Linear Algebra, Invariant Circles, and Fusion Plasmas

David Bindel (joint work with Max Ruth)
31 Aug 2023
Department of Computer Science
Cornell University

Who?

Simon Collaboration: "Hidden Symmetries and Fusion Energy"

https://hiddensymmetries.princeton.edu/

Princeton, NYU, Maryland, IPP Greifswald, Warwick, CU Boulder, UW Madison, EPFL, ANU, UT Austin, U Arizona.

- Phase 1: Sep 2017-Aug 2022
- Phase 2: Sep 2022-Aug 2025

D-T fusion

Lawson criterion

Figure of merit: $n T \tau_{E}$ where

- n is number density
- T is temperature
- τ_{E} is energy confinement time

Min value required at $T=14 \mathrm{keV}$ (about $162 \times 10^{6} \mathrm{~K}$) is

$$
n T T_{E} \geq 3.5 \times 10^{28} \mathrm{~K} \mathrm{~s} / \mathrm{m}^{3}
$$

Magnetic confinement basics

The big name: Tokamaks

Plasma electric current (secondary transformer circuit)

ITER

Stellarator Concept

Wendelstein 7-X Machine

Operating since 2015-12-10; plasma discharges lasting several min.

Wendelstein 7-X Poincaré Plots

https://commons.wikimedia.org/wiki/File: Stellarator_magnetic_field.png

Poincaré Features (NCSX)

"An Introduction to Stellarators" (2020) Imbert-Gerard, Paul, and Wright. https://arxiv.org/abs/1908.05360

A Non-Stellarator Test Problem

Illustrate with standard (Chirikov-Taylor) map

$$
\begin{aligned}
& x_{t+1}=x_{t}+y_{t+1} \bmod 1 \\
& y_{t+1}=y_{t}-\frac{0.7}{2 \pi} \sin \left(2 \pi x_{t}\right)
\end{aligned}
$$

Plan in Pictures

- Iterating gives a Poincaré plot showing
- X and O points (hyperbolic and elliptic periodic points)
- Invariant circles and island chains (quasiperiodic orbits)
- Chaos
- Goal: Identify these structures cheaply and automatically

Processing Poincaré Plots

1. Make a Poincaré plot and eyeball it
2. Parameterization method
3. Form a function with invariant level sets

- Birkhoff averaging
- Weighted Birkhoff averaging
- Adaptive weighted Birkhoff (*)
- Learned labels (*)

4. Model dynamics for a field line (*)

Parameterization method

Goal: $z: \mathbb{T} \rightarrow \mathbb{R}^{2}$ s.t.

$$
F(z(\theta))=z(\theta+\omega) .
$$

Discretize via Fourier:

$$
\hat{z}(\theta)=\sum_{n=-m}^{m} \hat{z}_{n} \exp (2 \pi i n \theta)
$$

Solve nonlinear least squares problem

$$
\min \sum_{i=0}^{N-1}\|z(i / N)-F(z(i / N+\omega))\|^{2}
$$

with two additional constraints (phase + which circle).
Usually combine with continuation (e.g. from fixed point of F).

Learned Labels

Goal: Find (non-constant) h s.t. $h \circ F=h$.
Discretize via favorite ansatz, e.g. $h=\sum_{j=1}^{m} c_{j} \phi\left(\left\|x-x_{j}\right\|\right)$. Define $h\left(x_{j}\right)=y_{j}$ and $h\left(F\left(x_{j}\right)\right)=y_{j}^{\prime}$, solve (for example)

$$
\operatorname{minimize} \frac{\eta}{2} y^{\top} K^{-1} y+\frac{1}{2}\|y-\tilde{y}\|^{2} \text { s.t. } y_{i}=y_{i}^{\prime}
$$

to encourage h smooth, non-constant, invariant under F.

Birkhoff Average

Consider f: $\Omega \rightarrow \Omega$ symplectic, $h \in \mathcal{C}^{\infty}(\Omega)$
Define Birkhoff average:

$$
\mathcal{B}_{\mathcal{K}}[h](x)=\frac{1}{K+1} \sum_{k=0}^{K}\left(h \circ F^{k}\right)(x) .
$$

Birkhoff-Khinchin: for $h \in \mathcal{L}^{1}$, converges a.e. to conditional expectation of an invariant measure on an invariant set.
Error behavior $\mathcal{B}_{\mathcal{K}}[h](x)-\bar{h}(x)$?

- Invariant circle/island? $O\left(K^{-1}\right)$
- Chaos? $O\left(K^{-1 / 2}\right)$

Rates signal regular vs chaotic ("stochastic") trajectories.

Birkhoff Average

Ideas:

- Invariant sets as level sets of Birkhoff average
- Convergence rates as signal of regularity vs chaos

Converges in the long run - but in the long run, we are all dead. (with apologies to Keynes)

Related: Learn a continuous, nonconstant \bar{h} s.t. $\bar{h}=\bar{h} \circ F$.
Can do pretty well with kernel interpolation ansatz - a topic for another talk.

Weighted Birkhoff average

Sander and Meiss, Physica D, 411 (2020) p. 132569;
Das, Sander, and Yorke, Nonlinearity, 30 (2017), pp. 4111-4140
Weighting accelerates regular convergence to super-algebraic:

$$
\mathcal{W B}_{K}[h](x)=\sum_{k=0}^{K} w_{k, K}\left(h \circ F^{k}\right)(x) .
$$

Signal Processing Perspective

Parameterize $z(\theta)$ for invariant circle

$$
F(z(\theta))=z(\theta+\omega), \quad z(\theta)=\sum_{n \in \mathbb{Z}} \hat{z}_{n} \exp (2 \pi i n \theta)
$$

Trajectory $z_{t}=z(\omega t)$ has series expansion

$$
z_{t}=\sum_{n \in \mathbb{Z}} \hat{z}_{n} \xi^{n t}, \quad \xi=\exp (2 \pi i \omega)
$$

Observables $h_{t}=h\left(z_{t}\right)$ can be similarly expanded

$$
h_{t}=\sum_{n \in \mathbb{Z}} \hat{h}_{n} \xi^{n t}, \quad \bar{h}=\hat{h}_{0}
$$

Weighted Birkhoff starting from x_{0}

$$
\mathcal{B}_{K}[h]\left(x_{0}\right)=\sum_{n \in \mathbb{Z}} \hat{h}_{n} p_{k}\left(\xi^{n}\right), \quad p_{K}(z)=\sum_{k=0}^{K} w_{k, K} z^{k}
$$

Signal Processing Perspective

Signal Processing Perspective

Filters: K=12

Signal Processing Perspective: Adaptive Filtering

Adapted filter, K=12

Adaptive Filtering

Series for $h_{t}=h\left(z_{t}\right)$

$$
h_{t}=\sum_{n \in \mathbb{Z}} \hat{h}_{n} \xi^{n t}
$$

Filtered/accelerated series with polynomial p_{K} :

$$
\mathcal{A W} \mathcal{B}_{K}[h]\left(x_{t}\right)=\sum_{n \in \mathbb{Z}} \hat{h}_{n} \xi^{n t} p_{K}\left(\xi^{n}\right) \rightarrow \hat{h}_{n}
$$

How do we adaptively choose the filter polynomial?
Desiderata for this to work:

- Fast enough decay of \hat{h}_{n}
- "Sufficiently irrational" ω (Diophantine condition)

(Vector) Reduced Rank Extrapolation

Assume

$$
h_{t}=\hat{h}_{0}+\sum_{n \neq 0} \lambda_{n}^{t} \quad\left(\text { e.g. } \lambda_{n}=\xi^{n}\right)
$$

Difference sequence removes mean:

$$
u_{t}=h_{t+1}-h_{t}=\sum_{n \neq 0}\left(\lambda_{n}-1\right) \hat{h}_{m} \lambda_{m}^{t}
$$

Seek coeffs c_{k} to minimize

$$
\sum_{t=0}^{T-1}\left(\sum_{k=0}^{K} c_{k} u_{k+t}\right)^{2} \text { s.t. } \sum_{k=0}^{K} c_{k}=1 .
$$

Accelerated series is

$$
\tilde{h}_{t}=\sum_{k=0}^{K} c_{k} h_{k+t}
$$

Details

- Can (and do) use vector observables
- Rectangular Hankel matrix \Longrightarrow fast matvecs via FFT
- Solve least squares problem with LSQR
- Constrain for time reversibility \Longrightarrow palindromic polynomial:

$$
c_{j}=c_{K-j}
$$

Roots come in inverse pairs (generally on unit circle)

- Measure convergence adaptively via residual

(Vector) Reduced Rank Extrapolation

Standard vector RRE convergence (Sidi, Vector Extrapolation Methods with Applications): if $\left|\lambda_{j}\right|$ are in descending order, error for Kth extrapolated average goes like

$$
\hat{h}_{0, K}-\hat{h}_{0}=O\left(\lambda_{K+1}^{2 K}\right) .
$$

But for us everything is on the unit circle!
Alternate analysis gives super-algebraic convergence given

- Enough smoothness of circle (decay of $\left|\hat{h}_{n}\right|$ with $\left.|n|\right)$
- "Sufficient irrationality" (Diophantine condition) so ξ_{n} doesn't get too close to 1 too fast.

Weighted Birkhoff vs RRE

Still good for classification.convergence slightly faster than weighted Birkhoff.

Residuals and Regularity

Use least squares residual to judge "circleness."

(Hard cases near rational rotational transform)

Post-Processing (Filter Diagonalization)

Why use the RRE model just for averaging?

1. Form filter polynomial with coefficients c
2. Find natural frequencies / polynomial roots
3. Sort by contribution to signal
4. Of 10 most contributing frequencies, identify rationals (Sander \& Meiss)

- Yes: island chain - RRE on qth step
- No: call largest the rotational transform

5. Project signal onto Fourier modes

Get shape and characteristics of circles and islands.

Island Identification

Wistell Stellarator Configuration

- 1000 random trajectories (via RK4 on interpolated B field)
- $K_{\text {max }}=300, T_{\text {max }}=900$
- Residual tolerance $=10^{-6}$
- Rational tolerance $=10^{-6}$

Wistell Analysis

Residual

Circles

Chaos

Islands

Concluding Notes

- Extrapolation pros
- Classifies chaos vs regular trajectories
- Recovers invariant circles/islands
- No need for continuation or initial guesses
- Parallelizable over trajectories
- Cons
- Problems near low-order rationals
- Linear algebra adds extra cost vs weighted Birkhoff
- Higher dimensions?
- Relevant beyond field line flow (guiding center approx)
- Invariant sets are more complicated
- The "model the trajectory" philosophy should still work

https://github.com/maxeruth/SymplecticMapTools.jl https://hiddensymmetries.princeton.edu/

