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The NEP Picture

where

- T:Q — C™" analytic, Q ¢ C simply connected
- Regularity: det(T) £ 0

Nonlinear spectrum: A(T) = {z € Q : T(2) singular}.

What do we want?

- Qualitative information (e.g. no eigenvalues in RHP)
- Error bounds on computed/estimated eigenvalues
- Control on all eigenvalues in some region

Why? Because of dynamics connections!



Why Eigenvalues?
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One standard use: analyze dynamics of LTI systems

- Special solutions characterizing full system
- General: linear combinations of special solutions

- Asymptotic stability analysis and decay rates



Why Nonlinear Eigenvalues?

We want special solutions and asymptotic decay rates for
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- Higher-order ODEs

- Delay differential equations

- Boundary integral equation eigenproblems
- Radiation boundary conditions

- Dynamic element formulations



My Motivation

T(w)v = (K- wM + G(w))v=0



Hidden Variables

Many real NEPs come from a decision to “hide” some state by
dealing with it semi-analytically:

- Higher-order ODEs —
hide extra derivatives

- Delay differential equations —
hide lagged state (e.g. in delay lines)

- Boundary integral equation eigenproblems —
hide domain unknowns

- Radiation boundary conditions —
hide behavior outside computational domain



Linearization

Ex: Second-order ODE and quadratic eigenvalue problem
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Trade nonlinearity vs size more generally:
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.. but u may be infinite dimensional (e.g. DDE case).



Exact Dynamics

Laplace transforms:
(jt> y=f — T(@)Y(2) = F(z)+1C terms
W) = £ = 5 [ V@ dz

or first-order connection:

d du
<dt)y f — d——Au—Bf y==Cu

y(t) = Cexp(tA)uo + /O [Cexp((t — 5).A)B] f(s) ds

But what do | do if I'm too lazy and ignorant to solve exactly?



Asymptotics

First approach:

+ Observe y(t) ~ exp(at) where a = maxyea(r) Re(A).
- Bound o« somehow.

- Go explore Valencia.

But this approach hides too much...



Beyond (Before?) Asymptotics

10 20 30 40 50
t
But this long run is a misleading guide to current af-
fairs. In the long run we are all dead.
— John Maynard Keynes
A Tract on Monetary Reform (1923)
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Asymptotic Behavior and First-Order IVPs

Consider a first-order problem:
Yy =Ay+f, y(0)=yo
V(0) = e(yo + [ exp((t - s)AN(s) o
Bounds if A= VAV—"and |If(t)]| < v:
lexp(tA)[| = [[Vexp(th)V™"|| < w(V) exp(ta)

O < o) (expltall + - (1 - explta))

where o = max Re(\) is the spectral abscissa.
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Pre-Asymptotic Behavior for IVP aka the Hump
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Simple bounds if A = VAV~
lexp(tA)]| = [[Vexp(tA)V || < K(V)exp(ta)

where a = maxRe(\). Nothing says V need be

well-conditioned! 5



The Complex Connection

General solutions to LTI problems via Laplace transforms

(2 -A)"=L]e"] = / e~ e dt
0

exp(tA) = L7 [zl = A) "] = 2% /F(ZI —A) et dz

for large enough Re(z) and for appropriate I, e.g.:

- T a closed contour surrounding spectrum.

- [ a vertical line to the right of the spectrum.
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A Basic Tool

Begin from the contour integral representation:

. / (21— A) e dz
i

exp(tA) = o

Convert bounds on resolvent to bounds on exp(tA)
leso(t)] < 5= [ el =) e ar.

We need “only” summarize how ||(z/ — A)~"|| behaves.

14



Pseudospectra

__ Summarize [|(z—A)~"|| with

A(A)={zeC: ||z -A)7"|>e"}
. = (J NA+E)

I[Ell <e

® Pseudospectral abscissa is

s 5 .

s 4 05 0 ' EA = R Z
ac(A) e e(2)

[Trefethen and Embree, 2005]
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Pseudospectral Bounds

Set I = 9A.(A) and L, the length of I'. Then:

e
ool < 5= [IE-A7eNdr < 5= expitan)

NB: If eigenvectors (columns of V) are normalized,

—ZHV el < Vnw(V)

V) <
K() - €—>027T6

Can also get a lower bound: for any w € R and € > 0,

sup || exp(—wt) exp(tA)|| > Qe @
>0




Beyond First-Order Systems

Approach: Exploit same Laplace transform pairing as before

exp(tA) —=— (21 — A)~
W(t) —E— T(2)""

Here W(t) = Cexp(t.A)B and T(2)~" = C(zI — A)~'B.

As before, to control behavior of W(t):

- Asymptotic stability / decay: look at spectral abscissa

- Pre-asymptotic: consider “resolvent” norm ||T(z) ||



Nonlinear Pseudospectra

Summarize ||T(z)~"|| with

o crmma A(M={zeC: ||T(Z)71H > 671}
= J AT+E)

I[Ell<e

Pseudospectral abscissa

a(T) = Zg/ﬁ\;:();) Re(2)

[Bindel and Hood, 2015]



Aside: Comparing Pseudospectra

Suppose T, T: Q — C"™" and
IT(2) = T(2)|| <n, VzeQ.

Then
Ae(T) C Nen(T).

Can approximate T~ T polynomial locally and bound
pseudospectra (for example)... but usually won't get all of C.

Or use easier-to-compute sets (e.g. Gershgorin regions).
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Pseudospectral Bounds

SetI' = OA.(A) and L, the length of I'. Then:

1 L
v < — [T e dr < — toe).
W@ < 27T/rll (2)"II'e”| < Zmexp(a)

But this may be useless (e.g. L. = oo) — need to be careful!

Can also get a lower bound: for any w € R and € > 0,

sup || exp(—wt)W(t)| > 2%,
t>0 €
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Example: Delay Differential Equation

DDE is
u'(t) = Au(t) + Bu(t — 1)

Characteristic function:
T(z)=zl—A—Be™ ™

Assume A symmetric, a(A) < 0, and a(T) < 0.

Problem: Infinitely many eigenvalues! Have to be more clever.
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Sketch of Approach

- Seek a simpler reference problem (' = AQ).
- Split into reference + difference term.
- Choose a congenial contour right of both spectra.

- Bound contour integral involving difference term.
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Reference Comparison

Define R(z) = (zI — A)~"; for proper choices of T,
V(t) = exp(tA) + — /[T (2)]e*t dz

Could choose difference reference (e.g. from a PEP).

Still need: Control of ||T(2)~" — R(2)|| on a contour.

23



Choice of Contour

Choose I right of A(T) and A(A) but in LHP:
=T Ulo Foo = {X(V) + 1y : Iyl > vo}

1 .
X(y) = - log (lyln)  To={xo+1iy:ly| <VYo,Xo = x(Vo)}
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Control on Contour

Let E(z) = T(z) ™" — R(z), contour as before:

Yo
/ |E@)] €] dT < 2exp(xot) / |Exo + i)l| dy
I 0

G
[ IE@I1e] aF < explot)

Y1 oo

using boundedness of ||E(2)|| on I + curvature into RHP.

Bound:

C
(o)l < el + ¢ (1 + )
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1 T

- Vertical contour loses 1/t factor in second term
- Drop R (bigger constants, but faster decay)
- Probably many more options!
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The other type of nonlinearity

Slightly nonlinear / time-varying problems? Simple case:
x= (A4 E(x,t))x
where ||E|| < e. Standard (?) approach:
- Find M associated with quadratic Lyapunov function for A:
AM + MA = —I.
- Look at dynamics of x’Mx for A + E (pessimize w.r.t. E):
2TMx = —||x||? + 2x" (ME)x
< —[IxX[I* + 2¢]|Mx]|[|x]

- Gronwall-type bound

(0l < exp (=M1 = 2eMI)) (O
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Work in progress

Stability of slightly nonlinear / time-varying DDE, damped, etc:

- Consider structured real perturbations E

- Replace Lyapunov-style bounds with ¢ bounds via NLPS
(or be more clever about RHS of Lyapunov equation?)

Still figuring this out — pointers welcome!
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For both first-order systems and more complex problems:

- Eigenvalues describe asymptotic dynamics
- Pre-asymptotic behavior requires more information:
- Complete eigendecomposition: Nice if you can get it.
- Conditioning of V: A blunt tool for blunt bounds.
- Pseudospectra, etc: A sharper tool for complex bounds.
- Pseudospectra alone don't suffice — choices of contours,
comparison problems, etc make a difference.
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