Numerical Methods for Data Science: Spectral Network Analysis, Part I

David Bindel 21 June 2019

Department of Computer Science Cornell University

Lecture plan

Three threads from "lay of the land" to current research:

- · Monday: Latent Factor Models
- · Wednesday: Scalable Kernel Methods
- Friday: Spectral Network Analysis
 - 1:30-2:30: Network spectra, optimization, and dynamics
 - 3:00-4:00: Network densities of states

Slides posted on web page (linked from my Cornell page).

Basics of Networks

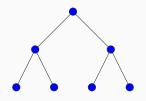
Networks and Graphs

A graph (network) consists of

- \cdot Node (or vertex) set ${\cal V}$
- Edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$
 - Undirected if $(u, v) \in \mathcal{E} \implies (v, u) \in \mathcal{E}$
- · Optional edge weights $\mathcal{E}\mapsto\mathbb{R}$

Can also add node weights or edge/node attributes.

Example Networks: Classic CS



Often small and/or highly structured:

- · Finite state automata
- · Search trees and DAGs
- Graphical models (correlated random variables)

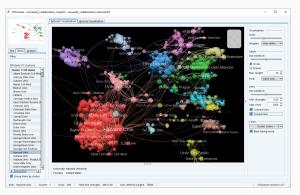
Mostly not the topic for today.

Example Networks: Physical

Connected to physical objects in 2D/3D:

- · Rivers, roads, transportation
- Circuits and other electrical networks
- Pipe flow networks
- Computer networks

Example Networks: Citations



http://www.vosviewer.com/

Often directed, some very high-degree nodes, "small world":

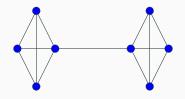
- · Web pages, citation networks
- Purchase networks

Other Networks

Lots of others as well!

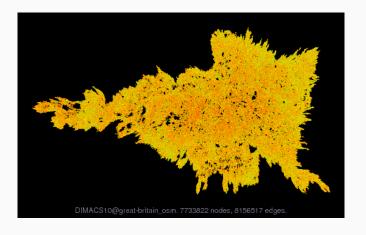
- Friendship networks
- Interaction networks (phone calls, etc)
- · Food webs
- · Protein interactions
- ..

The Big Questions: Connectedness



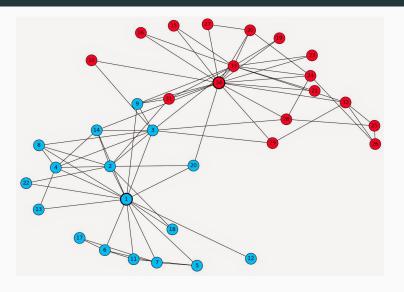
How "well-connected" is the network?

The Big Questions: Geometric Embedding



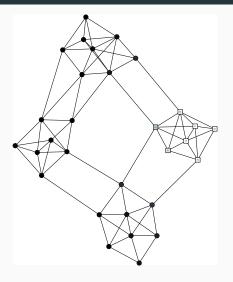
Is there an underlying geometry to the network?

The Big Questions: Centrality and Ranking



Who are important players?

The Big Questions: Clustering and Communities



What are the natural clusters or communities?

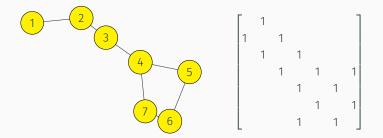
The Big Questions

One might ask many more questions:

- · Graph alignment: Can we map between similar structures?
- · Link prediction: Can we extrapolate the pattern?
- · Cascade analysis: How does information spread?
- ...

Common approach: map to a linear algebra problem!

From Networks to Matrices

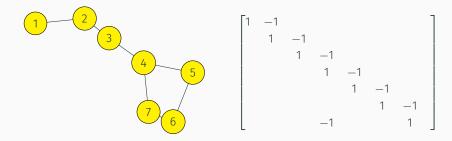


Adjacency A; unweighted is

$$a_{uv} = \begin{cases} 1, & (u, v) \in \mathcal{E} \\ 0, & \text{otherwise} \end{cases}$$

Degree $d_u = \sum_v a_{uv}$ is total adjacent edges (edge weight). Distinguish in/out in directed case.

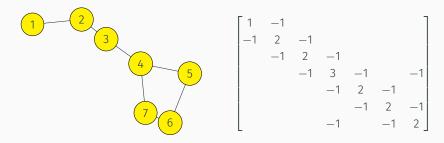
From Networks to Matrices



Differencing matrix (unweighted case)

$$g_{ew} = \begin{cases} 1, & e = (w, v) \\ -1, & e = (u, w) \\ 0, & \text{otherwise} \end{cases}$$

From Networks to Matrices



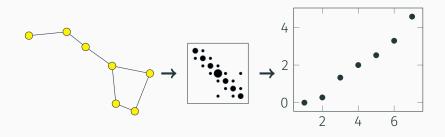
Laplacian
$$L = G^TG = D - A$$
; unweighted is

$$l_{uv} = egin{cases} ext{degree } d_u, & u = v \ -1, & (u,v) \in \mathcal{E} \ 0, & ext{otherwise} \end{cases}$$

A Bestiary of Matrices

- · Adjacency matrix: A
- Laplacian matrix: L = D A
- Unsigned Laplacian: L = D + A
- Random walk matrix: $P = AD^{-1}$ (or $D^{-1}A$)
- Normalized adjacency: $\bar{A} = D^{-1/2}AD^{-1/2}$
- Normalized Laplacian: $\bar{L} = I \bar{A} = D^{-1/2}LD^{-1/2}$
- Modularity matrix: $B = A \frac{dd^T}{2n}$
- Motif adjacency: $W = A^2 \odot A$

Spectral Network Analysis



Three stories of why eigenstuff matters:

- · Dynamics and diffusion
- Measure and counting
- Kernels and geometry

Story 1: Dynamics and Diffusion

The Random Walker

Graph with adjacency A (a_{ij} denotes edge j to i),

$$p_{ij} = a_{ij}/d_j = \text{probability of step } j \rightarrow i$$

Let $w_j(t)$ denote probability a walker is at node j at time t; then

$$w(t+1) = Pw(t) = P^t w(0)$$

Equations for a discrete time Markov chain \equiv power iteration

The Random Walker

Suppose P diagonalizable and the walk is ergodic. Then

$$P = V\Lambda V^{-1}, \quad P^t = V\Lambda^t V^{-1}$$

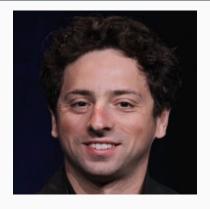
with $\lambda_1 = 1$ and $|\lambda_j| < 1$ for $j \neq 1$.

Let w^{∞} denote the stationary distribution; then

$$\|P^t - (w^{\infty})e/n^T\| \le C|\lambda_2|^t$$

where e is the vector of all ones. Rate of convergence determined by second-largest eigenvalue modulus $|\lambda_2|$.

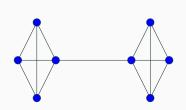
Random Walker to Random Surfer

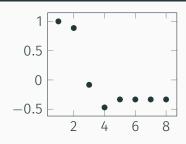


PageRank: Random walk + "teleport" with probability α $w(t+1) = (1-\alpha)Pw(t) + \alpha w^{\text{ref}}$

Get a nice spectral gap $(1-\alpha)$, fast convergence to stationarity.

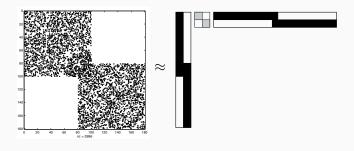
Convergence Fast and Slow





- Eigenvalue at 1: stationary state
- · Size of $|\lambda_2|$ determines convergence
- · What do the other eigenvalues mean?
- · Interpreting two eigenvalues near 1 in dumbbell:
 - · Distribution rapidly approaches 2D subspace initially
 - Then slower relaxation to equilibrium
- Corresponds to metastable states (c.f. Simon-Ando theory)

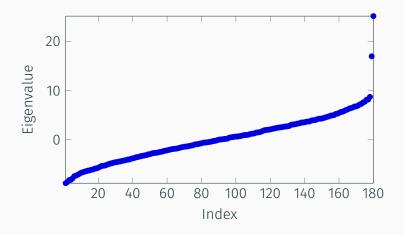
Dynamics in a Block Model



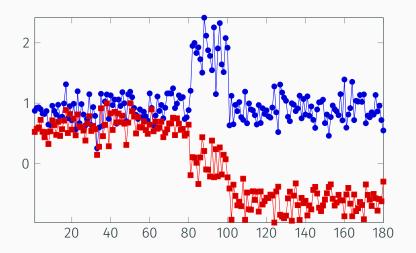
Composite model: $A \approx S \operatorname{diag}(\beta)S^{\mathsf{T}}$, $S \in \{0,1\}^{n \times c}$

- Motivation: possibly-overlapping random graphs
- · Columns of S are one basis for range space
- · Want to go from some general basis back to S

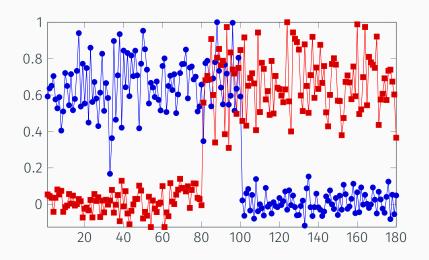
Spectrum for a Block Model Sample



Dominant Vectors



Same Space, Different Basis



And Beyond!

Many variations:

- Path counting and power of A
- Continuous time walks and exp(-tL)
- Hub/authority importance, HITS, and SVD power iteration
- ...

All involve linear time-invariant systems.

Story 2: Measure and Counting

Measurement by Quadratic Forms

Indicate $V' \subseteq V$ by $s \in \{0,1\}^n$. Measure subgraph:

$$s^{T}As = |E'| = \text{internal edges}$$

 $s^{T}Ds = \text{edges incident on subgraph}$
 $s^{T}Ls = \text{edges between } V' \text{ and } \overline{V}'$
 $s^{T}Bs = \text{"surprising" internal edges}$

Modularity matrix is $B = A - \frac{dd^T}{2n}$

Graph Bisection

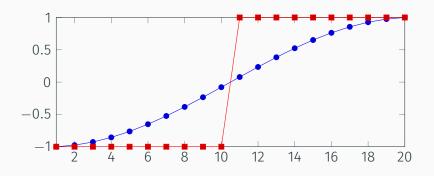
Idea: Find $s \in \{0,1\}^n$ such that $e^T s = n/2$ to

- minimize s^TLs (min cut)
- maximize s^TBs (max modularity)

Equivalently: Find $\bar{s} \in \{\pm 1\}^n$ such that $e^T \bar{s} = 0$ to

- minimize $\bar{s}^T L \bar{s} = s^T L s$ or
- maximize $\bar{s}^T B \bar{s} = s^T B s$

Oops - NP hard!



Hard: $\min \overline{s}^T L \overline{s}$ s.t. $e^T \overline{s} = 0$, $\overline{s} \in \{\pm 1\}^n$. Easy: $\min v^T L v$ s.t. $e^T v = 0$, $v \in \mathbb{R}^n$, $||v||^2 = n$.

Cheeger Inequality

Relaxation gives half of Cheeger inequality

$$h(G) \geq \lambda_2 \geq \frac{h^2(G)}{2}$$

where

$$h(G) = \min \left\{ \frac{|\partial A|}{|A|} : A \subset \mathcal{V}, 0 < |A| \le \frac{1}{2} |\mathcal{V}| \right\}$$

Relation between bottlenecks and λ_2 .

Also relevant to mixing picture from dynamics story!

Rayleigh Quotients

$$\frac{s^T A s}{s^T s} = \text{mean internal degree in subgraph}$$

$$\frac{s^T L s}{s^T s} = \text{edges cut between } V' \text{ and } \bar{V}'$$

$$\frac{s^T A s}{s^T D s} = \text{fraction of incident edges internal to } V'$$

$$\frac{s^T L s}{s^T D s} = \text{fraction of incident edges cut}$$

$$\frac{s^T B s}{s^T s} = \text{mean "surprising" internal degree in subgraph}$$

$$\frac{s^T B s}{s^T D s} = \text{mean fraction of internal degree that is surprising}$$

Rayleigh Quotients and Eigenvalues

Basic connection (M spd):

$$\frac{x^T K x}{x^T M x} \text{ stationary at } x \iff K x = \lambda M x$$

Easy despite lack of convexity.

Limits of Rayleigh Quotients

But small variations kill us:

$$\max_{x \neq 0} \frac{x^T A x}{\|x\|_2^2} = \lambda_{\max}(A), \text{ but}$$
$$\max_{x \neq 0} \frac{x^T A x}{\|x\|_1^2} = 1 - \omega^{-1}$$

where ω is the max clique size (Motzkin-Strauss).

Rayleigh Quotients and Eigenproblems

Decompose:

$$W^{T}MW = I$$
 and $W^{T}KW = \Lambda = \text{diag}(\lambda_{1}, \dots, \lambda_{n}).$

For any $x \neq 0$,

$$\frac{x^T K x}{x^T M x} = \sum_{j=1}^n \lambda_j z_j^2$$
, where $z = \frac{W^{-1} x}{\|W^{-1} x\|_2}$.

So

$$\frac{s^T K s}{s^T M s} \approx \lambda_{\max} \implies s \approx \sum_{\lambda_j \approx \lambda_{\max}} w_j z_j.$$

So look at invariant subspaces for extreme eigenvalues.

Story 3: Kernels and Geometry

Classical Multi-Dimensional Scaling

Data: square distances between points:

$$[D^{(2)}]_{ij} = d_{ij}^2 = ||u_i - u_j||^2$$

$$= ||u_i||^2 - 2\langle u_i, u_j \rangle + ||u_j||^2$$

$$r_i \equiv ||u_i||^2$$

$$D^{(2)} = r^{(2)}e^T - 2UU^T + e(r^{(2)})^T$$

Double centering:

$$B = -\frac{1}{2}JD^{(2)}J = UU^{T}, \quad J \equiv I - \frac{1}{n}ee^{T}$$

Decompose $B = XX^T$ (e.g. via eigs) to get coordinates for data. Note that B looks like a kernel matrix / Gram matrix.

Resistance Distance

Think of resistors on each edge, consider net flow between source at node *i* and sink at node *j*:

$$d_{ij}^2 = (e_i - e_j)L^{\dagger}(e_i - e_j)$$

This acts like a squared distance — find coordinates!

$$L = V\Lambda V^{T} \implies L^{\dagger} = V \begin{bmatrix} 0 & & & \\ & \lambda_{2}^{-1} & & \\ & & \ddots & \\ & & & \lambda_{n}^{-1} \end{bmatrix} V^{T}$$

Truncate to get a low-dimensional embedding.

Leveraging Geometry

General idea: M a kernel matrix / Gram matrix over data

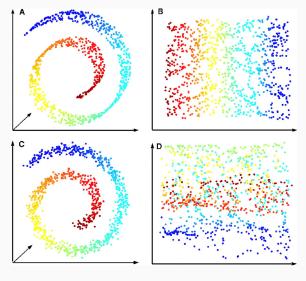
- Eigendecomposition: $M = V \Lambda V^T$
- · Coordinates for i: $(v_{ij}\sqrt{\lambda_j})_{j=1}^n$
- Truncate to get low-dimensional embedding

Then do processing over geometry

- · Graph layout (use as node coordinates)
- · Geometric partitioning (e.g. inertial methods)
- Geometric clustering (k-means)

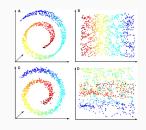
Other than resistance distance, useful metrics?

Beyond Resistance



What if we don't believe global geometry?

Isomap Idea



Distance matrix for points:

- Ordinary pairwise distance nearby
- Graph distance far away

And then apply MDS.

Summary and Preview

The Three Stories

Three stories of why eigenstuff matters:

- · Dynamics and diffusion
- Measure and counting
- Kernels and geometry

The Missing Link

So far, focus is the extreme eigenpairs:

- Metastable states in dynamics story
- · Relaxed solutions in measure/counting story
- · Reconstructed coordinates in geometric story

What about the interior of the spectrum?

The Missing Link

