
Stochastic Linear Algebra for
Scalable Gaussian Processes

David Bindel
28 Jan 2019

Collaborators

• Kun Dong (Cornell CAM→ Facebook)
• David Eriksson (Cornell CAM→ Uber AI)
• Jake Gardner (Cornell CS→ Uber AI)
• Eric Lee (Cornell CS)
• Hannes Nickisch (Phillips Research)
• Geoff Pleiss (Cornell CS)
• Kilian Weinberer (Cornell CS)
• Andrew Wilson (Cornell ORIE)

1

Kernel and GP basics

Simple and impossible

Let u = (u1,u2). Given u1, what is u2?

We need an assumption! Two different standard takes.

2

Being bounded

{uTK−1u ≤ 1}

Let u = (u1,u2) s.t. ∥u∥2K−1 ≤ 1. Given u1, what is u2?

Optimal recovery: ∥u2 − w∥2S−1 ≤ 1− ∥u1∥2(K11)−1

w = K21K−111 u1
S = K22 − K21K−111 K12

3

Being Bayesian

uTK−1u = 1

Let U = (U1,U2) ∼ N(0, K). Given U1 = u1, what is U2?

Posterior distribution: (U2|U1 = u1) ∼ N(w, S) where

w = K21K−111 u1
S = K22 − K21K−111 K12

4

Kernel functions four ways

Generalizations where K matrix turns into kernel k(x, y):

• Feature maps: ϕ : Rd → H, k(x, y) = ⟨ϕ(x), ϕ(y)⟩H.
Approx scheme: f(x) ≈ w∗ϕ(x) with ∥w∥H minimal.

• Defining a RKHS norm (equiv to ∥w∥H).
• Shape functions: f(x) ≈

∑
j cjk(x, xj).

Equivalent to feature map picture (“kernel trick”).
• Covariance for Gaussian process.

RBF / kernel ridge regression / GP differ mainly in
regularization, interpretation of error analysis.
Common issues: kernel choice and linear algebra.

Today I will use GP language.

5

The Big Picture

Gaussian processes (GPs) are

• Key building block for ML and spatio-temporal statistics
• Tightly connected to integral equations, kernel regression
• Straightforward to reason about (just linear algebra)
• But hard to scale to big data (because of dense LA)

Goal today: Make these methods scale!

6

Basic ingredient: Gaussian Processes (GPs)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

7

Basic ingredient: Gaussian Processes (GPs)

Our favorite continuous distributions over
R: Normal(µ, σ2), µ, σ2 ∈ R
Rn: Normal(µ, C), µ ∈ Rn, C ∈ Rn×n

Rd → R: GP(µ, k), µ : Rd → R, k : Rd × Rd → R

More technically, define GPs by looking at finite sets of points:

∀X = (x1, . . . , xn), xi ∈ Rd,

have fX ∼ N(µX, KXX), where
fX ∈ Rn, (fX)i ≡ f(xi)
µX ∈ Rn, (µX)i ≡ µ(xi)

KXX ∈ Rn×n, (KXX)ij ≡ k(xi, xj)

When X is unambiguous, we will sometimes just write K.
8

Basic ingredient: Kernel functions

Call the kernel (or covariance) function k. Required property:

• Pos def: KXX is always positive definite

Often desirable:

• Stationary: k(x, y) depends only on x− y
• Isotropic: k(x, y) depends only on x and ∥x− y∥

Often want both (sloppy notation: k = k(r)).

Common examples (e.g. Matérn, SE) also depend on
hyper-parameters θ — suppressed in notation unless needed.

9

Matérn and SE kernels

−4 −3 −2 −1 0 1 2 3 4

0

0.2

0.4

0.6

0.8

1 Matérn 1/2
Matérn 3/2
Matérn 5/2
Squared exp

10

Observations on kernel matrices

Kernel is chosen by modeler

• Choose Matérn / SE for regularity and simplicity
• Rarely have the intuition to pick the “right” kernel
• Common choices are universal — can recover anything

• ... with less data for “good” choice (inductive bias)
• Can combine with DNNs (“deep kernel learning”)

Properties of kernel matrices:

• Positive definite by design, but not well conditioned!
• Weyl: k(r) ∈ Cν =⇒ |λn| = o(n−ν−1/2)

• SE case: eigenvalues decay (super)exponentially
• Adding σ2I “wipes out” small eigenvalues

11

Learning parameters and
hyperparameters

Being Bayesian

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

12

Being Bayesian

Now consider prior of f ∼ GP(µ, k), noisy measurements

fX ∼ y+ ϵ, ϵ ∼ N(0,W), typically W = σ2I

Posterior is f ∼ GP(µ′, k′) with

µ′(x) = µ(x) + KxXc K̃ = KXX +W
k′(x, x′) = Kxx′ − KxXK̃−1KXx′ c = K̃−1(y− µX)

The expensive bit: solves with K̃.

13

Dealing with derivatives

Derivative information =⇒ multi-output GP:

µ∇(x) =
[

µ(x)
∂xµ(x)

]
, k∇(x, x′) =

[
k(x, x′) ∇′

xk(x, x′)
∂xk(x, x′) ∂2x,x′k(x, x′)

]

Requires a little care, but ideas in this talk generalize.

NB: Other (linear) measurements also allowed – e.g. integrals.

14

Kernel hyper-parameters

How to estimate hyper-parameters θ?

• Bayesian approach? Expensive...
• Usually just do maximum likelihood estimation (MLE)

Likelihood function is same as for a multivariate normal:

ℓ(θ|y) = 1√
det(2πK̃)

exp

(
− 12(y− µX)

TK̃−1(y− µX)

)
.

Of course, we usually work with log-likelihood and derivatives.

15

Kernel hyper-parameters

How to estimate hyper-parameters θ?

• Bayesian approach? Expensive...
• Usually just do maximum likelihood estimation (MLE)

Log-likelihood function for kernel hypers θ

L(θ|y) = Ly + L|K| −
n
2 log(2π)

where (again with c = K̃−1(y− µX))

Ly = − 12(y− µX)
Tc, ∂Ly

∂θi
=
1
2c

T

(
∂K̃
∂θi

)
c

L|K| = − 12 log det K̃,
∂L|K|
∂θi

= − 12 tr
(
K̃−1 ∂K̃

∂θi

)

16

Learning parameters and hypers: small n

K̃ = L LT

In an optimization loop:

1 L = chol (K t i l d e (theta)) ;
2 c = L ’ \ (L \(y−mu)) ;
3 l i k y = −0.5* ((y−mu) ’* c) ;
4 l i k K = −sum(log (diag (L))) ;
5 fo r i = 1 : len (theta)
6 d l i k y = 0 . 5* (c ’*dK (theta , i) *c) ;
7 d l i kK = −0.5* t race (L ’ \ (L\dk (theta , i))) ;
8 end

17

Scalability bottlenecks

Consider n data points

• Straightforward regression: factor K̃ at O(n3) cost
• Kernel hyper MLE requires multiple O(n3) ops

• To compute log det K̃ is O(n3) per step
• To compute tr

(
K̃−1 ∂K̃∂θi

)
is O(n3) per hyper per step

Two possible work-arounds

• Data-sparse factorization methods
• Methods that avoid factorization (e.g. iterative solvers)

• Q: how to handle determinants and traces?

18

Scaling GPs: Factorization approach

Simplest data-sparse approach

For K (nearly) low rank: partial pivoted Cholesky

Diagonal element: 1.00e+00

19

Simplest data-sparse approach

For K (nearly) low rank: partial pivoted Cholesky

Diagonal element: 6.77e-02

19

Simplest data-sparse approach

For K (nearly) low rank: partial pivoted Cholesky

Diagonal element: 1.91e-02

19

Simplest data-sparse approach

For K (nearly) low rank: partial pivoted Cholesky

Diagonal element: 5.11e-04

19

Simplest data-sparse approach

For K (nearly) low rank: partial pivoted Cholesky

Diagonal element: 1.19e-04

19

Simplest data-sparse approach

For K (nearly) low rank: partial pivoted Cholesky

Diagonal element: 4.18e-05

19

Simplest data-sparse approach

For K (nearly) low rank: partial pivoted Cholesky

Diagonal element: 8.54e-07

19

Simplest data-sparse approach

For K (nearly) low rank: partial pivoted Cholesky

Diagonal element: 3.58e-07

19

Simplest data-sparse approach

For K (nearly) low rank: partial pivoted Cholesky

Diagonal element: 1.92e-07

19

Simplest data-sparse approach

Smooth kernel and long length scales: K nearly rank m≪ n

• P(LLT)PT = partial pivoted Cholesky (select m inducing
points); does not require forming KXX

• Solve P(LLT + σ2I)PTc = fX stably by reformulating c as a
scaled regularized least squares residual:

minimize ∥fX − Lw∥2 + σ2∥w∥2, c = σ−2 (fX − Lw)

• Compute log det K̃ = log det(LTL+ σ2I) + 2(n−m) log σ;
similar cheap rearrangement for derivatives.

• Prediction and predictive variance are also cheap.

If K is not low rank, can still use rank-structured factorization.

20

Scaling GPs: Black box approach

Basic ingredients for “black box” approach

• Fast MVMs with kernel matrices
• Krylov methods for linear solves and matrix functions
• Stochastic estimators: trace, diagonal, and other

21

Kernel approximations

• Low-rank approximation (via inducing variables)
• Non-smooth kernels, small length scales =⇒ large rank
• Only semi-definite

• Sparse approximation
• OK with SE kernels and short length scales
• Less good with heavy tails or long length scales
• May again lose definiteness

• More sophisticated: fast multipole, Fourier transforms
• Same picture as in integral eq world (FMM, PFFT)
• Main restriction: low dimensional spaces (2-3D)

• Kernel a model choice — how does approx affect results?

22

Example: Structured Kernel Interpolation (SKI)

Write KXX ≈ WTKUUW where

• U is a uniform mesh of m points
• KUU has Toeplitz or block Toeplitz structure
• Sparse W interpolates values from X to U

Apply KUU via FFTs in O(m logm) time.
23

The power of fast MVMs

With MVMs alone, natural to explore nested Krylov subspaces:

Kd+1(K̃,b) = span{b, K̃b, K̃2b, . . . , K̃db} = {p(K̃)b : p ∈ Pk}

Lanczos process: expansion + Gram-Schmidt

βjqj+1 = K̃qj − αjqj − βj−1qj−1
Lanczos factorization: K̃Qk = QkT̄k where

Qk =
[
q1 q2 . . . qk

]
,

T̄k =

α1 β1
β1 α2 β2

β2 α3 β3
.

βk−1 αk
βk

=

[
Tk

βkeTk

]

24

The power of fast MVMs

Fast MVM with symmetric K̃ =⇒ try Lanczos!

• Incrementally computes K̃Q = QT where
• Q has orthonormal columns
• Leading k columns span k-dim Krylov space
• T is tridiagonal

• Building block for
• Solving linear systems (CG)
• Approximating eigenvalues
• Approximating matrix functions: f(K̃)b
• Quadrature vs spectral measure for K̃

• Fast (three-term recurrence) and elegant...
• ... but not forward stable in finite precision

25

Function application via Lanczos

A computational kernel: f(K̃)b

• Run Lanczos from starting vector b/∥b∥
• At n steps in exact arithmetic,

f(K̃)b = Qf(T)QTb = ∥b∥Qf(T)e1

• Truncate at k≪ n steps, use

f(K̃)b ≈ ∥b∥Qkf(Tk)e1

• Error analysis hinges on quality of poly approx

min
f∈Pk

max
λ∈Λ(K̃)

|f(λ)− f̂(λ)|

• Compare: Chebyshev methods just use [λmin, λmax]

CG is a special case corresponding to f(z) = z−1.

26

Tractable traces

CG solves systems with K̃; problem terms are

L|K| = − 12 tr
(
log K̃

) ∂L|K|
∂θi

= − 12 tr
(
K̃−1 ∂K̃

∂θi

)

Q: How do we parley fast MVMs into trace computations?

27

Tractable traces

Stochastic trace estimation trick:

• z ∈ Rn has independent random entries
• E[zi] = 0 and E[z2i] = 1

Then
E[zTAz] =

∑
i,j
aijE[zizj] = tr(A).

NB: E[z⊙ Az] = diag(A).

Standard choices for the probe vector z:

• Hutchinson: zi = ±1 with probability 0.5
• Gaussian: zi ∼ N(0, 1)

See Avron and Toledo review, JACM 2011.
28

Putting it together

For each probe vector z until error bars small enough:

• Run Lanczos from z/∥z∥
• Use Lanczos to estimate K̃−1z and log(K̃)z
• Dot products yield estimators:

L|K| = − 12E
[
zT log(K̃)z

]
∂L|K|
∂θi

= − 12E
[
(K̃−1z)T

(
∂K̃
∂θi

z
)]

Cost per probe:

• One Lanczos process
• One matvec per parameter with derivative

Quite effective in practice! And amenable to preconditioning.
29

Pivoted Cholesky preconditioning

Let M = P(LLT + σtI)PT ≈ K̃ with L ∈ Rn×m, m≪ n:

• Preconditioned CG: works (implicitly) with M−1K̃
• Note log det K̃ = log detM+ log detM−1K̃
• Know how to do fast direct solves and log det with M
• All boils down to generalized Lanczos with (K̃,M)
• Smooth kernels (e.g. SE) and long length scales =⇒
convergence in few steps

30

Blocking for performance

Generalized Lanczos per probe vector involves

• One matvec with K̃ per step
• One solve with M per step
• Barrier between steps
• Low arithmetic intensity (flops / memory access)
• Limited opportunities for parallelism

Idea: Lanczos for several probes in parallel

• Multiply K̃ or M−1 by panel of vectors / step
• Improves cache use and parallelism

31

The whole package

So we have

• Stochastic estimators + Krylov iterations
• Preconditioning to reduce steps to convergence
• Blocking to reduce time per step
• GPU acceleration speeds things up further

For all the tricks together: https://gpytorch.ai

32

https://gpytorch.ai

Examples

Example: Rainfall

0 2 4 6 8 10 120

2

4

6

8

10

12

0

20

40

60

80

(a)

x coord (km)

y coord (km)

ra
in

 a
m

o
u

n
t

(m
m

)

0 2 4 6 8 10 12
0

2

4

6

8

10

12

x coord (km)

y
 c

o
o

rd
 (

k
m

)

(b)

20

20

30

3
0

30

30

4
0

40

50

50

60

60

33

Example: Rainfall

34

Example: Rainfall

Method n m MSE Time [min]
Lanczos 528k 3M 0.613 14.3

Scaled eigenvalues 528k 3M 0.621 15.9
Exact 12k - 0.903 11.8

• Data: Hourly precipitation data at 5500 weather stations
• Aggregate into daily precipitation
• Total data: 628K entries
• Train on 100K data points, test on remainder
• Use SKI with 100 points per spatial dim, 300 in time
• Comparison: scaled eigenvalues approx, exact solve

NB: This is with an older MATLAB code (GPML), not GPyTorch

35

Example: Hickory data

Can build other stochastic processes via GPs

• Example: Log-Gaussian Cox process model
• Models count data (e.g. events in spatial bins)
• Poisson conditional on intensity function
• Log intensity drawn from a GP

• Laplace approximation for posterior
• Data set is point pattern of 703 hickory trees in Michigan

36

Example: Hickory data

(a) Points (b) Exact (c) Scaled eigs (d) Lanczos

Figure 1: Prediction by different methods on the Hickory dataset.

Method sf ℓ1 ℓ2 − log p(y|θ) Time [s]
Exact 0.696 0.063 0.085 1827.56 465.9
Lanczos 0.693 0.066 0.096 1828.07 21.4

Scaled eigs 0.543 0.237 0.112 1851.69 2.5

Table 1: Hyper-parameters recovered by different methods
37

Example: Surface reconstruction

Recovering the Stanford bunny model from 25K noisy normals.

38

Example: Bayesian optimization

0 100 200 300 400 500

-20

-15

-10

-5 BO exact

BO D-SKI

BFGS

Random sampling

0 100 200 300 400 500

-40

-20

0

20
BO exact

BO SKI

BFGS

Random sampling

• Learn active subspace of high-dimensional space
• Fit GP model with derivative in subspace
• Optimize expected improvement

• Need predictive variance (use stochastic estimator)
• Use low-rank approximation for control variate

• Works surprisingly well — still lots to do!

39

For more...

Eriksson, Dong, Lee, B., Wilson. Scaling Gaussian Process
Regression with Derivatives. NeurIPS 2018.

Gardner, Pleiss, Weinberger, B., Wilson. GPyTorch: Blackbox
Matrix-Matrix Gaussian Process Inference with GPU
Acceleration. NeurIPS 2018.

K. Dong, D. Eriksson, H. Nickisch, D. Bindel, and A. G. Wilson,
Scalable Log Determinants for Gaussian Process Kernel
Learning. NIPS 2017.

GPyTorch: https://gpytorch.ai
40

https://arxiv.org/abs/1810.12283
https://arxiv.org/abs/1810.12283
https://arxiv.org/abs/1809.11165
https://arxiv.org/abs/1809.11165
https://arxiv.org/abs/1809.11165
https://papers.nips.cc/paper/7212-scalable-log-determinants-for-gaussian-process-kernel-learning.pdf
https://papers.nips.cc/paper/7212-scalable-log-determinants-for-gaussian-process-kernel-learning.pdf
https://gpytorch.ai

	Kernel and GP basics
	Learning parameters and hyperparameters
	Scaling GPs: Factorization approach
	Scaling GPs: Black box approach
	Examples

