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The setup

Given (maybe noisy) evals at points X ⊂ Ω of

f : Ω ⊂ Rd → R

Want to compute s ≈ f via kernel methods. Challenges:

• How to choose the kernel?
• What are the approximation properties?
• Can we go faster than the naive costs?

• Fitting: O(N3)
• Evaluating: O(N)
• Evaluating uncertainty: O(N2)
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Inducing points

Idea: Organize approximation around relatively few inducing
points. Different methods for different perspectives:

• NLA: Nyström, subset of regressors, FITC (see
e.g. Rasmussen and Williams, Ch. 8)

• GP: Variational inference
• Optimal recovery: Norm minimization with ℓ∞ constraints
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Kernel-Based Regression: Four Stories

Feature map Data-dependent basis

Energy minimization Gaussian process
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Feature Maps
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Augment simple linear model (cTx) with feature map:

f(x) ≈ 〈d, ψ(x)〉

where ψ : Ω → F and d ∈ F , some Hilbert space F .
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Feature Maps

=

≈

A (observed) y (observed)

(unobserved) (unobserved)

Underdetermined (dimF > n): seek minimal norm solution.
For standard inner product (ℓ2):

d = A†y =AT(AAT)−1y
f(x) ≈ ψ(x)Td = ψ(x)TAT(AAT)−1y

Implicit preference for some models over others.
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Placing Parens

Given:

AT =
[
ψ(x1) . . . ψ(xn)

]
f(x) ≈ s(x) ≡

(
ψ(x)TAT

)
(AAT)−1y

Several interpretations for this formula:

s(x) = w(x)Ty, w(x) = (AAT)−1Aψ(x)
s(x) = ψ(x)Td, d = AT(AAT)−1y
s(x) = ψ(x)TATc, c = (AAT)−1y

Respectively:

• Approximate ψ(x) ≈
∑

i wi(x)ψ(xi)
• Minimium norm solution for underdetermined system
• Apply the kernel trick
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The Kernel Trick

Formula:

AT =
[
ψ(x1) . . . ψ(xn)

]
f(x) ≈ s(x) ≡

(
ψ(x)TAT

)
(AAT)−1y

In terms of kernel k(x, y) = 〈ψ(x), ψ(y)〉:

(AAT)ij = k(xi, xj) = (KXX)ij
KXXc = y = fX

s(x) = KxXc =
n∑
j=1

k(x, xj)cj

Subscripts to denote vectors/matrices of function evaluations.
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Basic ingredient: Kernel functions

Call the kernel (or covariance) function k. Required (today):

• Pos def: KXX is always positive definite

Often desirable:

• Stationary: k(x, y) depends only on x− y
• Isotropic: k(x, y) depends only on x and ‖x− y‖

Often want both (sloppy notation: k = k(r)).

Common examples (e.g. Matérn, SE) also depend on
hyper-parameters θ — suppressed in notation unless needed.
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Matérn and SE kernels
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Observations on kernel matrices

Kernel is chosen by modeler

• Matérn / SE for regularity and simplicity
• Rarely have the intuition to pick the “right” kernel
• Common choices are universal — can recover anything

• ... with less data for “good” choice (inductive bias)

• Smoother k implies “prefer” smoother approximator

Intuitively, strong inductive bias =⇒ rapid eigenvalue decay
for K (or for KXX)

• Unit norm ball is close to a low-dimensional set; or
• Probability concentrates near a low-dimensional set
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SoR and FITC

Approximate via inducing points U ⊂ X:

KXX + ηI ≈ KXUK−1UUKUX + D,

where D = ηI (SoR) plus some additional correction (FITC).

A good exercise: solve (KXUK−1UUKUX + D)c = y by

• Minimize
∥∥∥∥∥
[
D−1/2KXU
KUU

]
λ−

[
D−1/2y
0

]∥∥∥∥∥
• Recover c = D−1(y− KXUλ) if desired
• Prediction KxUK−1UUKUXc = KxUλ.

Can be a good preconditioner even when not great alone.
Things like log determinants are also simple to compute.
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Choosing points

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 1.00e+00
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Choosing points

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 6.77e-02
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Choosing points

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 1.91e-02
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Choosing points

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 5.11e-04
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Choosing points

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 1.19e-04
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Choosing points

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 4.18e-05

13



Choosing points

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 8.54e-07
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Choosing points

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 3.58e-07
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Choosing points

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 1.92e-07
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Kernel-Based Regression: Four Stories

Feature map Data-dependent basis

Energy minimization Gaussian process

=

≈

=

≈

14



Simple and Impossible

Let u = (u1,u2) (think (fX, fX′)). Given u1, what is u2?

We need an assumption!
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Being Bayesian

uTK−1u = 1

Let U = (U1,U2) ∼ N(0, K). Given U1 = u1, what is U2?

Posterior distribution: (U2|U1 = u1) ∼ N(w, S) where

w = K21K−111 u1
S = K22 − K21K−111 K12
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Basic ingredient: Gaussian Processes (GPs)
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Basic ingredient: Gaussian Processes (GPs)

Our favorite continuous distributions over
R: Normal(µ, σ2), µ, σ2 ∈ R
Rn: Normal(µ, C), µ ∈ Rn, C ∈ Rn×n

Rd → R: GP(µ, k), µ : Rd → R, k : Rd × Rd → R

More technically, define GPs by looking at finite sets of points:

∀X = (x1, . . . , xn), xi ∈ Rd,

have fX ∼ N(µX, KXX), where
fX ∈ Rn, (fX)i ≡ f(xi)
µX ∈ Rn, (µX)i ≡ µ(xi)

KXX ∈ Rn×n, (KXX)ij ≡ k(xi, xj)
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Being Bayesian

Consider a (zero-mean) GP prior with kernel k:

f ∼ GP(0, k)

Measure at X, apply Bayes to get posterior:

(f | fX = y) ∼ GP(µ, k̃)

where

µ(x) = kxXc
k̃(x, y) = k(x, x)− kxXK−1XX kXy

Specifically, posterior for f(x) at given x is

N(kxXc, k(x, x)− kxXK−1XX kXx)
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Sparse GPs and variational inference

Idea:

• Take a Bayesian perspective – want to approximate the
posterior distribution conditioned on observations.

• As approximating family, consider GP conditioned on
inducing values at inducing locations (U 6⊂ X).

• Maximize the evidence lower bound (ELBO) / minimize the
KL divergence between the approximating GP and the true
posterior.

Optimization via SGD variants. Several variations on this. Also
useful with non-Gaussian likelihoods.
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Kernel-Based Regression: Four Stories

Feature map Data-dependent basis

Energy minimization Gaussian process

=

≈

=

≈
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Simple and Impossible

Let u = (u1,u2) (think (fX, fX′)). Given u1, what is u2?

We need an assumption!
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Being Bounded

{uTK−1u ≤ 1}

Let u = (u1,u2) s.t. ‖u‖2K−1 ≤ 1. Given u1, what is u2?

Optimal recovery: ‖u2 − w‖2S−1 ≤ 1− ‖u1‖2(K11)−1

w = K21K−111 u1
S = K22 − K21K−111 K12

Minimizes ‖u‖K−1 subject to data constraints. 23



From Energy to Error

http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm
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Cubic Splines

http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm

• ϕ(r) = r3 is conditionally positive definite of order 2
• Squared (semi-)norm is bending energy:

‖s‖2H ∝ 1
2

∫
Ω
s′′(x)2 dx

• Linear polynomial tail = rigid body modes
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Force, Displacement, Stiffness

Target function f ∈ H2, known bending energy

E[f] = 1
2

∫
Ω
f′′(x)2 dx

Cubic spline minimizes E[s] s.t. s(xi) = f(xi), so

E[s] ≤ E[f]

• f(xi) as displacement, ci as corresponding force
• Kernel matrix KXX is compliance (force 7→ displacement)
• Residual compliance (inverse stiffness) at x is PX(x)−2

• Energy bound for error at X

PX(x)−2 (s(x)− f(x))2 ≤ E[f]− E[s]
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General Picture

Interpolant is
s(x) = KxXc+ b(x)Tλ

Can compute power function PX(x) from factorization; SPD case:

PX(x)2 = ϕ(0)− KxXK−1XX KXx

Bound is
|s(x)− f(x)| ≤ PX(x)

√
‖f‖2H − ‖s‖2H

Only thing that is hard to compute generally: ‖f‖2H.
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Beyond optimal recovery

Optimal recovery perspective on kernel interpolation:

minimize ‖s‖2H s.t. sX = fX

Representer theorem says kernel interpolator is the minimizer.

What if we relax interpolation?

minimize ‖s‖2H s.t. ‖sX − fX‖∞ ≤ ϵ

Variation on representer theorem: solution is a kernel
approximation with a subset of points X.
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Incorporating bounds

Continuous problem:

minimize ‖s‖2H s.t. ‖sX − fX‖∞ ≤ ϵ

Becomes a nice quadratic program

minimize sTXK−1XX sX s.t. ‖sX − fX‖∞ ≤ ϵ.

Generalize to ℓ ≤ sX ≤ u; KKT conditions: KXXc = sX,

s(xi) = ℓi =⇒ ci ≥ 0
s(xi) = ui =⇒ ci ≤ 0

ℓi < s(xi) < ui =⇒ c′i = 0.
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Incorporating bounds
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Why do this?

• Has an adjustable cost/accuracy knob
• No local minimizers (problem for VI methods)
• Can build on standard RBF error bounds
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Kernel-Based Regression: Four Stories

Feature map Data-dependent basis

Energy minimization Gaussian process

=

≈

=

≈
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Summary

Three flavors of inducing point methods from three different
perspectives:

• Matrix perspective: Diagonal + low-rank approximation of
the kernel matrix. Use alone or as a preconditioner.

• Bayesian variational inference: Use inducing points (and
values) to define a candidate family. Maximize the
evidence lower bound over that family / minimize KL
divergence to true posterior.

• Optimization perspective: Inducing points arise naturally
from minimizing norm subject to inequality bounds (vs
subject to interpolation constraints).

Unlike interpolation, get fundamentally different methods
from these perspectives.
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