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Given (maybe noisy) evals at points X C Q of
f:QcRISR
Want to compute s ~ fvia kernel methods. Challenges:

- How to choose the kernel?

- What are the approximation properties?
- Can we go faster than the naive costs?

- Fitting: O(N?)

- Evaluating: O(N)

- Evaluating uncertainty: O(N?)



Inducing points

Idea: Organize approximation around relatively few inducing
points. Different methods for different perspectives:

- NLA: Nystrom, subset of regressors, FITC (see
e.g. Rasmussen and Williams, Ch. 8)

+ GP: Variational inference

- Optimal recovery: Norm minimization with £ constraints



Kernel-Based Regression: Four Stories
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Feature Maps

where ¢ : Q — F and d € F, some Hilbert space F.



Feature Maps

A (observed) = y (observed)

%

(unobserved) (unobserved)

Underdetermined (dim F > n): seek minimal norm solution.
For standard inner product (¢2):

d = Aly =AT(AAT) Ty
fx) = 9(x)7d = p(x)AT(AAT) "y

Implicit preference for some models over others.



Placing Parens

Given:
AT = [¢(x1) ¢(Xn)}
fix) = s(x) = (¥(x)7AT) (AAT) "y

Several interpretations for this formula:

s(x) = w(x)'y, w(x) = (AAT) Ay (x)
s(x) = ¢(x)'d, d = AT(AAT) Ty
s(x) = v(x)"Alc, c=(AAD) Ty

Respectively:

- Approximate ¥(x) = > w;(x)y(x;)
- Minimium norm solution for underdetermined system
- Apply the kernel trick



The Kernel Trick

Formula:

= [pen) - o)
o) = s(x) = (w( )'AT) (AAT) "y
In terms of kernel kR(x,y) = ((x), ¥(y)):

(AATYj = R(x;, %)) = (Kxx)jj
KxxC =y = fx

n
S(X) = KaxC = ) R(X, X))
j=1

Subscripts to denote vectors/matrices of function evaluations.



Basic ingredient: Kernel functions

Call the kernel (or covariance) function k. Required (today):
- Pos def: Kxx is always positive definite
Often desirable:

- Stationary: R(x,y) depends only on x —y

- Isotropic: R(x,y) depends only on x and ||x — y/|

Often want both (sloppy notation: k = k(r)).

Common examples (e.g. Matérn, SE) also depend on
hyper-parameters 6 — suppressed in notation unless needed.



Matéern and SE kernels
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Observations on kernel matrices

Kernel is chosen by modeler

- Matérn / SE for regularity and simplicity

- Rarely have the intuition to pick the “right” kernel
- Common choices are universal — can recover anything
- ... with less data for “good” choice (inductive bias)

- Smoother k implies “prefer” smoother approximator

Intuitively, strong inductive bias = rapid eigenvalue decay
for KC (or for Kyy)

- Unit norm ball is close to a low-dimensional set; or

- Probability concentrates near a low-dimensional set

"



SoR and FITC

Approximate via inducing points U C X:
Kyx -+ nl ~ KxuKp Kux + D,

where D = gl (SoR) plus some additional correction (FITC).

A good exercise: solve (KXUKU&KUX + D)c =y by

D71/2KXU N D71/2y
an )

- Recover ¢ = D™'(y — Kxy) if desired

+ Prediction KKy Kuxc = Kxu.

« Minimize

Can be a good preconditioner even when not great alone.
Things like log determinants are also simple to compute.
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Choosing points

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky
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Diagonal element: 1.00e+00
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Choosing points

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 6.77e-02
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Choosing points

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky
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Choosing points

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 511e-04
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Choosing points

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky
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Choosing points

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 418e-05
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Choosing points

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 8.54e-07
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Choosing points

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 3.58e-07
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Choosing points

Greedy choice of inducing points U for smooth case:
Left-looking partial pivoted Cholesky

Diagonal element: 1.92e-07
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Simple and Impossible
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Let u = (uy, Up) (think (fx, fx)). Given uq, what is u,?

We need an assumption!
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Being Bayesian

AN

)

yl N

uTk=u =1

Let U = (Us, Uy) ~ N(O, K). Given Uy = uq, what is U,?
Posterior distribution: (U,|Us = uq) ~ N(w, S) where

W= K21Kﬁ1U1
S = Kz — KnKq;'Kn



Basic ingredient: Gaussian Processes (GPs)

05 /= = = = - o
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Basic ingredient: Gaussian Processes (GPs)

Our favorite continuous distributions over

R: Normal(u,o?), p,0% € R
R™ Normal(u,C), weR",Ce RM™"
RY = R:  GP(u,R), p:RISR R:RIxRT - R

More technically, define GPs by looking at finite sets of points:

VX = (X1,...,Xn), X; € RY,
have fx ~ N(ux, Kxx), where
fx € R", (fx)i = fx)
px € R, (ux)i = p(x;)
Ko € R™M, - (Kix)ij = R(X5, %))



Being Bayesian

Consider a (zero-mean) GP prior with kernel k:
f ~ GP(0, k)

Measure at X, apply Bayes to get posterior:

(Flfx =) ~ GP(u, k)

where

1(X) = Ruxc
F?(X, y) - k)(va) - I?XXK)?X‘II?X)/

Specifically, posterior for f(x) at given x is

N(RxxC, R(X, x) — /?xxK;;f?xX)

19



Sparse GPs and variational inference

ldea:

- Take a Bayesian perspective — want to approximate the
posterior distribution conditioned on observations.

- As approximating family, consider GP conditioned on
inducing values at inducing locations (U ¢ X).

- Maximize the evidence lower bound (ELBO) / minimize the
KL divergence between the approximating GP and the true
posterior.

Optimization via SGD variants. Several variations on this. Also
useful with non-Gaussian likelihoods.

20
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Simple and Impossible
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Let u = (uy, Up) (think (fx, fx)). Given uq, what is u,?

We need an assumption!
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Being Bounded

Let u = (ur, up) st [|ufl2_, < 1. Given uy, what is u,?

Optimal recovery: [|uz — w3 <1~ fJurlfg )

W = K21K1_11U1
S = Kz — KnKq;'Kn

Minimizes ||ul|x-1 subject to data constraints. 23



From Energy to Error

http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm
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http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm

Cubic Splines

e

http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm

- ¢(r) = r* is conditionally positive definite of order 2
- Squared (semi-)norm is bending energy:

IslBe o 5 | 5002 o
2 Ja
- Linear polynomial tail = rigid body modes
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http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm

Force, Displacement, Stiffness

Target function f € H?, known bending energy
£l = 5 | 07 x
2 Ja

Cubic spline minimizes E[s] s.t. s(x;) = f(X;), so

-

- f(x;) as displacement, ¢; as corresponding force

E[s] < E[f]

- Kernel matrix Kxx is compliance (force — displacement)
- Residual compliance (inverse stiffness) at x is Px(x) 2
- Energy bound for error at X

Px(x) % (s(x) — f(x))* < EIf] - Els]

26



General Picture

Interpolant is
S(x) = K€ + b(x)™A

Can compute power function Px(x) from factorization; SPD case:

Px(X)? = $(0) — KexKigq Kxx

[s() = 01 < PxO)A/ A5, — sl

Only thing that is hard to compute generally: ||f]|%,.

Bound is

27



Beyond optimal recovery

Optimal recovery perspective on kernel interpolation:
minimize ||s||3, s.t. sx = fx

Representer theorem says kernel interpolator is the minimizer.

What if we relax interpolation?
minimize ||s||%; st |sx — fxlloo < €

Variation on representer theorem: solution is a kernel
approximation with a subset of points X.

28



Incorporating bounds

Continuous problem:
minimize ||s||; st |Isx — fxlloo < €
Becomes a nice quadratic program
minimize syKy'sx St [|sx — fxlloo < €.
Generalize to ¢ < sy < u; KKT conditions: KyxC = Sy,

s(x)=4 = ¢ >0
s(xy=u; = =0

0 < s(x) <up = c;=0.

29



Incorporating bounds
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Why do this?

- Has an adjustable cost/accuracy knob
- No local minimizers (problem for VI methods)
- Can build on standard RBF error bounds

31
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Three flavors of inducing point methods from three different
perspectives:

- Matrix perspective: Diagonal + low-rank approximation of
the kernel matrix. Use alone or as a preconditioner.

- Bayesian variational inference: Use inducing points (and
values) to define a candidate family. Maximize the
evidence lower bound over that family / minimize KL
divergence to true posterior.

- Optimization perspective: Inducing points arise naturally
from minimizing norm subject to inequality bounds (vs
subject to interpolation constraints).

Unlike interpolation, get fundamentally different methods

from these perspectives.
33



