Understanding Graphs through
Spectral Densities

30 Jun 2018

Department of Computer Science
Cornell University



Acknowledgements

Thanks Kun Dong (Cornell CAM),
along with Anna Yesypenko,
Moteleolu Onabajo, Jiangiu
Wang.

Also: NSF DMS-1620038.




Can One Hear the Shape of a Drum?

—V?u = AuonQ, u=0onoN

Assume that for each n the eigenvalue X\, for Q; is
equal to the eigenvalue up for Q,. Question: Are the
regions Qq and Q, congruent in the sense of Euclidean
geometry?

| first heard the problem posed this way some ten
years ago from Professor Bochner. Much more re-
cently, when | mentioned it to Professor Bers, he said,
almost at once: “You mean, if you had perfect pitch
could you find the shape of a drum.”

Mark Kac, American Math Monthly, 1966



Can One Hear the Shape of a Drum?

No in general (Gordon, Webb, Wolpert in 1992)
Yes with constraints (Zelditch in 2009)



What Do You Hear?

Size of bottlenecks (Cheeger inequality)

h<2vx



What Do You Hear?

Volume (Weyl law)

lim N(x)

A = (27) " 9wgvol(Q), N(x) = {# eigenvalues < x}

Also: lengths of geodesics for a closed Riemannian manifold.



Can One Hear the Shape of a Graph?

From eigenvalues of adjacency, Laplacian, normalized
Laplacian?



A Bestiary of Matrices

- Adjacency matrix: A

- Laplacian matrix: L=D — A

- Unsigned Laplacian: L=D+ A

- Random walk matrix: P = DA

- Normalized adjacency: A = D~"/2AD~"/2

- Normalized Laplacian: L = | — A = D~"/2D~"/2
- Modularity matrix: B=A — dz—‘f
- Motif adjacency: W =A20 A

All have examples of co-spectral graphs
.. through spectrum uniquely identifies quantum graphs



What Do You Hear?

A B

Size of separators (Cheeger inequality) - L



What Do You Hear?

What information hides in the eigenvalue distribution?

1. Discretizations of Laplacian: something like Weyl's law
2. Sparse E-R random graphs: Wigner semicircular law

3. Some other random graphs: Wigner semicircle + a bit
(Farkas et al, Phys Rev E (64), 2001)

4. “Real” networks: less well understood

But computing all eigenvalues seems expensive!
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Reminder: Spectral Mapping

Consider a matrix H, and let f be analytic on the spectrum.
Then if H = VAV,
f(H) = VARV,

(generalizes to non-diagonalizable case)

"



Another Perspective: Density of States

Spectra define a generalized function (a density):

) = [ foon Z;fw)

where fis an analytic test function. Smooth to get a picture: a
spectral histogram or kernel density estimate.
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Example: Estrada Index

Consider

r(exp(aA)) Z % (# closed random walks of length R).
k=1

Global measure of connectivity in a graph.
- Can clearly be computed via DoS.

- Generalizes to other weights.
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Heat Kernels

DoS information equivalent to looking at the heat kernel trace:

h(s) = tr(exp(=sH)) = L[ul(s)

where H is a positive semi-definite operator.

H (continuous time random walk generator) =

=L
h(s)/N = P(self-return after time s from uniform start).
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Power Moments

DoS information equivalent to looking at the power moments:
tr(H).
Natural interpretation for matrices associated with graphs:

- A: number of length k cycles.

- Aor P: return probability for k-step random walk (times N).
< L 77
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Chebyshev Moments
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For numerics, prefer Chebyshev moments to power moments
dj = Tj(A)

where Tj(z) = cos(j cos~'(2)) is the jth Chebyshev polynomial

To(2) =1, T(2) =2, Tpp1Z =22Tp(2) — Tr_1(2).



Exploring Spectral Densities

Kernel polynomial method (see Weisse, Rev. Modern Phys.)

- Spectral distribution on [—1,1] is a generalized function:

1 N

[ noo) ax= 4 30

k=1

=

- Write f(x) = -2, ¢Tj(x) and u(x) = >°Z, d;#j(x), where
J23 $0)Te(0) dx = G,

- Estimate d; = tr(T;(H)) by stochastic methods
- Truncate series for u(x) and filter (avoid Gibbs)

Much cheaper than computing all eigenvalues!



Related methods

Golub and Meurant: Gauss quadrature for p(x) via Lanczos

- Good: Approximately twice the convergence rate

- Bad: Gives quadrature rule vs a picture

Roder and Silver: Max entropy estimation

- Good: Better resolution from Chebyshev moments

- Bad: More complicated / expensive computation

Under investigation: Hybrid approaches.



Stochastic Trace and Diagonal Estimation

Z € R" with independent entries, mean 0 and variance 1.

E[(Z@ HZ)] = > hyElZiZ] = h;
J

Var[(Z© HZ)] =) _ hr.
j

Serves as the basis for stochastic estimation of

- Trace (Hutchinson, others; review by Toledo and Avron)

- Diagonal (Bekas, Kokiopoulou, and Saad)

Independent probes = 1/+/N convergence (usual MC).
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Beyond Independent Probes

For probes Z = [Z3,-- - , Zs], have exact diagonal
d=[(AeZZ")e] @ [(Z® Z)e]

if Z;.Zj,:" = 0 whenever Aj # 0.

Idea:

* Pick rows {Z;.} such that Z;. 1 Z;. whenever A; # 0

- A an adjacency matrix = graph coloring.

Combined with randomization, still gives unbiased estimates.
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Example: PGP Network
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Spike (non-smoothness) at eigenvalues of 0 leads to
Inaccurate approximation. 21



Motifs and Symmetry

Suppose PH = HP. Then

Y a max invariant subspace for P =
VY a max invariant subspace for H

So local symmetry — localized eigenvectors
Suppose invariance under some symmetry group G:
VPe G, PH=HP

If G non-Abelian (P1P, # P,P7), must have multiple eigenvalues.
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Motifs in Spectrum
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Motif Filtering
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Motif “spikes” slow convergence — deflate motif eigenvectors!
If P € R"™™ an orthonormal basis for the quotient space,

- Apply estimator to PTAP to reduce size for m < n.
- or use Projp(Z) to probe the desired subspace.

2%



Diagonal Estimation and LDoS

Diagonal estimation also useful for local DoS vg(x);
in the symmetric case with H = QAQ', have

/ FX)vr(x) dx = f(H) e = eLQf(\)Q"ey
ve() = 3 a3 6(x— )
j=1

DoS is sum of local densities of states:

n

u(¥) =D vk(x)

R=1
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KPM for LDoS

- Write f(x) = 3272, ¢ Tj(x) and ve(x) = -2, dj¢j(x), where
J23 $0)Te(0) dx = G,

- Estimate d; = [T;(H)]rx by diag estimation

- Truncate series for u(x) and filter (avoid Gibbs)

Diagonal estimator gives moments for all kR simultaneously!
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Other methods

Golub and Meurant: Gauss quadrature for v,(x) via Lanczos

- Good: No stochastic estimation error (vs KPM)

- Bad: Separate Lanczos per node

Roder and Silver: Max entropy estimation

- Good: Better resolution from Chebyshev moments

- Bad: More expensive computation per node

Under investigation: Hybrid approach.
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LDoS Information

Can compute common centrality measures with LDoS
- Estrada centrality: exp(vA)gk

* Resolvent centrality: [(I —~vA)™'],,

Some motifs associated with localized eigenvectors:

- Chief example: Null vectors of A supported on leaves.
- Use LDoS + topology to find motifs?

What else?
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LDoS and Clustering
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Phase Retrieval in Graph Reconstruction

Reconstruct graph from fully resolved LDoS at all nodes?

- Assume H = QAQ'
- No multiple eigenvalues = know |Q| and A

- Can we recover signs in Q7

Feels a little like phase retrieval...

Of course, we usually have noisy LDoS estimates!
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Exploring Spectral Densities (with David Gleich)

- Compute spectrum of normalized Laplacian / RW matrix
- Compare KPM to full eigencomputation

Things we know
- Eigenvalues in [—1,1]; nonsymmetric in general
- Stability: change d edges, have
N-g <4 < Aipg

- kth moment = P(return after k-step random walk)
- Eigenvalue cluster near 1 ~ well-separated clusters
- Eigenvalue cluster near 0 ~ leaf clusters

What else can we “hear”?
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Experimental setup

- Global DoS
- 1000 Chebyshev moments
- 10 probe vectors (componentwise standard normal)
- Histogram with 50 bins
- Local DoS
- 100 Chebyshev moments
- 10 probe vectors (componentwise standard normal)
- Plot smoothed density on [—1,1]
- Spectrally order nodes by density plot

Suggestions for better pics are welcome!
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Internet topology
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Internet topology (local)
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Marvel characters
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Marvel characters (local)
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Marvel comics
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Marvel comics (local)
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PGP (local)
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Yeast (local)
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What about random graph models?
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Barabasi-Albert model
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Scale-free network (5000 nodes, 4999 edges)
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Watts-Strogatz
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Small world network (5000 nodes, 260000 edges)
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Model Verification: BTRE
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(a) Preprocessing: (b) Phase 1: Local links (¢) Phase 2: Global links
Distribution of nodes into within each affinity block across affinity blocks
affinity blocks

Kolda et al, SISC (36), 2014

Block Two-Level Erdés-Rényi model (BTER)

- First Phase: Erdds-Rényi Blocks

- Second Phase: Using Chung-Lu Model to connect blocks
with pj; = p(d;, d;)
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Model Verification: BTER
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Figure 2: BTER model for Erdos collaboration network. 49



And a few more...
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Enron emails (SNAP)
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Reuters911 (Pajek)
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US power grid (Pajek)

53



DBLP 2010 (LAW)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

N = 326186, nnz = 1615400, 80 s (1000 moments, 10 probes)
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Hollywood 2009 (LAW)

-1 -0.8 -06 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

N = 1139905, nnz = 113891327, 2093 s (1000 moments, 10
probes)
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Questions for You?

- Any isospectral graphs for multiple matrices?

- Can we recover topology from (exact) LD0oS?

- Variance reduction in diagonal estimators?

- Random graphs with spectra that look “real”?

- Compression of moment information for diag estimators?
- More applications?
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