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Plan for the hour

- Stellarators, fusion, and the Simons collaboration
- Stellarator optimization under uncertainty

- Multi-objective optimization



Simons Collaboration: “Hidden Symmetries and Fusion Energy”
https://hiddensymmetries.princeton.edu/

A collaboration of plasma physicists and mathematicians from:

Princeton, NYU, Maryland, IPP Greifswald, Warwick, CU Boulder,
Cornell, UW Madison, EPFL, ANU, UT Austin, U Arizona.

(along with many unfunded collaborators)

- Phase 0: Aug 2017-Aug 2018
- Phase 1: Sep 2018-Aug 2022
- Phase 2: Sep 2022-Aug 2025


https://hiddensymmetries.princeton.edu/

Some Phase 0 recollections

2017-08-22 Email from Antoine Cerfon, “would you be
interested in participating in these initial
conversations?”

2017-09-01 Initial conversation

2017-10-04 LOI submitted

2017-12-06 First two-day proposal meeting

2018-01-31 Second two-day proposal meeting
2018-02-15 Proposal submitted

2018-04-18 Panel pitch (Bhattacharjee, MacKay, Bindel)

2018-05-30 Award announced to collaboration (recommended
change in title to add Fusion Energy).



“Fusion for a 5 Year Old”

| have no idea what you're talking about...
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“Fusion for a 5 Year Old”

At the risk of sounding like a broken record, | will lobby
for the addition of a paragraph in the introduction of
the proposal that describes magnetically confined fu-
sion as if it were being explained to a five year old.

- Mike O'Neill (2018-02-07)

“Adiabatic invariants of Hamiltonian mechanics” is
well beyond the level of sophistication that should be
included in the intro, in my opinion.

- Response to a proposed revision (2018-02-08)

Ad: Introduction to Stellarators by Imbert-Gerard, Paul, Wright
(https://arxiv.org/abs/1908.05360, coming to SIAM)


https://arxiv.org/abs/1908.05360

“Fusion for a 5 Year Old”
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Magnetic confinement basics




Magnetic confinement basics

¢ GRAVITY

- Ensure drift in and out averages to zero.
- Tokamaks: axisymmetric field (requires plasma current)

- Stellarators: use a “hidden symmetry”



Stellarator Concept and Practice
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Stellarator Quality Measures

What makes an “optimal” stellarator?

- Approximates field symmetries (which measures?)

- Satisfies macroscopic and local stability

- Divertor fields for particle and heat exhaust

- Minimizes collisional and energetic particle transport
- Minimizes turbulent transport

- Satisfies basic engineering constraints (cost, size, etc)

Each objective involves different approximations,
uncertainties, and computational costs.
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How Do We Optimize? (STELLOPT Approach)

Goal: Design MHD equilibrium (coil opt often separate)

- Possible parameters for boundary: C ¢ R"
- Physics/engineering properties: F: C — R™
- Target vector: F* € R™

Minimize x? objective over C:
m J X)
X200 =" k() = (Fe(x) — F3)?

Solve via Levenberg-Marquardt, GA, differential evolution
(avoids gradient information apart from finite differences)
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How Do We Optimize? (STELLOPT Approach)

Optimizer . . .
?<_ (physics + engineering targets)
7

Adjust plasma boundary Solve 3D
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Challenges

1. Costly and “black box” physics computations

- Each step: MHD equilibrium solve, transport, coil design, ...
- Several times per step for finite-difference gradients

2. Managing tradeoffs

- How do we choose the weights in the x> measure? By gut?
- Varying the weights does not expose tradeoffs sensibly

3. Dealing with uncertainties
- What you simulate # what you build!
4. Global search
- How to avoid getting stuck in local minima?

14



Progress on Costly Computations: Vacuum Field

Single-stage optimization of coil shapes and vacuum-field
properties:

- Targets: rotational transform, ripple, coil length, magnetic
axis length
- Constraints: Magnetic axis is generated by coils

With adjoint solves, not a problem to have many geometric
parameters:

Np 102 | 192 | 282 | 372 | 462 | 552
Finite differences | 84 | 222 | 411 | 664 | 1057 | 1473
Adjoint approach | 4 11 | 26 | 48 83 116

Timings on a modern laptop.

[Giuliani, Cerfon, Landreman, Stadler] 15



Example: Optimization of Ripple in NCSX Coils

Coil length (L.)
Magnetic axis length (L,)
Rotational transform (1)
— Y/l

Ripple ([,(I[B|| - By)*ds)

10" 10?
Iterations

(a) Convergence curve.

10°
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(b) Coils before and after
optimization.

[Giuliani, Cerfon, Landreman, Stadler]



Progress on Costly Computations: Near Axis

18] (11
1,09

Long theoretical history: Mercier (1964), Lortz & Nithrenberg
(1976), Garren & Boozer (1991)

Recent: Landreman, Sengupta, Rodriguez, Plunck, Jorge, ...
Fast, gives good initial guesses



Progress on Costly Computations: MHD Solvers + Optimizers

- New equilibrium solvers (DESC, SPEC, BIEST)
- Faster, better accuracy, provide derivatives
- Coupled to optimizer frameworks (SIMSOPT, DESC)



Progress of the Simons collaboration

- Collaboration has made a lot of progress (though work
remains) on
- Fast MHD equilibrium codes (Maryland, Princeton, NYU,
Arizona, Flatiron)
- With derivatives (NYU, Maryland, Princeton)
- Optimized under uncertainty (Greifswald, Cornell)
- Plasmas with high quasisymmetry (Maryland, Princeton)

- More limited progress on
- Global search (though near axis helps)
- Fast and accurate proxies for turbulent transport
- Optimizing with instabilities (micro/macro)
- Optimization of divertors
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Cornell work

Rest of the session on two Cornell-centered projects:

- Optimization under uncertainty

- Multi-objective optimization (if time)

20



Optimization Under Uncertainty

Low construction tolerances:
+ NCSX: 0.08%
- Wendelstein 7-X: 0.1% - 0.17%

Higher tolerances as coil opt goal!

Also want tolerance to

- Changes to control parameters

- Uncertainty in physics or model

21



Risk-neutral OUU
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(Recent) Prior: Monte Carlo Approach
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Robustness & mean perf greatly improved (w/ ~ 108 evals)
J.-F. Lobsien, M. Drevlak, T. Kruger, S. Lazerson, C. Zhu, T. S. Pedersen,
Improved performance of stellarator coil design optimization,
Journal of Plasma Physics, 2020. 23



Our Approach: fast TURBO-ADAM

o

Black: ref; red: TURBO-ADAM 10mm; blue: TuURBO-ADAM 20mm.

Evaluate objective with FOCUS from PPPL.

- Global search with modified TURBO
- Local refinement with ADAM with control variate

Costs about 0.01% the evaluation budget. "



Gaussian Processes (GPs)
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Being Bayesian
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Matéern and SE kernels
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Gaussian Processes (GPs)

Our favorite continuous distributions over

R: Normal(u,o?), p,0% € R
R™ Normal(u,C), weR",Ce RM™"
RY = R:  GP(u,R), p:RISR R:RIxRT - R

More technically, define GPs by looking at finite sets of points:
VX = (X1,...,X), Xj € RY,
have fx ~ N(ux, Kxx), where
fx e R, (fx)i = f(x)
px € R, (ux)i = p(x;)
Kxx € R™M (Kxx)ij = R(Xi, X;)

When X is unambiguous, we will sometimes just write K.
28



Being Bayesian

Now consider prior of f ~ GP(u, k), noisy measurements
fx~V4e e~NO,W), typically W = o2
Posterior is f ~ GP(y/, k") with

/L/(X) = /J(X) + KyxC K= Kyx + W
/?/(X, X/) = Ky — KX)(IN(_1KXX/ = I~<‘1(y — px)

The expensive bit: solves with K.

29



Bayesian Optimization (BO)

Typical GP-based BO:

- Evaluate f on initial sample in

- Condition a GP on sample data
- Until budget exhausted
- Optimize acquistion function a(x) over Q
(e.8. ari(X) = E[[f(Xpest) — f(X)]+] Wwhere Xpest iS best so far)

- Evaluate at selected point
- Update the GP model (including hyper-parameters)

- Standard cost: O(n®) per step (with n data points)

30



Multi-Start

Suppose d large, but not too many minimizers:

- Choose M starting points scattered over Q
- Run local minimizer (gradient descent, Newton, etc)

- Hope for at least one start per convergence basin

Q: How to allocate effort to different starts?

31



TuRBO: Trust-Region BO

For high-d: combine local BO with multi-start strategy

- Rough global sampling at M points
- Local GP models and trust-region around each point

- Thompson sampling to choose which local model (and
trust region) to refine next

(Eriksson, Pearce, Gardner, Turner, Poloczek, 2019)

32



TuRBO + OUU
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- TURBO builds GP models for f(x) (nominal objective)

- Simple transform from GP for f(x) to GP for Ey[f(x + U)]
(Beland and Nair, 2017)

Problem: TuRBO explores a lot — want more refinement
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Stochastic Gradient Descent (SGD)

Ordinary gradient descent is

Xeg1 = Xg — aVP(Xk)
SGD is
Xp41 = Xp — ARGk
where gg is a random draw, E[gk] = V(x).

For ¢(x) = Ey[f(x + U)], use gr = V(X + Up).

Convergence is slow (O(1/m)), but steps can be cheap.
Speed depends a lot on variance of gradient estimator.
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Adam + Control Variates

- Regular Adam: stochastic gradient algorithm with
“adaptive momentum” for step size control. Use directions

g9(x) = Vf(x+U)

for a random draw U (can also do mini-batch).

- Variance reduction with control variates (Wang, Chen,
Smola, Xing, 2013)

g(x) = VAlx+ U) + a(3(x) — E[G(X)])
g(x) = Vf(x) + HU.

- True Hessian not avail, so set H to be an approximate
Hessian (BFGS approximation via gradients from Adam).

35



Additional Information

Multi-output GPs model f: Q c RY — RF

- Model covariance over space and across outputs.

- Example: function values + derivatives

RO XY  (Vwk(x, X))
VxR(x,X')  V2R(x,x)

p(x)

\v AN
Vu(X) |’ e ox) =

pY(x) =

- Can also model multi-fidelity sims, etc

Pro: FOCUS provides gradients, easy to incorporate!

Con: Matrix dimensions scale like n(d + 1)

(Partial) Fix: Variational inference (Bindel, Gardner, Huang,
Padidar, Zhu, NeurIPS 2021)
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Cornell work

Rest of the session on two Cornell-centered projects:

- Optimization under uncertainty

- Multi-objective optimization (if time)

(Glas, Padidar, Kellison, B, JPP 2022; B, Landreman, Padidar, JPP
2023)
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Constrained and Multi-Objective

Naive: put everything we care about in a nonlinear LS problem

- fr(x) is deviation from kth target
- Add some weighting (chosen by the user)

But is this actually what we want?

- Choice of target values is unclear
- Choice of weights is unclear

And there are reasons for numerical nervousness:

- Maybe too few objectives (underdetermined LS problems)
- Maybe poorly conditioned (esp. with “large” weights)
- May not have small residual

38



Tackling Constraints

General problem

() =0, je&

minimize ¢(x) s.t. {q(x)<0, et

Convert into unconstrained optimization / nonlinear equation
solving problem with:

- Fewer degrees of freedom (constraint elimination)
- Same degrees of freedom (penalties and barriers)

- More degrees of freedom (Lagrange multipliers)

Constraint elimination usually only for linear constraints.

39



KKT Conditions

o ¢(x)=0, je€&
minimize ¢(x) s.t. i) j
G(x) <0, jeZ

Define the Lagrangian

L% A, 1) = 6(X) + ) NG(¥) + ) mici(x)

€€ €T
KKT conditions are
ViL(x*) =0
¢(x*)=0, i€é& equality constraints
¢(x*)<0, ieZ inequality constraints

>0, 1€l non-negativity of multipliers

Ci(x")pj=0, 1€Z complementary slackness
40



Penalties and Barriers

Want to minimize
¢(x)=0, je&
minimize ¢(x) st. i) j
¢(x)<0, jeZ
Instead minimize for small v
1
6y () = 600 + 5= D 6002 =7 Y log(—¢i(x))
v €€ €T
Note that at minimizer x*:

Vb (X*) = V(x*) + Y AVe(x) + ) Ave(x*

€& €T
where Lagrange multiplier estimates come from the ¢;:

X =ci(x)/y, = v/c(x*)

Standard trick: Penalty to estimate multipliers.
41



Managing Tradeoffs

What about using nonlinear least squares for tradeoffs?

More generally, consider f: R" — R™, maybe minimize

W) = wife(x).
k=1
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Incompleteness of y-square Combination

Structural Optimization 14, 63-69 © Springer-Verlag 1997

A closer look at drawbacks of minimizing weighted sums of
objectives for Pareto set generation in multicriteria optimization

problems

1. Das and J.E. Dennis
Department of Computational and Applied Mathematics, Rice University of Houston, TX 77251-1892, USA

June 4, 2015 Matt Landreman
Some optimal solutions to a smooth multi-objective problem cannot be
found by minimizing a total
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Exploring the Pareto Frontier

x dominates y if Minimize afy + (1 — a)f;
1 (/
VR, fe(X) < fr(¥) 0| N tioise
and not all strict. o7
Best points are: fo o .
Pareto optimal, “! Pareto frontier =—»

aka non-dominated,
aka non-inferior,
aka non-efficient.

; Better

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Form Pareto frontier fi

Minimizing >, cxfr, only explores convex hull!
Other methods sample / approximate the full frontier.
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First-order condition

Stationary condition:
{u:u>0}nR} = {0}.
Fritz John stationary condition: for some A > 0,A # 0
JO)TA = 0.

Follows via Motzkin's theorem of the alternative: if A and C are
given matrices, can either solve

Ax <0, (x<ZO0

or
AIX+CTu=0, A>0X#0,u>0
But not both.

45



Fritz John multiplier geometry

1
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0
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Fritz John vs KKT

Fritz John condition (with constraints): Weak Pareto for
minimize f(x) s.t. ¢(x) <0
requires A > 0 and p > 0 not both all zero such that

MNP (x*) +p'd'(x*) =0

pici(x*) =0
Very similar to KKT conditions for constrained opt:

ViL(x*) = 0, L(X, A\, 1) = o(x) + N ce(x) + pcz(x)
¢(x)=0, i€€& equality constraints
(x)<0, ez inequality constraints

wi >0, Iiel non-negativity of multipliers

(X )uj=0, i€l complementary slackness

47



Constrained vs multi-objective

- First-order conditions are almost the same
- Can mix and match (constrained multi-objective)
- Multi-objective involves many solves to explore space

- Curse of dimensionality: exploration cost scales
exponentially with m
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Find Pareto points via a single-objective optimization problem:

- Linear: ¢(x) = w'f(x)
- Need to consider stationary points to get full frontier.
- Uniform weight sampling # uniform frontier sampling.
* Projection: ¢(x) = > wi(fi(x) — fF)?
- Effectively what is done now.
- Similar tradeoffs to linear scalarization.
- Chebyshev: ¢(x) = max; wifj(x)
- Nonsmooth where max is non-unique.
- Uniform weight # uniform frontier sampling.
+ e-constraint: ¢(x) = fi(x), fj(x) < ¢ forj#i
- Subproblem is constrained.
- Can get uniform sampling in components other than i

49



Example: Quasi-symmetry

\ [} 2.036
| [+ 1.024
1012
1.000
0.988
0.976
0.964

1.125
1.095
1.065
1.035
1.005
0.975
N [T 0.945
0.915
0.885

Landreman-Paul QA and QH configurations,
optimized with target aspect ratio 6 and 8.

Q: tradeoff between quasisymmetry and aspect ratio?
(Padidar, Landreman, Bindel)
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Algorithm in this case: continuation in A

- Start at one Pareto point (A(x), Q(x))
- Write stationarity conditions via

VQ(x) + A\VA(x) =0
AMA(X) —A")=0
A(x) < A*
- Differentiate vs A* to get tangent direction
V2Q(X) + AV2A(X)  VA(x) [x/] B H
N 1

VA(X)" 0
- Predictor moves a little in tangent direction
- Correct prediction via local solver (e.g. Newton)
- Can re-use Hessians, etc for more efficiency
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Which parameterization?

What if Pareto frontier goes vertical?

- Can switch to using Q as continuation parameter
- Or use a pseudo-arclength parameter

- Generalizations to more than two functions are available
(e.g. normal boundary intersection)
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Some concluding notes

| was tense, | was nervous, | guess it just wasn't my night.
Art Fleming gave the answers; oh, but | couldn’t get the
questions right.

— Weird Al Yankovic, “I Lost on Jeopardy”

Stellarator optimization is hard. Beyond formulating
reasonable objectives, challenges include:

1. Costly and “black box” physics computations
2. Managing tradeoffs

3. Dealing with uncertainties

4. Global search

Many challenges/opportunities in the formulation - not
unique to stellarators!
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