replica in a set, the expected time it
takes for the first message to be received by a
specific recipient reduces as the replication fac-

1



tor increases. We show this empirically below.
Process replication is not without its draw-

backs. It requires that individual processes are
deterministic and can be replicated without in-
troducing conflicting states. It also trades band-
width, CPU time and memory for latency. We
view this as an attractive trade-off for latency
bound applications. It is also becoming increas-
ingly advantageous because CPU, memory and
bandwidth costs and performance are improving
much faster than latency [8].

3 Previous Work

With the rise of commercial cloud environments
such as EC2, the scientific community has seen
the potential for low-cost, easy-to-use elastic
cluster computing applications. As such, there
have been several studies of the characteristics
of EC2 with a specific eye to reliability and per-
formance.

Evangelinos and Hill studied HPC applica-
tions running on EC2 [3]. They found a wide
range of latency and bandwidth performance be-
tween various MPI implementations. The MPI
performance on EC2 was, however, inferior to
that of a dedicated cluster. Additionally, they
found the memory and CPU usage of EC2 in-
stances to be high. The overall conclusion of
the study was that performance was comparable
to a low-cost cluster configuration but was be-
low that of dedicated supercomputing centers.
They also proposed the creation of a dedicated
HPC cloud infrastructure which Amazon rolled
out two years later [7].

Hazelhurt corroborated these findings, and
found that EC2 instances performed quite well
with single-threaded tasks on a single node but
performance degraded as the number of threads

increased[5]. Additionally, he found that after 63
instances the efficiency on his benchmark would
start to decrease. EC2 actually outperformed
one dedicated cluster on the benchmark when
the number of nodes grew beyond 12. He also did
a cost comparison and found that it is cheaper to
build a network of workstations only when there
is greater than 10-50% utilization over a machine
lifetime of 3 years.

Ke, Burtscher and Speight explored the idea
of runtime MPI compression on traditional HPC
clusters and saw performance gains up to 98%
[6]. Most benchmarks saw improvements be-
tween 3% and 27% and none performed worse.
They observed that tasks with a high commu-
nication to computation ratio saw the most im-
provement and became increasingly limited by
the rate of compression. The compression over-
head for most benchmarks was under 2%; the
highest was under 6%. Because EC2’s charac-
teristics tend to increase the cost of communi-
cation MPI compression is a promising area of
exploration for cloud computing.

Amazon EC2 is powered by the Xen virtual-
ization infrastructure. Youseff, Wolski, Gorda
and Krintz [10] found that while Xen had a per-
ceived overhead, it imposed no statistically sig-
nificant overhead for scientific computation and
actually exhibited improved latency performance
due to some specifics of the Xen I/O implemen-
tation.

4 Properties of MPI on Ama-
zon EC2

We conducted a series of experiments and bench-
marks to obtain a distribution of point-to-point
latency between instances on Amazon EC2. We
used the “us-east-1b” availability zone (cho-

2



sen at random) and used the “m1.small” in-
stance type. While higher-performance instance
types are available, they were unnecessary for
this benchmark as we were merely measuring
network latency, not CPU performance. Ad-
ditionally, we opted not to use the Amazon
cluster compute (“cc1.4xlarge”) instance type
as we are only interested in performance on
general-purpose cloud environments, not special-
ized HPC ones.

We wrote a benchmark in C utilizing Open-
MPI on a set of 20 instances running Ubuntu
Linux. This benchmark had each node send
ping/pong messages to every other node in the
cluster in a round robin fashion. The results
were communicated to the master node in CSV
format. The aggregated CSV file containing
(sender, receiver, latency) triples was analyzed
to create the simulated EC2 distribution de-
picted in Figure 1. It is apparent that the latency
has a strong positive skew and a high variance.
The distribution is summarized in Figure 2.

5 Process Replication

The core idea of process replication is to per-
form each unit of computation at multiple nodes
in a cluster. This is in contrast to performing
each unit of computation a single time at a sin-
gle node in a cluster. The nodes used for process
replication can be new nodes or existing nodes.
Each of the nodes that performs a given com-
putation sends results to other nodes that need
them. The first results received are used, since
they should be identical to any future results for
a given unit of computation (we leave the encap-
sulation of non-determinism to future work).

There are two specific advantages of this
model. First, since the variance of network la-

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Latency (s)

0

10000

20000

30000

40000

50000

60000

Fr
e
q
u
e
n
cy

Figure 1: The latency distribution sampled from a
round robin ping/pong benchmark running on twenty
Amazon EC2 instances. This figure is zoomed in on
the range [0, 0.16] and there is a long tail that extends
out to 0.47.

Replication factor 1 2
Mean (s) 0.0217 0.0086
Standard deviation (s) 0.0295 0.0172
Minimum (s) 0.0002 0.0002
Maximum (s) 0.4722 0.0993

Figure 2: Summary of the Amazon EC2 latency dis-
tribution at two levels of replication. The replication
factor of two is computed using the minimum of two
latency samples for each iteration, which is a close,
lower-bound approximation of the actual latency im-
pact.

3



tency is large in the cloud environment, the la-
tency of the first results received has a much
lower expected value than the latency of any
given message. Figure 4 shows the expected time
for a latency-bound computation task with dif-
ferent replication factors.

The second advantage is fault tolerance.
Without using process replication, the entire
computation must be restarted from the last
checkpoint in the event of a process failure.
This increases the computation time proportion-
ally with mean time to failure and also results
in increased administrative work. Additionally,
many applications do not implement checkpoint-
ing and must be restarted from the beginning.
With process replication, the system becomes
much more resilient; the computation can con-
tinue as long as at least one replica of every pro-
cess has not failed. That is, in an N -process com-
putation with a replication factor of R, the sys-
tem can survive R− 1 failures per process. This
means the entire system can survive a minimum
of R − 1 failures and a maximum of N(R − 1)
failures. Without process replication, R = 1 and
the system cannot survive a single failure.

Process replication reduces the latency of
each individual point-to-point message. This
means that it can be useful for almost any
distributed computation. However, there are
some applications in which process replication
can provide substantially larger latency improve-
ments. These include bulk synchronous and it-
erative problems, such as the conjugate gradient
method, which we use as our benchmark below.
In general, computations that are latency-bound
can benefit greatly while CPU- or bandwidth-
bound computations will still realize improve-
ments in fault-tolerance but may see little or
negative performance effects.

One of the compelling aspects of the process

replication model is that it is not necessary to
increase the number of discrete nodes in the sys-
tem. Instead, existing nodes can be used as repli-
cas for each other. Since our work is focused
on latency-bound problems, this set up does not
slow down the computation significantly com-
pared with the speedups in latency. And because
some nodes will contain replicas for two commu-
nicating processes, the network communication
cost can be eliminated in some cases. For the
purposes of isolating the latency improvements
to actual network communications, our bench-
marks use new nodes as replicas.

6 Experimental Methodology

We generated a distribution of the observed la-
tency as described above. Additionally, we de-
signed our benchmarks to emit a CSV file that
logged all communication patterns of the bench-
mark. This CSV file, along with the latency dis-
tribution, were processed by a simulation pro-
gram to compute the computation time for vary-
ing replication factors. This simulator utilized
a sample of 131418 latency observations from a
twenty instance cluster of EC2 small instances
as discussed above. For every time step in the
computation log, the simulator computed the es-
timated network latency by drawing R, the repli-
cation factor, samples from the observed distri-
bution and taking the minimum of these observa-
tions. The estimated latencies for each time step
were summed and the result given as the total
computation time. Note that this model makes
the assumption that CPU time is negligible and
the problem is strictly latency-bound.

4



1 2 3 4 5
Replication factor

0

10

20

30

40

50

60

70

80

90

100

T
o
ta

l 
n
e
tw

o
rk

 t
im

e
 (

s)

Figure 3: Total running time for an 8-node mock
BSP computation at varying levels of replication on
EC2.

7 Experiment 1: Mock BSP
Benchmark

We began our experiments by devising a very
simple benchmark to simulate the general case
of a bulk-synchronous-parallel problem. The
benchmark ran four processes on EC2 which all
communicated with each other before moving to
the next time step. A graph of these performance
statistics over 10000 iterations can be found in
Figure 3. For each of the four processes, we
launch R nodes, where R is the replication fac-
tor. Each of the R nodes for a given process
sends the same set of messages and each node in
the system uses the first message from a replica-
tion set immediately. Duplicate messages from
the other replicas that are received later are ig-
nored. This benchmark shows that for the truly
latency-bound scenario there can be significant
reductions in the effective latency.

8 Experiment 2: NAS CG
Benchmark

In order to evaluate the effects of process repli-
cation on a real-world application, we have in-
strumented the NAS CG benchmark to log com-
munication patterns throughout the computa-
tion. The NAS CG benchmark was chosen be-
cause the NAS Parallel Benchmarks are a stan-
dard suite of MPI benchmarks and we wanted to
see how process replication would affect an exist-
ing parallel application with minimal modifica-
tion. Additionally, the conjugate gradient (CG)
benchmark is a latency-bound bulk-synchronous
parallel computation which would theoretically
benefit significantly from process replication.

The benchmark is written in Fortran and was
modified to log all communication by wrapping
the OpenMPI implementation with logging calls.
No other modifications were made. The log is
used for simulating process replication results as
described in the next section.

The benchmark iteratively computes the stan-
dard conjugate gradient method over 8 in-
stances. We ran this benchmark on a single
machine to generate the logs as the simulator
cares only about communication patterns and
not about the actual runtime performance of the
environment the logs were generated on. We
then took this log and the observed latency dis-
tribution and ran the simulator to generate our
results. As shown in Figure 4, our results for this
real-world benchmark are quite similar to those
in our mock BSP benchmark.

9 Future Work

The primary remaining task is to develop an
industrial-strength implementation that exploits

5



1 2 3 4 5
Replication factor

20

30

40

50

60

70

T
o
ta

l 
n
e
tw

o
rk

 t
im

e
 (

s)

Figure 4: Total simulated network latency for an
8-node NAS CG benchmark at varying levels of repli-
cation.

these ideas. The specific challenges lie in a
more complete MPI implementation and encap-
sulating nondeterminism such as synchronized
clocks, random number generation and message
ordering. With respect to the latter point,
there has been promising research in implement-
ing state-machine replication within the hyper-
visor [2], which is attractive in virtualized en-
vironments and would minimize modifications
to existing applications. Additionally, compres-
sion seems to be “almost free” according to Ke,
Burtscher and Speight and could mitigate the
latency-bandwidth trade-off resulting from using
the process replication method.

10 Conclusion

Process replication is a viable solution for many
classes of HPC applications running on the
cloud. Increasing the replication factor provides
a way to trade bandwidth, CPU time and mem-
ory for improved latency, a trade-off that was
previously difficult to achieve or otherwise im-

possible. And because latency is very expen-
sive and the limiting factor for many applica-
tions, this potentially order-of-magnitude im-
provement is a very attractive solution. Addi-
tionally, process replication brings the benefit of
fault-tolerance, which is desired in such dynamic,
changing and large-scale environments like com-
mercial cloud platforms. Overall, process repli-
cation will help to make cheap, high-performance
cloud computing a viable platform for HPC ap-
plications.

References

[1] Daniel J. Abadi. Data management in the
cloud: Limitations and opportunities. Bul-
letin of the Technical Committee on Data
Engineering, 32:3–12, March 2009.

[2] Thomas C. Bressoud and Fred B. Schnei-
der. Hypervisor-based fault tolerance. ACM
Trans. Comput. Syst., 14:80–107, February
1996.

[3] Constantinos Evangelinos and Chris N. Hill.
Cloud computing for parallel scientific HPC
applications: Feasibility of running coupled
atmosphere-ocean climate models on Ama-
zon’s EC2. 2008.

[4] Jeremy Geelan. The top 150 players in cloud
computing. October 2009.

[5] Scott Hazelhurst. Scientific computing us-
ing virtual high-performance computing: a
case study using the Amazon Elastic Com-
puting Cloud.

[6] Jian Ke, Martin Burtscher, and Evan
Speight. Runtime compression of MPI mes-
sages to improve the performance and scal-
ability of parallel applications. 2004.

6



[7] Jeremy Kirk. Amazon introduces cluster
computing for HPC apps. July 2010.

[8] David Patterson. Why latency lags band-
width, and what it means to computing.
MIT Lincoln Labs, October 2004.

[9] Fred B. Schneider. Implementing fault-
tolerant services using the state machine ap-
proach: a tutorial. ACM Comput. Surv.,
22:299–319, December 1990.

[10] Lamia Youseff, Rich Wolski, Brent Gorda,
and Chandra Krintz. Evaluating the perfor-
mance impact of Xen on MPI and process
execution for HPC systems. 2006.

7


