Numerical Methods for Data Science: Latent Factor Models, Part I

David Bindel 17 June 2019

Department of Computer Science Cornell University

Cornell CS 6241 Spring 2018

SJTU CS 258 June 2018 + May 2019

How do we teach numerical methods in a "data science" age?

- · CS 4220 (S12): Data science projects in NA course
- · CS 6241 (S18): "Numerical methods for data science"
- · SJTU CS 258 (Jun 18+19): Undergrad version
- · CS 3220 (F19): "Computational math for CS"

Lecture plan

Three threads from "lay of the land" to current research:

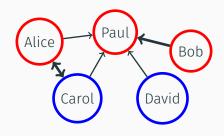
- Monday: Latent Factor Models
 - · Matrix data and decompositions
 - NMF and topic models
- · Wednesday: Scalable Kernel Methods
 - Structure and interpretation of kernels
 - Making kernel methods scale
- Friday: Spectral Network Analysis
 - Network spectra, optimization, and dynamics
 - · Network densities of states

Matrix Data: Relations and Ranking

	Casa Blanca	Forest Gump	Rocky	The Matrix	:	
Alice	5	5	1			
Bob	1		5	5		
Carol		2				
Dan		5		5		

Matrix Data: Images and Functions

Matrix Data: Networks and Relations



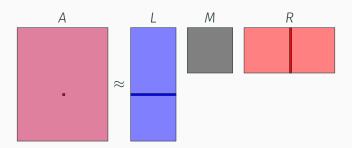
$$W = \begin{bmatrix} 0 & 0 & w_{AC} & 0 & 0 & w_{AP} \\ 0 & 0 & 0 & 0 & 0 & w_{BP} \\ w_{CA} & 0 & 0 & 0 & 0 & w_{CP} \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Matrix Data

- · Relations between objects and features, e.g.
 - Documents and word frequencies ("bag of words" models)
 - User rankings of movies, songs, etc
 - Images and pixel values
 - Indicators for DNA markers in organisms
 - Treatments and outcome histograms
 - Snapshots of a state vector at different times
- Grid samples of bivariate functions
 - · Image pixels indexed by row and column
 - PMF values for a discrete 2D random variable
- · Relations between pairs of objects
 - · Network relations (e.g. friendships)
 - · Co-occurrence statistics, interaction frequencies, etc

Can generalize beyond pairwise data with tensor methods.

Latent Factor Modeling



Map objects and features to *latent coordinates*, model data as bilinear function of coordinates:

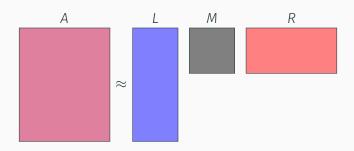
$$a_{ij} \approx l_{i,:} M r_{:,j}$$
.

Unknowns: latent coordinates for points, bilinear form.

This is underdetermined — need constraints on *L*, *M*, *R* for uniqueness.

8

Latent Factor Modeling



Model data arranged as a matrix $A \in \mathbb{R}^{m \times n}$ by

$$A \approx LMR, \quad L \in \mathbb{R}^{m \times r}, M \in \mathbb{R}^{r \times r}, R \in \mathbb{R}^{r \times n}$$

perhaps with constraints on L, M, and R.

Latent Factor Modeling

Model data arranged as a matrix $A \in \mathbb{R}^{m \times n}$ by

$$A \approx LMR, \quad L \in \mathbb{R}^{m \times r}, M \in \mathbb{R}^{r \times r}, R \in \mathbb{R}^{r \times n}$$

perhaps with constraints on L, M, and R.

From this, we would like to

- · Compress data
- Remove "noise" (including outliers)
- · Fill in missing data
- Cluster and classify objects
- · Find meaningful "parts" to data

with the Magic of Matrices.

The Magic of Matrices (or Machine Learning)

https://xkcd.com/1838/

What is The Matrix?

 $A \in \mathbb{R}^{m \times n}$ is an m-by-n array of real numbers:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Is this right? Consider some a_{ii} meanings:

- Image pixel at row *i* and column *j*
- Departure of train *j* from station *i*
- Frequency of word j in document i

None seem all that linear algebraic!

Seek useful puns between matrices and arrays.

What is The Matrix?

MATRIX COMPUTATIONS Gene (Jobb Charle N. Van Lan In LA, a matrix represents (w.r.t. basis choice):

Linear map $L: \mathcal{V} \to \mathcal{W}$ w = AvLinear operator $L: \mathcal{V} \to \mathcal{V}$ w = AvSesquilinear form $b: \mathcal{V} \times \mathcal{W} \to \mathbb{R}$ $b = w^*Av$ Quadratic form $\phi: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ $\phi = v^*Av$

Different possible attitudes toward bases

- Pure LA: The LA object is the thing
 - Think basis independent (except canonical choices)
- · Numerical LA: Sometimes bases matter!
 - Sparsity, shape, non-negativity
- Data: The matrix (array) is the thing

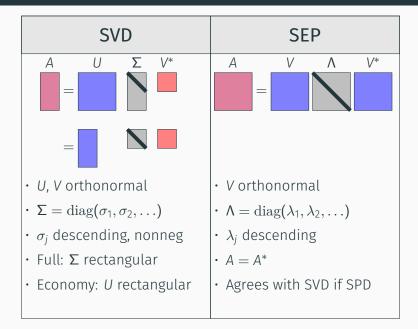
Matrices in Linear Algebra: Canonical Forms

	General bases	Orthonormal bases		
Linear map	Rank/nullity	SVD		
(or bilinear form)	$A = XI_RY^*$	$A = U\Sigma V^*$		
Linear operator	Jordan form	Schur form		
	$A = VJV^{-1}$	$A = UTU^*$		
Quadratic form	Sylvester inertia	Symm eigendecomp		
	$A = X_1 X_1^* - X_2 X_2^*$	$A = V\Lambda V^*$		

What if basis choice (identity of rows and columns) matters?

- Natural transformations are basis permutations.
- $\cdot \ \ \text{Permutation matrices} \subset \text{orthogonal matrices}.$
- Orthogonal decompositions make good building blocks!

The SVD and the Symmetric Eigenvalue Problem



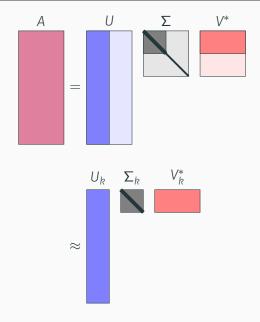
Construction

Variational construction of SVD (similar for SEP):

- Maximize ||Av|| over ||v|| = 1
 - · Unique maximum value, no local maxima!
 - Result: $Av_1 = \sigma_1 u_1$ where $u_1 = Av_1/\|Av_1\|$
- Maximize ||Av|| over ||v|| = 1 and $v \perp v_1$
 - · Again a "nice" optimization problem
 - Result: $Av_2 = \sigma_2 u_2$
- · Continue in this fashion

Completely greedy is OK in principle! No need to backtrack.

Matrices and Data: Low-Rank Approximation by SVD



Matrices and Data: Low-Rank Approximation by SVD

Consider the (economy) SVD of $A \in \mathbb{R}^{m \times n}$ for $m \ge n$

$$A = U\Sigma V^*, \quad U \in \mathbb{R}^{m \times n}, \Sigma \in \mathbb{R}^{n \times n}, V \in \mathbb{R}^{n \times n}$$

where $U^*U = I$, $V^*V = I$ and Σ is diagonal with

$$\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n \ge 0$$

Eckart-Young: Best rank *k* approximation is the truncated SVD

$$\hat{A} = U_k \Sigma_k V_k^*.$$

True in Froebenius norm, spectral norm. Error is

$$||A - \hat{A}||_F^2 = \sum_{j=k+1}^n \sigma_j^2, \qquad ||A - \hat{A}||_2 = \sigma_{k+1}$$

Actual Computation

SVD and SEP admit similar computational schemes

- · Small and dense (up to a couple 1000, MATLAB eig/svd):
 - Orthogonal reduction to bidiagonal / tridiagonal $(O(n^3))$
 - · Cheaper reduction rest of the way to the decomposition
- Subspace iteration
 - · Start with random orthonormal columns
 - Multiply by A (and maybe A*) a couple times
 - RandNLA: Few steps for OK accuracy (with oversample)
 - Good for cache use, great for modest accuracy
- · Krylov methods (Matlab eigs and svds)
 - Repeatedly multiply a few vectors by A (and maybe A*)
 - Orthogonalize at each step (parallel bottleneck)
 - Various restarting and acceleration tricks
 - High accuracy for a few extreme pairs

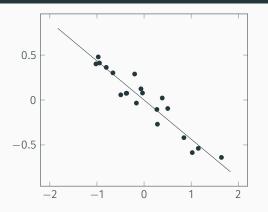
Some Computational Aspects

Big takeaways:

- We have good codes that (mostly) "just work"
- People have thought through how to make them run fast
- · Have good backward stability properties
- No misconvergence or sensitivity to starting point

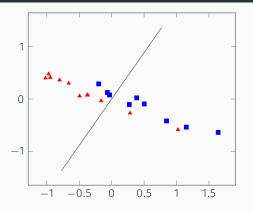
These are *great* building blocks

Example: PCA



- · Matrix rows represent different object properties
- · Typically center (subtract column means); may scale
- Run SVD on resulting matrix
- Dominant singular values are "principal components"

Example: LDA



- · Matrix rows represent different object properties
- · Rows are labeled, want to discriminate these labels
- Solution involves a generalized SEP
- May be very different from PCA directions

Example: Latent semantic analysis

Vector space model (Salton and Yang, 1975)

- · Columns are documents, row entries are word frequency
- · Scale raw data (tf-idf)
- Take SVD of resulting matrix
- Rows of $U \approx$ latent word representations
- Columns of $V \approx$ latent document representations
- Useful for comparing words to words, docs to docs
- · Also useful for searching for docs by keywords

Problem: latent coordinates are hard to interpret!

Example: Spectral Clustering

Goal: Cluster objects (rows) according to features

- Compute a truncated SVD: $A \approx U_r \Sigma_r V_r^*$
- Treat rows of $U_r\Sigma_r$ as latent coordinates
- Run *k*-means to cluster points

Essentially gives

$$A \approx LC^*$$

where

$$l_{ij} = \begin{cases} 1, & \text{item } i \text{ in class } j \\ 0, & \text{otherwise} \end{cases}$$

$$C_{:,j} = \text{centroid of class } j$$

Several types of spectral clustering – will discuss again later!

The Story So Far

SVD and SEP provide useful dimension reduction

- · Lower-dimensional "latent spaces" for further analysis
- · Latent space clarifies object similarity / dissimilarity
- But interpreting the coordinate system is hard!

So what do we want beyond SVD and SEP?

- Linear dimension with interpretable structure (today)
- Nonlinear dimension reduction (a little coming up)

Recall: The Latent Factor Framework

Factor data matrix $A \in \mathbb{R}^{m \times n}$ as

$$A \approx LMR, \quad L \in \mathbb{R}^{m \times r}, M \in \mathbb{R}^{r \times r}, R \in \mathbb{R}^{r \times n}$$

with different structures on L, M, and R.

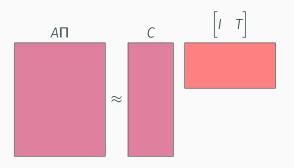
- R (or MR) as maps original features to "latent" features
- · Can impose constraints on L, M, and R
- Orthogonality constraints gets us to SVD (easy)
- Other types of constraints are harder
- ...but other constraints improve interpretability

Factor Selection and Skeletonization

Idea: Express latent factors via rows/columns of A

- Improves interpretability (maybe more tricks help)
- May improve cost of working with matrix
 - · Can form part of a row/column without forming all
 - · Useful in both experiments and computation
- But how do we choose good representative rows/cols?
 - · Want things to be as linearly independent as possible
 - · Also want good approximation quality
 - SVD provides a "speed of light" bound

Interpolative Decomposition / Skeletonization



- · C consists of the leading k columns of A
- $T = C^{\dagger}(A\Pi)_{:,k+1:n}$ chosen to minimize Frobenius norm error
- \cdot Exists some Π not easily computed such that
 - Entries of T are at most 2
 - Singular values of $\begin{bmatrix} I & T \end{bmatrix}$ in $[1, 1 + \sqrt{k(n-k)}]$
 - Approximation error within $1 + \sqrt{k(n-k)}$ of optimal

CUR Decomposition

Idea: $A \approx CUR$ where

- · C consists of columns of A
- · R consists of rows of A
- $U = C^{\dagger}AR^{\dagger}$ is optimal given C, R
- · Selection of good C and R is again the challenge

Can also consider symmetric variants where $R = C^*$.

Pivoted QR

Pivoted QR decomposition is

$$A\Pi = QR$$

where R is upper triangular, r_{ii} are positive and decreasing.

Idea: Be greedy (as in SVD), but choose among columns of A

- Choose column a_i with maximum norm
 - Set $r_{11} = ||a_i||$ and $q_1 = a_i/r_{11}$ (so $a_1 = q_1r_1$)
 - Orthogonalize vs q_1 : $a'_i = a_j q_1 r_{j1}$ with $r_{j1} = q_1^T a_j$
- Choose modified column a'_i with maximum norm
 - Set $r_{22} = ||a_i'||$ and $q_2 = a_i'/r_{22}$
 - Orthogonalize vs q_2 to get new A' matrix
- Keep repeating the process (re-ordered Gram-Schmidt)

Unlike SVD this is *not* optimal — but often pretty good.

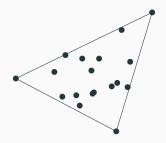
Computing Pivoted QR

As with SVD, constructive definition \neq usual computation.

- · Dense case is a standard building block (qr in MATLAB)
- Ongoing work to improve parallelism and cache efficiency
- Clever tournament pivoted (TSQR) for $m \gg n$

Again: A great building block to borrow from someone else!

The Geometry of Pivoted QR



Chosen column is on the convex hull of a 1D projection \implies it is a point on the convex hull of the original columns.

Pivoted QR to Pivoted Cholesky

Symmetric positive definite matrices \equiv Gram matrices:

$$H = A^{T}A$$

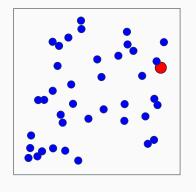
Decompose:

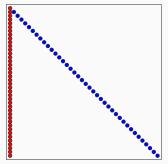
$$A\Pi = QR \implies$$

$$\Pi^{\mathsf{T}}H\Pi = R^{\mathsf{T}}Q^{\mathsf{T}}QR = R^{\mathsf{T}}R$$

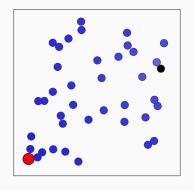
Running pivoted Cholesky is equivalent to pivoted QR.

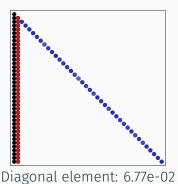
Esp useful when A is implicit (only access via H). Let's look briefly at an example we'll see again on Wednesday.

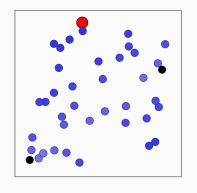


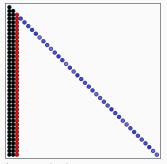


Diagonal element: 1.00e+00

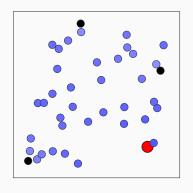


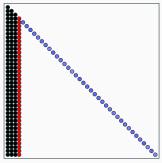




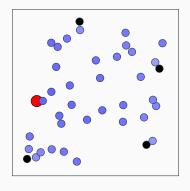


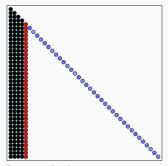
Diagonal element: 1.91e-02



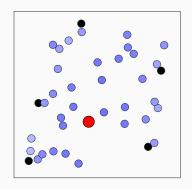


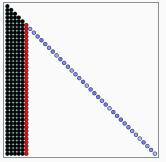
Diagonal element: 5.11e-04



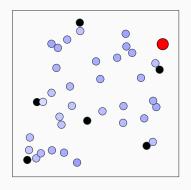


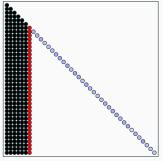
Diagonal element: 1.19e-04



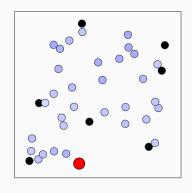


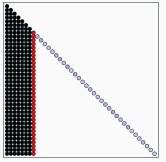
Diagonal element: 4.18e-05



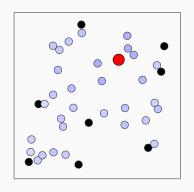


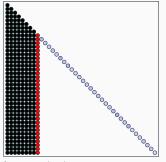
Diagonal element: 8.54e-07





Diagonal element: 3.58e-07





Diagonal element: 1.92e-07

Improving the Decomposition

Recall interpolative decomposition:

$$A\Pi \approx C \begin{bmatrix} I & T \end{bmatrix}$$

and can keep all $|t_{ij}| \leq 2$ with right Π .

Idea: Start from pivoted QR and refine

· Compute truncated pivoted QR

$$A\Pi = QR = \begin{bmatrix} Q_1 & Q_1 \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix} \approx Q_1 \begin{bmatrix} R_{11} & R_{12} \end{bmatrix}$$

- Set $C = Q_1 R_{11}$ and $T = R_{11}^{-1} R_{12}$
- For large entries ($|t_{ij}| > 2$), swap columns π_i and π_{r+j} .
- Recompute T; repeat swaps until happy.

Next Time: Topics, Parts, and NMF

What if we want a low-rank factorization with more structure?

- · Non-negativity?
- Sparsity of factors?
- Normalization for a probabilistic interpretation?

Hard in general, but there are some effective approaches.

After the break: From non-negative matrix factorization to spectral topic modeling