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Kernel Approximation

Goal: Approximate f : Ω ⊂ Rd → R.
Input: (Possibly noisy) samples yi = f(xi) + ϵi.

Approximation scheme: f(x) ≈ s(x) where

s(x) =
n∑
j=1

k(x, xj)cj +
m∑
j=1

bj(x)λj

with a discrete orthogonality condition for each bj:

m∑
j=1

bi(xj)cj = 0.

Last hour: several explanations for why this makes sense.
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Picture Today: Gaussian Processes (GPs)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

3



Gaussian Processes (GPs)

Our favorite continuous distributions over
R: Normal(µ, σ2), µ, σ2 ∈ R
Rn: Normal(µ, C), µ ∈ Rn, C ∈ Rn×n

Rd → R: GP(µ, k), µ : Rd → R, k : Rd × Rd → R

More technically, define GPs by looking at finite sets of points:

∀X = (x1, . . . , xn), xi ∈ Rd,

have fX ∼ N(µX, KXX), where
fX ∈ Rn, (fX)i ≡ f(xi)
µX ∈ Rn, (µX)i ≡ µ(xi)

KXX ∈ Rn×n, (KXX)ij ≡ k(xi, xj)

When X is unambiguous, we will sometimes just write K.
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Kernel Functions

Call the kernel (or covariance) function k. Required1 property:

• Pos def: KXX is always positive definite

Often desirable:

• Stationary: k(x, y) depends only on x− y
• Isotropic: k(x, y) depends only on x and ∥x− y∥

Often want both (sloppy notation: k = k(r)).

Common examples (e.g. Matérn, SE) also depend on
hyper-parameters θ — suppressed in notation unless needed.

1Conditionally pos def is interesting, but we’ll skip it today.
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Matérn and SE kernels
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Choosing Kernels

Kernel is chosen by modeler

• Choose Matérn / SE for simplicity
• Rarely have the intuition to pick the “right” kernel
• Common choices are universal — can recover anything

• Requires less data for “good” choice (inductive bias)
• Roughly: smooth kernels good for smooth functions

• Common kernel families have hyperparameters
• Length scale (almost all)
• Smoothness parameter (Matérn)

• Also have hyperparameter for noise level (“nugget”)

Would like to choose hyperparameters using data.
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Tasks at Hand

Basic tasks in function approximation via a kernel scheme

• Select a kernel and hyperparameters (length scale, noise)
• Use data to fit model parameters
• Evaluate the model at new points
• Evaluate predictive variance at new points

For optimization: want gradients of everything
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Being Bayesian
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Being Bayesian

Now consider prior of f ∼ GP(µ, k), noisy measurements

fX ∼ y+ ϵ, ϵ ∼ N(0,W), typically W = σ2I

Posterior is f ∼ GP(µ′, k′) with

µ′(x) = µ(x) + KxXc K̃ = KXX +W
k′(x, x′) = Kxx′ − KxXK̃−1KXx′ c = K̃−1(y− µX)

The expensive bit: solves with K̃.
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Dealing with Derivatives

Derivative information =⇒ multi-output GP:

µ∇(x) =
[

µ(x)
∂xµ(x)

]
, k∇(x, x′) =

[
k(x, x′) ∇′

xk(x, x′)
∂xk(x, x′) ∂2x,x′k(x, x′)

]

Requires a little care, but ideas in this talk generalize.

NB: Other (linear) measurements also allowed – e.g. integrals.
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Kernel Hyper-parameters: MLE

How to estimate hyper-parameters θ?

• Bayesian approach? Expensive...
• Usually just do maximum likelihood estimation (MLE)

Likelihood function is same as for a multivariate normal:

ℓ(θ|y) = 1√
det(2πK̃)

exp

(
− 12(y− µX)

TK̃−1(y− µX)

)
.

Of course, we usually work with log-likelihood and derivatives.
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Kernel Hyper-parameters: MLE

How to estimate hyper-parameters θ?

• Bayesian approach? Expensive...
• Usually just do maximum likelihood estimation (MLE)

Log-likelihood function for kernel hypers θ

L(θ|y) = Ly + L|K| −
n
2 log(2π)

where (again with c = K̃−1(y− µX))

Ly = − 12(y− µX)
Tc, ∂Ly

∂θi
=
1
2c

T

(
∂K̃
∂θi

)
c

L|K| = − 12 log det K̃,
∂L|K|
∂θi

= − 12tr
(
K̃−1 ∂K̃

∂θi

)
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Kernel Hyper-parameters: LOOCV

Alternative to MLE: Leave One Out Cross-Validation (LOOCV)

LOOCV =
n∑
i=1

(
r(−i)

)2
where

r(−i) = yi − s(−i)(x)
s(−i) = fit to all data points but xi
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Kernel Hyper-parameters: LOOCV Trick

Fitting problem for all the data:

K̃c = y− µX

Leave out point i: c(−i)i = 0 and r(−i) = yi − µ(xi)− KxiXc(−i).
Write as [

K̃ ei
eTi 0

][
c(−i)

r(−i)

]
=

[
y
0

]
where ei denotes column i of an identity matrix.

Gaussian elimination gives

r(−i) = ci[
K̃−1
]
ii

NB:
[
K̃−1
]
ii
is the leave one out predictive variance.
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Generalized Cross-Validation

Problem with LOOCV: no weights on residuals!
Alternative is Generalized Cross-Validation (Golub, Heath,
Wahba 79):

V(λ) =
1
n∥(I− A(λ))(y− µX)∥2[ 1

ntr(I− A(λ))
]2

where A(λ) is the influence matrix.

In case of K̃ = K+ σ2I, have

I− A(λ) = I− KK̃−1 = σ2K̃−1

Therefore
V = n ∥c∥2

tr(K̃−1)2
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GCV Derivatives

Derivative of V = n∥c∥2/tr
(
K̃−1
)2
is tedious, not difficult:

δV = n
∥c∥2 tr

(
K̃−1(δK̃)K̃−1

)
−
(
cTK̃−1(δK̃)c

)
tr
(
K̃−1
)

tr
(
K̃−1
)3

Computational issues for GCV are similar to those for MLE.
Focus on latter.
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Learning Parameters and Hypers: Small n

K̃ = L LT

In an optimization loop:

1 L = chol ( K t i l d e ( theta ) ) ;
2 c = L ’ \ ( L \( y−mu) ) ;
3 l i k y = −0.5* ( ( y−mu) ’* c ) ;
4 l i k K = −sum( log ( diag ( L ) ) ) ;
5 fo r i = 1 : len ( theta )
6 d l i k y = 0 . 5* ( c ’*dK ( theta , i ) *c ) ;
7 d l i kK = −0.5* t race ( L ’ \ ( L\dk ( theta , i ) ) ) ;
8 end
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Scalability Bottlenecks

Consider n data points

• Straightforward regression: factor K̃ at O(n3) cost
• Kernel hyper MLE requires multiple O(n3) ops

• To compute log det K̃ is O(n3) per step
• To compute tr

(
K̃−1 ∂K̃∂θi

)
is O(n3) per hyper per step

• Cost of kernel hyper GCV is similar (lots of costly traces)

Two possible work-arounds

• Data-sparse factorization methods
• Methods that avoid factorization (e.g. iterative solvers)

• Q: how to handle determinants and traces?
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Scaling GPs

Several possible approaches:

• Very smooth kernels =⇒ low rank K
• Compactly supported kernels =⇒ sparse K
• Can piece together local kernel approximations
• Rank-structured factorization methods
• Black-box multiplication (via FMM or FFT)

We will focus on first and last.
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Scaling GPs: Factorization approach



Simplest Data-Sparse Approach

For K (nearly) low rank: partial pivoted Cholesky

Diagonal element: 1.00e+00
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Simplest Data-Sparse Approach

For K (nearly) low rank: partial pivoted Cholesky

Diagonal element: 6.77e-02
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Simplest Data-Sparse Approach

For K (nearly) low rank: partial pivoted Cholesky

Diagonal element: 1.91e-02

21



Simplest Data-Sparse Approach

For K (nearly) low rank: partial pivoted Cholesky

Diagonal element: 5.11e-04
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Simplest Data-Sparse Approach

For K (nearly) low rank: partial pivoted Cholesky

Diagonal element: 1.19e-04
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Simplest Data-Sparse Approach

For K (nearly) low rank: partial pivoted Cholesky

Diagonal element: 4.18e-05
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Simplest Data-Sparse Approach

For K (nearly) low rank: partial pivoted Cholesky

Diagonal element: 8.54e-07

21



Simplest Data-Sparse Approach

For K (nearly) low rank: partial pivoted Cholesky

Diagonal element: 3.58e-07
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Simplest Data-Sparse Approach

For K (nearly) low rank: partial pivoted Cholesky

Diagonal element: 1.92e-07
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Simplest Data-Sparse Approach

Smooth kernel and long length scales: K nearly rank m≪ n

• P(LLT)PT = partial pivoted Cholesky (select m inducing
points); does not require forming KXX

• Solve P(LLT + σ2I)PTc = fX stably by reformulating c as a
scaled regularized least squares residual:

minimize ∥fX − Lw∥2 + σ2∥w∥2, c = σ−2 (fX − Lw)

• Compute log det K̃ = log det(LTL+ σ2I) + 2(n−m) log σ;
similar cheap rearrangement for derivatives.

• Prediction and predictive variance are also cheap.
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Notes on Pivoted Cholesky

• Don’t have to be purely greedy (swaps as in CUR/ID)
• Can make it depend on data (LARS or Lasso approaches)
• Piv Chol good for preconditioning black-box approaches
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Beyond Low Rank

If K is not low rank, can still use rank-structured factorization.

Example (1D):

K̃ ≈

[
K̃11 U1UT2
U2UT1 K̃22

]
Can solve be recognizing “disguised sparsity”:

K̃c = y =⇒


K̃11 0 U1 0
0 K̃22 0 U2
U1 0 0 −I
0 U2 −I 0



c1
c2
γ1
γ2

 =


y1
y2
0
0


Apply recursively for an O(n log n) solver. More sophisticated
options available, extensions to multi-dimensional, etc.
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Scaling GPs: Black box approach



Basic ingredients for “black box” approach

• Fast MVMs with kernel matrices
• Krylov methods for linear solves and matrix functions
• Stochastic estimators: trace, diagonal, and other
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Kernel approximations

• Low-rank approximation (via inducing variables)
• Non-smooth kernels, small length scales =⇒ large rank
• Only semi-definite

• Sparse approximation
• OK with SE kernels and short length scales
• Less good with heavy tails or long length scales
• May again lose definiteness

• More sophisticated: fast multipole, Fourier transforms
• Same picture as in integral eq world (FMM, PFFT)
• Main restriction: low dimensional spaces (2-3D)

• Kernel a model choice — how does approx affect results?
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Example: Structured Kernel Interpolation (SKI)

Write KXX ≈ WTKUUW where

• U is a uniform mesh of m points
• KUU has Toeplitz or block Toeplitz structure
• Sparse W interpolates values from X to U

Apply KUU via FFTs in O(m logm) time.
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The power of fast MVMs

With MVMs alone, natural to explore nested Krylov subspaces:

Kd+1(K̃,b) = span{b, K̃b, K̃2b, . . . , K̃db} = {p(K̃)b : p ∈ Pk}

Lanczos process: expansion + Gram-Schmidt

βjqj+1 = K̃qj − αjqj − βj−1qj−1
Lanczos factorization: K̃Qk = QkT̄k where

Qk =
[
q1 q2 . . . qk

]
,

T̄k =



α1 β1
β1 α2 β2

β2 α3 β3
. . . . . . . . .

βk−1 αk
βk


=

[
Tk

βkeTk

]
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The power of fast MVMs

Fast MVM with symmetric K̃ =⇒ try Lanczos!

• Incrementally computes K̃Q = QT where
• Q has orthonormal columns
• Leading k columns span k-dim Krylov space
• T is tridiagonal

• Building block for
• Solving linear systems (CG)
• Approximating eigenvalues
• Approximating matrix functions: f(K̃)b
• Quadrature vs spectral measure for K̃

• Fast (three-term recurrence) and elegant...
• ... but not forward stable in finite precision
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Function application via Lanczos

A computational kernel: f(K̃)b

• Run Lanczos from starting vector b/∥b∥
• At n steps in exact arithmetic,

f(K̃)b = Qf(T)QTb = ∥b∥Qf(T)e1

• Truncate at k≪ n steps, use

f(K̃)b ≈ ∥b∥Qkf(Tk)e1

• Error analysis hinges on quality of poly approx

min
f∈Pk

max
λ∈Λ(K̃)

|f(λ)− f̂(λ)|

• Compare: Chebyshev methods just use [λmin, λmax]

CG is a special case corresponding to f(z) = z−1.
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Tractable traces

CG solves systems with K̃; problem terms are

L|K| = − 12tr
(
log K̃

) ∂L|K|
∂θi

= − 12tr
(
K̃−1 ∂K̃

∂θi

)

Q: How do we parley fast MVMs into trace computations?
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Tractable traces

Stochastic trace estimation trick:

• z ∈ Rn has independent random entries
• E[zi] = 0 and E[z2i ] = 1

Then
E[zTAz] =

∑
i,j
aijE[zizj] = tr(A).

NB: E[z⊙ Az] = diag(A).

Standard choices for the probe vector z:

• Hutchinson: zi = ±1 with probability 0.5
• Gaussian: zi ∼ N(0, 1)

See Avron and Toledo review, JACM 2011.
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Putting it together

For each probe vector z until error bars small enough:

• Run Lanczos from z/∥z∥
• Use Lanczos to estimate K̃−1z and log(K̃)z
• Dot products yield estimators:

L|K| = − 12E
[
zT log(K̃)z

]
∂L|K|
∂θi

= − 12E
[
(K̃−1z)T

(
∂K̃
∂θi

z
)]

Cost per probe:

• One Lanczos process
• One matvec per parameter with derivative

Quite effective in practice! And amenable to preconditioning.
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“There is No New Thing Under the Sun”

“Generalized Cross-Validation for Large-Scale Problems”
Golub and Von Matt (1997)

• Treats least squares and GCV (vs kernel methods and MLE)
• But the same Lanczos + stochastic trace estimator combo
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Pivoted Cholesky preconditioning

Let M = P(LLT + σtI)PT ≈ K̃ with L ∈ Rn×m, m≪ n:

• Preconditioned CG: works (implicitly) with M−1K̃
• Note log det K̃ = log detM+ log detM−1K̃
• Know how to do fast direct solves and log det with M
• All boils down to generalized Lanczos with (K̃,M)
• Smooth kernels (e.g. SE) and long length scales =⇒
convergence in few steps
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Blocking for performance

Generalized Lanczos per probe vector involves

• One matvec with K̃ per step
• One solve with M per step
• Barrier between steps
• Low arithmetic intensity (flops / memory access)
• Limited opportunities for parallelism

Idea: Lanczos for several probes in parallel

• Multiply K̃ or M−1 by panel of vectors / step
• Improves cache use and parallelism
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The whole package

So we have

• Stochastic estimators + Krylov iterations
• Preconditioning to reduce steps to convergence
• Blocking to reduce time per step
• GPU acceleration speeds things up further

For all the tricks together: https://gpytorch.ai
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Example: Rainfall
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Example: Rainfall
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Example: Rainfall

Method n m MSE Time [min]
Lanczos 528k 3M 0.613 14.3

Scaled eigenvalues 528k 3M 0.621 15.9
Exact 12k - 0.903 11.8

• Data: Hourly precipitation data at 5500 weather stations
• Aggregate into daily precipitation
• Total data: 628K entries
• Train on 100K data points, test on remainder
• Use SKI with 100 points per spatial dim, 300 in time
• Comparison: scaled eigenvalues approx, exact solve

NB: This is with an older MATLAB code (GPML), not GPyTorch
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Example: Hickory data

Can build other stochastic processes via GPs

• Example: Log-Gaussian Cox process model
• Models count data (e.g. events in spatial bins)
• Poisson conditional on intensity function
• Log intensity drawn from a GP

• Laplace approximation for posterior
• Data set is point pattern of 703 hickory trees in Michigan
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Example: Hickory data

(a) Points (b) Exact (c) Scaled eigs (d) Lanczos

Figure 1: Prediction by different methods on the Hickory dataset.

Method sf ℓ1 ℓ2 − log p(y|θ) Time [s]
Exact 0.696 0.063 0.085 1827.56 465.9
Lanczos 0.693 0.066 0.096 1828.07 21.4

Scaled eigs 0.543 0.237 0.112 1851.69 2.5

Table 1: Hyper-parameters recovered by different methods
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Example: Surface reconstruction

Recovering the Stanford bunny model from 25K noisy normals.

43



Example: Bayesian optimization
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• Learn active subspace of high-dimensional space
• Fit GP model with derivative in subspace
• Optimize expected improvement

• Need predictive variance (use stochastic estimator)
• Use low-rank approximation for control variate

• Works surprisingly well — still lots to do!
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For more...

Eriksson, Dong, Lee, B., Wilson. Scaling Gaussian Process
Regression with Derivatives. NeurIPS 2018.

Gardner, Pleiss, Weinberger, B., Wilson. GPyTorch: Blackbox
Matrix-Matrix Gaussian Process Inference with GPU
Acceleration. NeurIPS 2018.

K. Dong, D. Eriksson, H. Nickisch, D. Bindel, and A. G. Wilson,
Scalable Log Determinants for Gaussian Process Kernel
Learning. NIPS 2017.

GPyTorch: https://gpytorch.ai
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