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Lecture plan

Three threads from “lay of the land” to current research:

• Week 1: Latent Factor Models
• Tue, Apr 16: Matrix data and decompositions
• Thu, Apr 18: NMF and topic models

• Week 2: Scalable Kernel Methods
• Week 3: Spectral Network Analysis

Slides posted on web page (linked from my Cornell page).
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http://www.cs.cornell.edu/~bindel/


Reminder: Latent Factor Modeling

≈

A L M R

Underdetermined without constraints on L, M, and R.

• Simplest: Orthonormality constraints (SVD)
• Harder: L or R drawn from A (ID, CUR)
• Hardest: Non-negativity and sparsity constraints
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Reminder: Latent Factor Modeling and SVD

=

A U Σ V∗

≈

Uk Σk V∗k

Simplest: Orthonormality constraints (SVD and the like)

• Straightforward to compute
• Lots of good codes to use (sparse or dense case)
• Existence proof is a greedy algorithm!

• Provides useful comparisons for indexing, clustering, etc
• Factors (latent coordinates) are not easy to interpret
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Reminder: Latent Factor Modeling and ID/CUR

≈

AΠ C
[
I T

]

Harder: Subset constraints (factors from rows/cols of A)

• Good selection of rows/cols gives
• Nice factors (e.g. |tij| ≤ 2)
• Approximation error bounds

• Good building block: pivoted QR (greedy approach)
• Greedy and suboptimal (though quality bounds exist)
• Provides a good initial guess (refine by swapping)

5



Latent Factor Modeling and Non-Negativity

≈

A W H

Hardest: Non-negativity constraints (W ∈ Rm×k
+ ,H ∈ Rk×n+ )

• A hard optimization problem!
• Standard algorithms converge to local minima
• Few nontrivial approximation error bounds

• But this is great for interpretability!
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Interpreting Non-Negative Matrix Factorizations (NMF)

≈

A W H

Domain Object (a:,j) Cluster (w:,k)

Document Word Topic
Image Pixel Segment
Network User Community
Legislature Member Party/Group
Playlist Song Genre
Chemical spectra Mixture Molecules
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Why is it Hard?

Non-negative matrix factorization is hard!

• The role of k is very unclear
• The problem is nonconvex with many local minima
• Greedy strategies are very suboptimal

But: sometimes it seems easier in practice!

Can deal with this in two ways

• Use locally-convergent iterations
(and maybe think about initialization)

• Find structural reasons for non-hardness

We will tackle both.
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The Optimization Problem

Goal:
A ≈ WH

Several options to quantify “≈”; we use Frobenius norm:

minimize 12∥A−WH∥2F where W ∈ Rm×k
+ ,H ∈ Rk×n+
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Getting the Gradient

Note ∥ · ∥F is a Euclidean norm for the inner product

⟨X, Y⟩F = tr(YTX)

Compute variations (directional derivatives) of

ϕ(W,H) = ∥R∥2F = ∥A−WH∥2F

as follows:

δϕ = δ

[
1
2⟨R,R⟩F

]
= ⟨δR,R⟩F = −⟨(δW)H,R⟩F − ⟨W(δH),R⟩F.

Do some algebra (cyclic invariance of traces) to rearrange as

δϕ = −⟨δW,RHT⟩F − ⟨δH,WTR⟩F
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Projected Gradient Descent
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xk+1 = P
(
xk+1 − αk∇ϕ(xk)

)
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Projected Gradient Descent for NMF

Given an objective ϕ and a projection P onto a convex
constraint set, projected gradient descent iteration is

xk+1 = P
(
xk+1 − αk∇ϕ(xk)

)
In our case: P(X) = [X]+ is elementwise max with zero, and

δϕ = −⟨δW,RHT⟩F − ⟨δH,WTR⟩F

so

Wnew = [W+ αRHT]+
Hnew = [H+ αWTR]+

This converges for appropriate choices of α.
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Multiplicative Updates

Can also choose more than one step size in PGD:

Wnew = [W+ S⊙ (RHT)]+
Wnew = [H+ S′ ⊙ (WTR)]+

Choose non-negative step sizes

S = W⊘ (WHHT), S′ = H⊘ (WTWH).

With these choices, terms cancel, so that

Wnew = S⊙ (AHT) = W⊘ (WHHT)⊙ (AHT)
Hnew = S′ ⊙ (WTA) = H⊘ (WTWH)⊙ (WTA).

Scaling is such that we no longer have to project.
Guaranteed non-increasing – but no convergence guarantee.

This is the Lee and Seung scheme.
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Death by a Million Steps

Pete Stewart on “long run” convergence of gradient descent:

But this long run is a misleading guide to current af-
fairs. In the long run we are all dead.

— John Maynard Keynes (1923)

Issues:

• Each step is expensive (compute with full matrices)
• We may need a lot of steps
• We need some smart way to choose α (for PGD)

Can we do better? Maybe with cheaper steps?
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One Approach: Stochastic Gradient Descent

Projected gradient descent iteration:

xk+1 = P
(
xk+1 − αk∇ϕ(xk)

)
Projected SGD:

xk+1 = P
(
xk+1 − αkg(xk)

)
E[g(x)] = ∇ϕ(x)

Converges, if slowly, for appropriate αk (hard to choose).
And each step is cheap.
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Coordinate Descent
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(Block) Coordinate Descent

Idea: Partition variables and sweep over them; at each step

• Fix all but the current (block) of variables
• Take an optimization step on that variable (block)

Repeat until convergence.

Convergence1 if each subproblem has a unique solution.
Q: What should the blocks / subproblems be?

1to a stationary point
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Three Variants on Coordinate Descent

• Simple coordinate descent
• Very cheap updates
• Looks like PGD, but less parallel (GS vs Jacobi)

• 2k vector blocks (columns of W and rows of H)
• Hierarchical Alternating Least Squares (HALS) /
Rank-One Residual Iteration (RRI)

• Subsolves are single-variable non-negative LS problems
• Equivalent to simple coordinate descent (for one order)

• Alternately minimize on W and H
• Alternating Non-Negative Least Squares (ANLS)
• Yields one NNLS per row of W or column of H
• Simple active-set solvers can work pretty well here!
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The Bayesian Approach: LDA

Latent Dirichlet Allocation (LDA) is a generative model:

• For each topic, choose word distribution ϕ⃗k ∼ Dir(β)

• For each doc, choose topic distribution θ⃗m ∼ Dir(α)
• For word n in document m

• Choose topic zm,n ∼ Cat(θ⃗m)

• Choose word wm,n ∼ Cat(ϕ⃗zm,n)
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The Bayesian Approach: LDA

β

ϕ⃗k

1 ≤ k ≤ K

wm,n

zm,n

θ⃗m

α

1 ≤ n ≤ Nm

1 ≤ m ≤ M

Graphical model notation:
• Circles = random variables
• Boxes = repetition
• Arrows = dependency
• Hyperparameters α, β

Observe wm,n; infer the rest.
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(Collapsed) Gibbs sampling for LDA

• Start with random assignment of topic labels zm,n
• Compute counts (words per topic, topics per doc)
• Repeatedly loop over data; for each word wm,n

• Re-sample zm,n conditioned on all other zm′,n′

• Update counts
• Infer ϕ⃗k and θ⃗m from samples of z

This looks a lot like coordinate descent!
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The Picture So Far

• Lots of locally convergent iterations
• Slow convergence may be an issue?

• Can still get useful results without guarantees!
• Lee and Seung may not converge to stationary point
• SGD methods are often terminated pretty early
• Gibbs is useful because it sticks to a metastable state
(otherwise permutation invariance blurs topic identity)

• All involve many passes over the data
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One Stone, Two Birds

What makes us unhappy?

• Limited theory + frequent global convergence in practice
• Algorithms that require many passes over the data

A common solution: separability
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Separable NMF

Separable structure:

ΠTA =

[
I
W2

]
H

Happens in many domains!

Domain Object (a:,j) Cluster (w:,k) Basis
Document Word Topic Anchor word
Image Pixel Segment Pure pixel
Network User Community Representative
Legislature Member Party/Group Partisan
Playlist Song Genre Signature song
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Finding Anchors

Assume separable structure:

ΠTA =

[
I
W2

]
H

Normalize rows of A (rows of W, cols of H) to sum to 1:

ΠTĀ =

[
I
W̄2

]
H̄

Leading rows of ΠTĀ are the convex hull of all rows.

We have already seen how to find convex hulls!
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Finding Anchors
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This is exactly the construction of ID via pivoted QR!

ĀTΠ = QR = H̄T
[
I W̄T

2

]
Recognizing pivoted QR lets us use better implementations.
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Concentrate on Co-occurrence

A

α

Z1

Z2

X1

X2

Bk

nm(nm − 1)

1 ≤ m ≤M

1 ≤ k ≤ K

1

Rest of the talk: focus on normalized co-occurrence matrix

Cij ∝ frequency with which words i, j appear together

Note:

• Smaller (if less sparse) than word-document matrix
• Separability of word-document matrix inherited by C
• Topics tend to be easier to pull out
• Can produce a graphical model for C directly
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Factoring the Co-occurrence

C ≈ BABT

• Columns of B correspond to word distributions for topics
• Matrix A corresponds to topic correlation
• Entries of C are non-negative sum to 1 (joint stochastic)
• Entries of A are non-negative and sum to 1
• Columns of B are non-negative and sum to 1

28



The Anchor Words Algorithm

ΠTCΠ ≈

[
I
B2

]
A
[
I BT2

]

• Find anchor words by pivoted QR on C̄
• Simplex-constrained least squares to compute B2
• Choose A as submatrix of C (can also do least squares)
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How Well Does It Work? (NeurIPS document collection)

Arora et al. 2013 (Baseline)
neuron layer hidden recognition signal cell noise
neuron layer hidden cell signal representation noise
neuron layer cell hidden signal noise dynamic
neuron layer cell hidden control signal noise
neuron layer hidden cell signal recognition noise
Probabilistic LDA (Gibbs)
neuron cell visual signal response field activity
control action policy optimal reinforcement dynamic robot
recognition image object feature word speech features
hidden net layer dynamic neuron recurrent noise
gaussian approximation matrix bound component variables
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What Goes Wrong?

Not a conventional NeurIPS author.
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What Goes Wrong?
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• Naive anchor words algorithm finds bad anchors!
• Issue: Separability may only be approximate
• Data does not even look very low rank
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Finding a Fix

Model implicitly assumes C is

• Joint stochastic
• Positive semi-definite
• Low rank

Cannot fit outside this structure.

So: what if we enforce the structure?
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Rectification
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Alternating projection based on:

• Projection onto low-rank PSD (via eigensolve)
• Projection onto joint stochastic (elementwise)

Anchor selection based on rectified C works much better.
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How Well Does It Work?

Lee et al. 2015 (AP)
neuron circuit cell synaptic signal layer activity
control action dynamic optimal policy controller reinforcement
recognition layer hidden word speech image net
cell field visual direction image motion object orientation
gaussian noise hidden approximation matrix bound examples
Probabilistic LDA (Gibbs)
neuron cell visual signal response field activity
control action policy optimal reinforcement dynamic robot
recognition image object feature word speech features
hidden net layer dynamic neuron recurrent noise
gaussian approximation matrix bound component variables
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Summary

Three flavors of latent factor model:

• Latent factors via SVD are easy to compute
• Factors drawn from data are more interpretable
• NMF and LDA give natural parts decomposition

NMF is tricky in general, but

• Non-convexity sometimes seems a non-issue
• Separability hypothesis suggests why
• Assuming separability gives fast algorithms
• May need to enforce structure for good results

Recent approaches involve all three ideas: SVD/SEP, QRP, NMF.
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