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Background: Surrogate-based global optimization

® e data
80| - - cubic

Goal: Optimize
f:QCR"—>R
Assume
@ ) compact (usually a rectangular prism)
@ f may be “nice”, but is black-box
@ Evaluating f is expensive
Idea: Sample, fit a surrogate f, repeat.



Motivation: Partial information and gray boxes

Costly to compute f(x), but may get bounds fast:
@ Trivial bounds (e.g. 0 < f(x) < 1)
@ Nontrivial-but-cheap bounds (e.g. via Taylor expansion)
@ lterates of a solver (e.g. via bisection)
@ Partial sum of a separable function, e.g.

F@) =" llg(z;) — g;1”
j=1
Goal:

@ Incorporate bounds into surrogate (today).
@ Don’t finish unpromising evaluations (another time).



Radial basis function (RBF) approximation

N
s(z) = el — ;) + plz)

j=1

@ X = {x;}Y, is the set of centers
@ ¢: R — Ris a radial basis function
@ p € Py, is a polynomial tail

Interpolate f at {xj}j.\’zl and satisfy discrete orthogonality:

N
chq(a:j) =0, Vge& Py
i=1



|
RBF interpolation

Given basis {p;(z)} for P4_1, interpolation system is
(0] 1I cl fX
T 0] la] — |0
where

°ec=lc1 ... cN]T is the coefficient vector
® p(z) = >_; a;jp;(z) is the polynomial tail

o Il = pj(xi)

® Py = ¢(|lw; — ;)

When is this well posed? When is there an “energy”?



Conditional positive definite RBFs

[Micchelli, 1986]: ¢ is conditionally positive definite of order d if
forall X = {x;,...,2n} distinct and ¢ # 0 s.t.

N
an'q(ﬂfj) =0, Vq€Pya,

J=1

we have that

> cicip(|lzi — z5]) > 0

0]



Conditional positive definite RBFs

o(r) Order
Cubic Schoenberg, 1946 | 3 2
Thin-plate Duchon, 1976 r?logr 2
Multiquadric Hardy, 1968 —/72 +r? 1
Inverse multiquadric (V+r)712 10
Gaussian exp(—r2/7%) | 0



Conditional positive definite RBFs

For an appropriate degree tail, the interpolation system
& I [e|  |fx
nr o lal |0

1
min §CT<I>C — T fx st Ife=0.

is the KKT system for

Optimization well-posed if 1T is full rank
= q € P41 uniquely identified by values on X.

Physically: Problem is statically determinate (no rigid-body modes).



Energy interpretation

Two splines with form
N
s(@) =Y ¢;dl||lz — ) + pl)
j=1

Define a semi-definite form (“energy semi-inner product”)

(5,8) = Y cjandlllzy —axll) = Y ej(a;)

Jk J
Corresponding semi-norm is |s| = (s, s)'/2.

Native space = closure of set of splines under semi-norm.
Interpolating spline minimizes |s| under interpolation constraints.



Incorporating bounds

Set X = F' U B where

E
E = {z;}}7,, s(x;) = f(ws)
B = {x;}‘jill, —00 < 4; < s(zy) < uy < oo

and minimize |s| subject to these constraints. KKT conditions:

s(xi) = f(xi)

s(z))=4; = ¢, >0

s(z}))=uw = ¢, <0
0 < s(z}) <up = ¢ =0.

Include “forces” (nonzero coeffs) to push surface within bounds.



Incorporating bounds
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Correction formulation

Suppose
so(x) = spline with only interpolation
s(x) = spline with interpolation + bounds
= so(z) + G(z)
Note that

|s|* = |so| + 2(s0, G) + |G|* = |s0]* + |G-

Minimizing |G| means minimizing |so|



|
Error analysis
Set

f € native space for ¢
s(z) = spline with only interpolation
5(x) = spline with interpolation + bounds

Standard analysis: bound error semi-norm | f — s| and apply
[f(x) = s(z)| < P(x)|f — s [f(z) = §(z)| < P(x)|f - 3]
Error:

f=sP=(f-8)+GE-s)P=f-35+G)
=|f—3P+2(f-5G)+|G



Error analysis

Write inner product term as

and complementarity yields
>0 = 3(z;) =4; < f(zy)
C;<0 — §($l):u12

Either way,
(f(z;) — 3(z4))c > 0.
Therefore (f —5,G) > 0, and so
f =3 =1f - s> - 2(f - 5,G) — |G|
<|f = s> —|G]?

e CSE 14/24



Error example




-]
Correction formulation, concretely

Coefficients for G satisfy

c/

Ac
Aa

®pp Ppr Ilp
Spp Ppr llg
nt oL o

g

where g = G satisfies / < g < dafor{=¢— sy and @ =u — sy.

Eliminate Ac and Aa to get Schur complement

—1
Spp g e
S =®pp— |Pr Ilp [ ] [ }
[ ] Iy 0 15

Now ¢’ minimizes (¢/)7'S¢’ subject to ¢ < ¢ < .

16/24



Solver strategy

Active set method to solve

¢ = argming{d’Sd: ¢ < Sd < @}

@ Allows warm-start in context of global optimization.
@ Maintain QSQT = RTR.
@ Permutation Q moves free variables toward front.

@ Update Q and R in O(N?) time per iteration.
(Actually O(Nm) where m is distance variable moves.)

Adding points or updating bounds tends to be cheap.



Example: Capped surfaces

Consider
10

flw,y) = [2+2) — exp(jz) — exp(jy)]°
j=1

@ Large function values can cause interpolant to oscillate
@ Idea: replace large function values with a “cap”

@ Hard cap: interpolate min(f(z,y), M)

@ Soft cap: replace large f(z;,y;) with f(z;,y;) > M



N
Cubic

Soft cap fit

True function

All data fit

Hard cap fit
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Thin-plate

Soft cap fit

True function

All data fit

Hard cap fit
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Multiquadric

Soft cap fit

True function

All data fit

Hard cap fit
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Gaussian

Soft cap fit

True function

All data fit

Hard cap fit
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Conclusions

@ Energy interpretation of RBF interpolant
— Easy to add upper/lower bounds at points

@ Python+C code (PyRBFbound) is now public on BitBucket:
https://bitbucket.org/dbindel/pyrbfbound/

@ Lots of possible extensions

e Point bounds + RBF-QR and contour-Padé interpolation
@ Incorporation with scalable solvers (e.g. FMM) for 2D/3D
e Enforcing continuous lower/upper bounds, integral bounds


https://bitbucket.org/dbindel/pyrbfbound/

