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Background: Surrogate-based global optimization

Goal: Optimize
f : Ω ⊂ Rn → R

Assume
Ω compact (usually a rectangular prism)
f may be “nice”, but is black-box
Evaluating f is expensive

Idea: Sample, fit a surrogate f̂ , repeat.
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Motivation: Partial information and gray boxes

Costly to compute f(x), but may get bounds fast:
Trivial bounds (e.g. 0 ≤ f(x) ≤ 1)
Nontrivial-but-cheap bounds (e.g. via Taylor expansion)
Iterates of a solver (e.g. via bisection)
Partial sum of a separable function, e.g.

f(x) =

m∑
j=1

‖g(xj)− gj‖2

Goal:
Incorporate bounds into surrogate (today).
Don’t finish unpromising evaluations (another time).
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Radial basis function (RBF) approximation

s(x) =

N∑
j=1

cjφ(‖x− xj‖) + p(x)

X = {xi}Ni=1 is the set of centers
φ : R→ R is a radial basis function
p ∈ Pd−1 is a polynomial tail

Interpolate f at {xj}Nj=1 and satisfy discrete orthogonality:

N∑
j=1

cjq(xj) = 0, ∀q ∈ Pd−1
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RBF interpolation

Given basis {pj(x)} for Pd−1, interpolation system is[
Φ Π

ΠT 0

] [
c
a

]
=

[
fX
0

]
where

c =
[
c1 . . . cN

]T is the coefficient vector
p(x) =

∑
j ajpj(x) is the polynomial tail

Πij = pj(xi)

Φij = φ(‖xi − xj‖)

When is this well posed? When is there an “energy”?
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Conditional positive definite RBFs

[Micchelli, 1986]: φ is conditionally positive definite of order d if
for all X = {x1, . . . , xN} distinct and c 6= 0 s.t.

N∑
j=1

cjq(xj) = 0, ∀q ∈ Pd−1,

we have that ∑
i,j

cicjφ(‖xi − xj‖) > 0
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Conditional positive definite RBFs

φ(r) Order
Cubic Schoenberg, 1946 r3 2
Thin-plate Duchon, 1976 r2 log r 2
Multiquadric Hardy, 1968 −

√
γ2 + r2 1

Inverse multiquadric (γ2 + r2)−1/2 0
Gaussian exp(−r2/γ2) 0

CSE 7 / 24



Conditional positive definite RBFs

For an appropriate degree tail, the interpolation system[
Φ Π

ΠT 0

] [
c
a

]
=

[
fX
0

]
is the KKT system for

min
1

2
cTΦc− cT fX s.t. ΠT c = 0.

Optimization well-posed if Π is full rank
≡ q ∈ Pd−1 uniquely identified by values on X.

Physically: Problem is statically determinate (no rigid-body modes).
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Energy interpretation

Two splines with form

s(x) =

N∑
j=1

cjφ(‖x− xj‖) + p(x)

Define a semi-definite form (“energy semi-inner product”)

(s, s̃) =
∑
j,k

cj c̃kφ(‖xj − xk‖) =
∑
j

cj s̃(xj)

Corresponding semi-norm is |s| = (s, s)1/2.

Native space ≡ closure of set of splines under semi-norm.
Interpolating spline minimizes |s| under interpolation constraints.
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Incorporating bounds

Set X = E ∪B where

E = {xj}|E|j=1, s(xi) = f(xi)

B = {x′j}
|B|
j=1, −∞ ≤ `i ≤ s(xi) ≤ ui ≤ ∞.

and minimize |s| subject to these constraints. KKT conditions:

s(xi) = f(xi)

s(x′i) = `i =⇒ c′i ≥ 0

s(x′i) = ui =⇒ c′i ≤ 0

`i ≤ s(x′i) ≤ ui =⇒ c′i = 0.

Include “forces” (nonzero coeffs) to push surface within bounds.
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Incorporating bounds
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Correction formulation

Suppose

s0(x) = spline with only interpolation
s(x) = spline with interpolation + bounds

= s0(x) +G(x)

Note that
|s|2 = |s0|2 + 2(s0, G) + |G|2 = |s0|2 + |G|2.

Minimizing |G| means minimizing |s0|
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Error analysis

Set

f ∈ native space for φ
s(x) = spline with only interpolation
s̃(x) = spline with interpolation + bounds

Standard analysis: bound error semi-norm |f − s| and apply

|f(x)− s(x)| ≤ P (x)|f − s| |f(x)− s̃(x)| ≤ P (x)|f − s̃|

Error:

|f − s|2 = |(f − s̃) + (s̃− s)|2 = |f − s̃+G|2

= |f − s̃|2 + 2(f − s̃, G) + |G|2.
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Error analysis

Write inner product term as

(f − s̃, G) =

|B|∑
j=1

(f(xi)− s̃(xi))c′i

and complementarity yields

c′i > 0 =⇒ s̃(xi) = `i ≤ f(xi)

c′i < 0 =⇒ s̃(xi) = ui ≥ f(xi)

Either way,
(f(xi)− s̃(xi))c′i ≥ 0.

Therefore (f − s̃, G) ≥ 0, and so

|f − s̃|2 = |f − s|2 − 2(f − s̃, G)− |G|2

≤ |f − s|2 − |G|2
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Error example
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Correction formulation, concretely

Coefficients for G satisfyΦBB ΦBE ΠB

ΦEB ΦEE ΠE

ΠT
B ΠT

E 0

 c′∆c
∆a

 =

g0
0


where g = GB satisfies ˆ̀≤ g ≤ û for ˆ̀= `− sX and û = u− sX .

Eliminate ∆c and ∆a to get Schur complement

S = ΦBB −
[
ΦBE ΠB

] [ΦEE ΠE

ΠT
E 0

]−1 [
ΦEB

ΠT
B

]
Now c′ minimizes (c′)TSc′ subject to ˆ̀≤ g ≤ û.
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Solver strategy

Active set method to solve

c′ = argmind{dTSd : ˆ̀≤ Sd ≤ û}

Allows warm-start in context of global optimization.
Maintain QSQT = RTR.
Permutation Q moves free variables toward front.
Update Q and R in O(N2) time per iteration.
(Actually O(Nm) where m is distance variable moves.)

Adding points or updating bounds tends to be cheap.
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Example: Capped surfaces

Consider

f(x, y) =

10∑
j=1

[2 + 2j − exp(jx)− exp(jy)]2

Large function values can cause interpolant to oscillate
Idea: replace large function values with a “cap”
Hard cap: interpolate min(f(x, y),M)

Soft cap: replace large f(xi, yi) with f(xi, yi) ≥M
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Cubic
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Thin-plate
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Multiquadric
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Gaussian
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Conclusions

Energy interpretation of RBF interpolant
=⇒ Easy to add upper/lower bounds at points
Python+C code (PyRBFbound) is now public on BitBucket:

https://bitbucket.org/dbindel/pyrbfbound/

Lots of possible extensions
Point bounds + RBF-QR and contour-Padé interpolation
Incorporation with scalable solvers (e.g. FMM) for 2D/3D
Enforcing continuous lower/upper bounds, integral bounds
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