Model Reduction for
 Edge-Weighted Personalized PageRank

D. Bindel

2 Dec 2016

The Computational Science \& Engineering Picture

- MEMS
- Smart grids
- Networks
- Systems
- Linear algebra
- Approximation theory
- Symmetry + structure
- Optimization
- HPC / cloud
- Simulators
- Solvers
- Frameworks

The Computational Science \& Engineering Picture

- MEMS
- Smart grids
- Networks
- Systems
- Linear algebra
- Approximation theory
- Symmetry + structure
- Optimization
- HPC / cloud
- Simulators
- Solvers
- Frameworks

Collaborators

Wenlei Xie LinkedIn
David Bindel Cornell Johannes Gehrke Microsoft Al Demers Cornell

PageRank Problem

Node weighted

Edge weighted

Goal: Find "important" vertices in a network

- Basic approach uses only topology
- Weights incorporate prior info about important nodes/edges

PageRank Model

- Random surfer model: $x^{(t+1)}=\alpha P x^{(t)}+(1-\alpha) v$ where $P=A D^{-1}$
- Stationary distribution: $M x=b$ where $M=(I-\alpha P), b=(1-\alpha) v$

Edge Weight vs Node Weight Personalization

$v_{i}=v_{i}(w)$

Introduce personalization parameters $w \in \mathbb{R}^{d}$ in two ways:
Node weights: $\quad \mathrm{M} \times(\mathrm{w})=\mathrm{b}(\mathrm{w})$
Edge weights: $\quad M(w) \times(w)=b$

Edge Weight vs Node Weight Personalization

Node weight personalization is well-studied

- Topic-sensitive PageRank: fast methods based on linearity
- Localized PageRank: fast methods based on sparsity

Some work on edge weight personalization

- ObjectRank/ScaleRank: personalize weights for different edge types
- But lots of work incorporates edge weights without personalization

Our goal: General, fast methods for edge weight personalization

Edge Weight Parameterizations

Different ways to personalize \Longrightarrow different algorithm options
(1) Linear: Take an edge of type i with probability αw_{i}

$$
P(w)=\sum_{i=1}^{d} w_{i} P^{(i)}
$$

(2) Scaled linear: Take an edge with probability \propto (linear) edge weight

$$
P(w)=A(w) D(w)^{-1}, \quad A(w)=\sum_{i=1}^{d} w_{i} A^{(i)}, \quad D(w)=\sum_{i=1}^{d} w_{i} D^{(i)}
$$

(3) Fully nonlinear: Both A and P depend nonlinearly on w

Model Reduction

Model reduction procedure from physical simulation world:

- Offline: Construct reduced basis $U \in \mathbb{R}^{n \times k}$
- Offline: Choose $\geq k$ equations to pick approximation $\hat{x}=U y$
- Online: Solve for $y(w)$ given w and reconstruct \hat{x}

Reduced Basis Construction: SVD (aka POD/PCA/KL)

Choosing Good Spaces

What is the best possible approximation $\hat{x}=U y$?

$$
\min _{y}\|U y-x(w)\|_{2} \leq \sigma_{k+1}\|x\|_{2}+e_{\text {interp }}(w)
$$

where

$$
e_{\text {interp }}(w)=\left\|x(w)-\sum_{j=1}^{r} x\left(w_{j}\right) c_{j}(w)\right\|_{2}
$$

is error in an interpolant.

- Pay attention where x has large derivatives!
- Also suggests sampling strategies (sparse grids, adaptive methods)

Approximation Ansatz

Want $r=M U y-b \approx 0$. Consider two approximation conditions:

Method	Ansatz	Properties		
Bubnov-Galerkin	$U^{T} r=0$	Good accuracy empirically		
		Fast for $P(w)$ linear		
DEIM	$\min \left\\|r_{\mathcal{I}}\right\\|$	Fast even for nonlinear $P(w)$ (collocation)		
	Complex cost/accuracy tradeoff			

Petrov-Galerkin a bit more accurate than Bubnov-Galerkin - future work.

Bubnov-Galerkin Method

- Linear case: $w_{i}=$ probability of transition with edge type i

$$
M(w)=I-\alpha\left(\sum_{i} w_{i} P^{(i)}\right), \quad \tilde{M}(w)=I-\alpha\left(\sum_{i} w_{i} \tilde{P}^{(i)}\right)
$$

where we can precompute $\tilde{P}^{(i)}=U^{T} P^{(i)} U$

- Nonlinear: Cost to form $\tilde{M}(w)$ comparable to cost of PageRank!

Discrete Empirical Interpolation Method (DEIM)

- Ansatz: Minimize $\left\|r_{\mathcal{I}}\right\|$ for chosen indices \mathcal{I}
- Only need a few rows of M (and associated rows of U)
- If given $A(w)$, also need column sums for normalization.
- Difference from physics applications: high-degree nodes!

Error Behavior

Similar error analysis framework for both Galerkin and DEIM

$$
\text { Consistency }+ \text { Stability }=\text { Accuracy }
$$

- Consistency: Does the subspace contain good approximants?
- Stability: Is the approximation subproblem far from singular?

Characterize stability by a quasi-optimality condition

$$
\|x-U y\| \leq \min _{z} C\|x-U z\|
$$

Standard Quasi-Optimality Approach

- Define a solution projector:

$$
\Pi x=\text { approximate solution when true solution is } x
$$

Note that $\Pi \cup=U$.

- The error projector $I-\Pi$ maps a true solution to error

$$
e=x-\Pi x=(I-\Pi) x
$$

Note that $(I-\Pi) U=0$.

- If $e_{\text {min }}=x-U z$ is the smallest norm error in the space, then

$$
e=(I-\Pi) x-(I-\Pi) U z=(I-\Pi) e_{\min }
$$

Therefore, a bound on $\|I-\Pi\| \leq 1+\|\Pi\|$ establishes quasi-optimality.

Quasi-Optimality: Galerkin and DEIM

$$
\begin{array}{rll}
\text { Galerkin : } & \Pi=U \tilde{M}^{-1} W^{T} M & \tilde{M} \equiv W^{T} M U \\
\text { DEIM : } & \Pi=U \tilde{M}^{\dagger} M_{\mathcal{I},:} & \tilde{M} \equiv M_{\mathcal{I},:} U
\end{array}
$$

- Key to stability: \tilde{M} far from singular
- Suggests pivoting schemes for "good" \mathcal{I} in DEIM
- Also helps to explicitly enforce $\sum_{i} \hat{x}_{i}=1$
- Can bound $\|\Pi\|$ offline for Galerkin + linear parameterization.

Interpolation Costs

Consider subgraph relevant to one interpolation equation:

- Really care about weights of edges incident on \mathcal{I}
- Need more edges to normalize (unless $A(w)$ linear)
- Cost to include $i \in \mathcal{I}: \mid\left\{j, k: a_{i j} \neq 0\right.$ and $\left.a_{k j} \neq 0\right\} \mid$
- High in/out degree are expensive but informative

Interpolation Cost and Accuracy

- Key question: how to choose \mathcal{I} to balance cost vs accuracy?
- Want to pick \mathcal{I} once, so look at rows of

$$
Z=\left[\begin{array}{llll}
M\left(w_{1}\right) U & M\left(w_{2}\right) U & \ldots
\end{array}\right]
$$

for sample parameters $w^{(i)}$.

- Pivoted QR-like greedy row selection with proxy measures for
- Cost: Nonzeros in row (+ assoc columns if normalization required)
- Accuracy: Residual when projecting row onto those previously selected
- Several heuristics for cost/accuracy tradeoff (see paper)

Online Costs

If $\ell=\#$ PR components needed, online costs are:

$$
\begin{array}{ll}
\text { Form } \tilde{M} \quad & O\left(d k^{2}\right) \text { for B-G } \\
& \text { More complex for DEIM }
\end{array}
$$

Factor $\tilde{M} \quad O\left(k^{3}\right)$
Solve for $y \quad O\left(k^{2}\right)$
Form Uy $O(k \ell)$

Online costs do not depend on graph size! (unless you want the whole PR vector)

Example Networks

DBLP (citation network)

- 3.5M nodes / 18.5M edges
- Seven edge types \Longrightarrow seven parameters
- $P(w)$ linear
- Competition: ScaleRank

Weibo (micro-blogging)

- 1.9M nodes / 50.7M edges
- Weight edges by topical similarity of posts
- Number of parameters = number of topics $(5,10,20)$
(Studied global and local PageRank - see paper for latter.)

Singular Value Decay

DBLP Accuracy

DBLP Running Times (All Nodes)

Weibo Accuracy

Weibo Running Times (All Nodes)

Application: Learning to Rank

Goal: Given $T=\left\{\left(i_{q}, j_{q}\right)\right\}_{q=1}^{|T|}$, find w that mostly ranks i_{q} over j_{1}. (c.f. Backstrom and Leskovec, WSDM 2011)

Standard idea: Gradient descent

$$
\frac{\partial x}{\partial w_{j}}=M(w)^{-1}\left[\alpha \frac{\partial P(w)}{\partial w_{j}} x(w)\right]
$$

Dominant cost: $d+1$ solves with the PageRank system $M(w)$

- One PageRank solve to evaluate a loss function
- One PageRank solve per parameter to evaluate gradients

Application: Learning to Rank

Goal: Given $T=\left\{\left(i_{q}, j_{q}\right)\right\}_{q=1}^{|T|}$, find w that mostly ranks i_{q} over j_{1}. (c.f. Backstrom and Leskovec, WSDM 2011)

- Standard: Gradient descent on full problem
- One PR computation for objective
- One PR computation for each gradient component
- Costs $d+1$ PR computations per step
- With model reduction
- Rephrase objective in reduced coordinate space
- Use factorization to solve PR for objective
- Re-use same factorization for gradient

DBLP Learning Task

(8 papers for training +7 params)

The Punchline

Test case: DBLP, 3.5 M nodes, 18.5 M edges, 7 params

Cost per Iteration:

Method	Standard	Bubnov-Galerkin	DEIM-200
Time(sec)	159.3	0.002	0.033

Roads Not Taken

In the paper (but not the talk)

- Selecting interpolation equations for DEIM
- Localized PageRank experiments (Weibo and DBLP)
- Comparison to BCA for localized PageRank

Room for future work! Analysis, applications, systems, ...

Questions?

> Edge-Weighted Personalized PageRank: Breaking a Decade-Old Performance Barrier

Wenlei Xie, David Bindel, Johannes Gehrke, and AI Demers

$$
\text { KDD 2015, paper } 117
$$

Sponsors:

- NSF (IIS-0911036 and IIS-1012593)
- iAd Project from the National Research Council of Norway

Trailers!

Spectral Topic Modeling

Music of the Microspheres

Fast Fingerprints for Power Systems

Response Surfaces for Global Optimization

Six-hump camel function

Graph Densities of States

Fin
http://www.cs.cornell.edu/~bindel

