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Can One Hear the Shape of a Drum?

−∇2u = λu on Ω, u = 0 on ∂Ω

Assume that for each n the eigenvalue λn for Ω1 is
equal to the eigenvalue µn for Ω2. Question: Are the
regions Ω1 and Ω2 congruent in the sense of Euclidean
geometry?

I first heard the problem posed this way some ten
years ago from Professor Bochner. Much more re-
cently, when I mentioned it to Professor Bers, he said,
almost at once: “You mean, if you had perfect pitch
could you find the shape of a drum.”

Mark Kac, American Math Monthly, 1966
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Can One Hear the Shape of a Drum?

No in general (Gordon, Webb, Wolpert in 1992)
Yes with constraints (Zelditch in 2009)
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What Do You Hear?

S

A B

Size of bottlenecks (Cheeger inequality)

h ≤ 2
√

λ2
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What Do You Hear?

Volume (Weyl law)

lim
x→∞

N(x)
xd/2

= (2π)−dωd vol(Ω), N(x) = {# eigenvalues ≤ x}

Also: lengths of geodesics for a closed Riemannian manifold.
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Can One Hear the Shape of a Graph?

From eigenvalues of adjacency, Laplacian, normalized
Laplacian?

7



A Bestiary of Matrices

• Adjacency matrix: A
• Laplacian matrix: L = D− A
• Unsigned Laplacian: L = D+ A
• Random walk matrix: P = D−1A
• Normalized adjacency: Ā = D−1/2AD−1/2

• Normalized Laplacian: L̄ = I− Ā = D−1/2LD−1/2

• Modularity matrix: B = A− ddT
2n

• Motif adjacency: W = A2 ⊙ A

All have examples of co-spectral graphs
... through spectrum uniquely identifies quantum graphs
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What Do You Hear?

Size of separators (Cheeger inequality) – L
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What Do You Hear?

What information hides in the eigenvalue distribution?

1. Discretizations of Laplacian: something like Weyl’s law
2. Sparse E-R random graphs: Wigner semicircular law
3. Some other random graphs: Wigner semicircle + a bit
(Farkas et al, Phys Rev E (64), 2001)

4. “Real” networks: less well understood

But computing all eigenvalues seems expensive!
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Reminder: Spectral Mapping

Consider a matrix H, and let f be analytic on the spectrum.
Then if H = VΛV−1,

f(H) = Vf(Λ)V−1.

(generalizes to non-diagonalizable case)
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Another Perspective: Density of States
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Spectra define a generalized function (a density):

tr(f(H)) =
∫
f(λ)µ(λ)dx =

N∑
j=k

f(λk)

where f is an analytic test function. Smooth to get a picture: a
spectral histogram or kernel density estimate.
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Example: Estrada Index

Consider

tr(exp(αA)) =
∞∑
k=1

αk

k! · (# closed random walks of length k) .

• Global measure of connectivity in a graph.
• Can clearly be computed via DoS.
• Generalizes to other weights.
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Heat Kernels

DoS information equivalent to looking at the heat kernel trace:

h(s) = tr(exp(−sH)) = L[µ](s)

where H is a positive semi-definite operator.

H = L (continuous time random walk generator) =⇒
h(s)/N = P(self-return after time s from uniform start).
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Power Moments

DoS information equivalent to looking at the power moments:

tr(Hj).

Natural interpretation for matrices associated with graphs:

• A: number of length k cycles.
• Ā or P: return probability for k-step random walk (times N).
• L: ??
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Chebyshev Moments
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For numerics, prefer Chebyshev moments to power moments:

dj = Tj(A)

where Tj(z) = cos(j cos−1(z)) is the jth Chebyshev polynomial:

T0(z) = 1, T1(z) = z, Tk+1z = 2zTk(z)− Tk−1(z).
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Exploring Spectral Densities

Kernel polynomial method (see Weisse, Rev. Modern Phys.)

• Spectral distribution on [−1, 1] is a generalized function:∫ 1

−1
µ(x)f(x)dx = 1

N

N∑
k=1

f(λk)

• Write f(x) =
∑∞

j=1 cjTj(x) and µ(x) =
∑∞

j=1 djϕj(x), where∫ 1
−1 ϕj(x)Tk(x)dx = δjk

• Estimate dj = tr(Tj(H)) by stochastic methods
• Truncate series for µ(x) and filter (avoid Gibbs)

Much cheaper than computing all eigenvalues!
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Related methods

Golub and Meurant: Gauss quadrature for µ(x) via Lanczos

• Good: Approximately twice the convergence rate
• Bad: Gives quadrature rule vs a picture

Roder and Silver: Max entropy estimation

• Good: Better resolution from Chebyshev moments
• Bad: More complicated / expensive computation

Under investigation: Hybrid approaches.
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Stochastic Trace and Diagonal Estimation

Z ∈ Rn with independent entries, mean 0 and variance 1.

E[(Z⊙ HZ)i] =
∑
j
hijE[ZiZj] = hii

Var[(Z⊙ HZ)i] =
∑
j
h2ij.

Serves as the basis for stochastic estimation of

• Trace (Hutchinson, others; review by Toledo and Avron)
• Diagonal (Bekas, Kokiopoulou, and Saad)

Independent probes =⇒ 1/
√
N convergence (usual MC).
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Beyond Independent Probes

For probes Z = [Z1, · · · , Zs], have exact diagonal

d =
[
(A⊙ ZZT)e

]
⊘ [(Z⊙ Z)e]

if Zi,:Zj, :T = 0 whenever Aij ̸= 0.

Idea:

• Pick rows {Zi,:} such that Zi,: ⊥ Zj,: whenever Aij ̸= 0
• A an adjacency matrix =⇒ graph coloring.

Combined with randomization, still gives unbiased estimates.
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Example: PGP Network
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Spike (non-smoothness) at eigenvalues of 0 leads to
inaccurate approximation. 21



Motifs and Symmetry

Suppose PH = HP. Then

V a max invariant subspace for P =⇒
V a max invariant subspace for H

So local symmetry =⇒ localized eigenvectors

Suppose invariance under some symmetry group G:

∀P ∈ G, PH = HP

If G non-Abelian (P1P2 ̸= P2P1), must have multiple eigenvalues.
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Motifs in Spectrum

23

• λ = 0
+1 −1 −1 +1 −1

• λ = ±1/2
+1 ±1 −1 ∓1 ±1 +1 −1 ∓1

• λ = −1/2 λ = ±1/
√
2

+1 −1 ±1 +
√
2 +

√
2 ±1



Motif Filtering
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Motif “spikes” slow convergence – deflate motif eigenvectors!
If P ∈ Rn×m an orthonormal basis for the quotient space,

• Apply estimator to PTAP to reduce size for m≪ n.
• or use ProjP(Z) to probe the desired subspace.
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Diagonal Estimation and LDoS

Diagonal estimation also useful for local DoS νk(x);
in the symmetric case with H = QΛQT, have∫

f(x)νk(x)dx = f(H)kk = eTkQf(Λ)Q
Tek

νk(x) =
n∑
j=1

q2kj δ(x− λj)

DoS is sum of local densities of states:

µ(x) =
n∑
k=1

νk(x)
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KPM for LDoS

• Write f(x) =
∑∞

j=1 cjTj(x) and νk(x) =
∑∞

j=1 djϕj(x), where∫ 1
−1 ϕj(x)Tk(x)dx = δjk

• Estimate dj = [Tj(H)]kk by diag estimation
• Truncate series for µ(x) and filter (avoid Gibbs)

Diagonal estimator gives moments for all k simultaneously!
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Other methods

Golub and Meurant: Gauss quadrature for νk(x) via Lanczos

• Good: No stochastic estimation error (vs KPM)
• Bad: Separate Lanczos per node

Roder and Silver: Max entropy estimation

• Good: Better resolution from Chebyshev moments
• Bad: More expensive computation per node

Under investigation: Hybrid approach.
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LDoS Information

Can compute common centrality measures with LDoS

• Estrada centrality: exp(γA)kk
• Resolvent centrality:

[
(I− γĀ)−1

]
kk

Some motifs associated with localized eigenvectors:

• Chief example: Null vectors of Ā supported on leaves.
• Use LDoS + topology to find motifs?

What else?
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LDoS and Clustering
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Phase Retrieval in Graph Reconstruction

Reconstruct graph from fully resolved LDoS at all nodes?

• Assume H = QΛQT

• No multiple eigenvalues =⇒ know |Q| and Λ

• Can we recover signs in Q?

Feels a little like phase retrieval...

Of course, we usually have noisy LDoS estimates!
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Exploring Spectral Densities (with David Gleich)

• Compute spectrum of normalized Laplacian / RW matrix
• Compare KPM to full eigencomputation

Things we know

• Eigenvalues in [−1, 1]; nonsymmetric in general
• Stability: change d edges, have

λj−d ≤ λ̂j ≤ λj+d

• kth moment = P(return after k-step random walk)
• Eigenvalue cluster near 1 ∼ well-separated clusters
• Eigenvalue cluster near 0 ∼ leaf clusters

What else can we “hear”?
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Experimental setup

• Global DoS
• 1000 Chebyshev moments
• 10 probe vectors (componentwise standard normal)
• Histogram with 50 bins

• Local DoS
• 100 Chebyshev moments
• 10 probe vectors (componentwise standard normal)
• Plot smoothed density on [−1, 1]
• Spectrally order nodes by density plot

Suggestions for better pics are welcome!
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Erdos
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Erdos (local)
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Internet topology
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Internet topology (local)
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Marvel characters
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Marvel characters (local)
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Marvel comics
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Marvel comics (local)
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PGP
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PGP (local)
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Yeast
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Yeast (local)
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What about random graph models?
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Barabási–Albert model
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Scale-free network (5000 nodes, 4999 edges)
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Watts–Strogatz

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

800

Small world network (5000 nodes, 260000 edges)
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Model Verification: BTRE

Kolda et al, SISC (36), 2014

Block Two-Level Erdős-Rényi model (BTER)

• First Phase: Erdős-Rényi Blocks
• Second Phase: Using Chung-Lu Model to connect blocks
with pij = p(di,dj)
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Model Verification: BTER
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Figure 1: Erdos collaboration network.
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Figure 2: BTER model for Erdos collaboration network. 49



And a few more...
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Enron emails (SNAP)
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Reuters911 (Pajek)
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US power grid (Pajek)
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DBLP 2010 (LAW)
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N = 326186, nnz = 1615400, 80 s (1000 moments, 10 probes)
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Hollywood 2009 (LAW)
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N = 1139905, nnz = 113891327, 2093 s (1000 moments, 10
probes)
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Questions for You?

• Any isospectral graphs for multiple matrices?
• Can we recover topology from (exact) LDoS?
• Variance reduction in diagonal estimators?
• Random graphs with spectra that look “real”?
• Compression of moment information for diag estimators?
• More applications?
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What Do You Hear?
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