RBF Response Surfaces with Inequality Constraints

David Bindel

Department of Computer Science
Cornell University

14 March 2015

Background: Surrogate-based global optimization

Goal: Optimize

$$
f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Assume

- Ω compact (usually a rectangular prism)
- f may be "nice", but is black-box
- Evaluating f is expensive

Idea: Sample, fit a surrogate \hat{f}, repeat.

Motivation: Partial information and gray boxes

Costly to compute $f(x)$, but may get bounds fast:

- Trivial bounds (e.g. $0 \leq f(x) \leq 1$)
- Nontrivial-but-cheap bounds (e.g. via Taylor expansion)
- Iterates of a solver (e.g. via bisection)
- Partial sum of a separable function, e.g.

$$
f(x)=\sum_{j=1}^{m}\left\|g\left(x_{j}\right)-g_{j}\right\|^{2}
$$

Goal:

- Incorporate bounds into surrogate (today).
- Don't finish unpromising evaluations (another time).

Radial basis function (RBF) approximation

$$
s(x)=\sum_{j=1}^{N} c_{j} \phi\left(\left\|x-x_{j}\right\|\right)+p(x)
$$

- $X=\left\{x_{i}\right\}_{i=1}^{N}$ is the set of centers
- $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is a radial basis function
- $p \in \mathcal{P}_{d-1}$ is a polynomial tail

Interpolate f at $\left\{x_{j}\right\}_{j=1}^{N}$ and satisfy discrete orthogonality:

$$
\sum_{j=1}^{N} c_{j} q\left(x_{j}\right)=0, \quad \forall q \in \mathcal{P}_{d-1}
$$

RBF interpolation

Given basis $\left\{p_{j}(x)\right\}$ for \mathcal{P}_{d-1}, interpolation system is

$$
\left[\begin{array}{cc}
\Phi & \Pi \\
\Pi^{T} & 0
\end{array}\right]\left[\begin{array}{l}
c \\
a
\end{array}\right]=\left[\begin{array}{c}
f_{X} \\
0
\end{array}\right]
$$

where

- $c=\left[\begin{array}{lll}c_{1} & \ldots & c_{N}\end{array}\right]^{T}$ is the coefficient vector
- $p(x)=\sum_{j} a_{j} p_{j}(x)$ is the polynomial tail
- $\Pi_{i j}=p_{j}\left(x_{i}\right)$
- $\Phi_{i j}=\phi\left(\left\|x_{i}-x_{j}\right\|\right)$

When is this well posed? When is there an "energy"?

Conditional positive definite RBFs

[Micchelli, 1986]: ϕ is conditionally positive definite of order d if for all $X=\left\{x_{1}, \ldots, x_{N}\right\}$ distinct and $c \neq 0$ s.t.

$$
\sum_{j=1}^{N} c_{j} q\left(x_{j}\right)=0, \quad \forall q \in \mathcal{P}_{d-1}
$$

we have that

$$
\sum_{i, j} c_{i} c_{j} \phi\left(\left\|x_{i}-x_{j}\right\|\right)>0
$$

Conditional positive definite RBFs

		$\phi(r)$	Order
Cubic	Schoenberg, 1946	r^{3}	2
Thin-plate	Duchon, 1976	$r^{2} \log r$	2
Multiquadric	Hardy, 1968	$-\sqrt{\gamma^{2}+r^{2}}$	1
Inverse multiquadric		$\left(\gamma^{2}+r^{2}\right)^{-1 / 2}$	0
Gaussian		$\exp \left(-r^{2} / \gamma^{2}\right)$	0

Conditional positive definite RBFs

For an appropriate degree tail, the interpolation system

$$
\left[\begin{array}{cc}
\Phi & \Pi \\
\Pi^{T} & 0
\end{array}\right]\left[\begin{array}{l}
c \\
a
\end{array}\right]=\left[\begin{array}{c}
f_{X} \\
0
\end{array}\right]
$$

is the KKT system for

$$
\min \frac{1}{2} c^{T} \Phi c-c^{T} f_{X} \text { s.t. } \Pi^{T} c=0
$$

Optimization well-posed if Π is full rank
$\equiv q \in \mathcal{P}_{d-1}$ uniquely identified by values on X.
Physically: Problem is statically determinate (no rigid-body modes).

Energy interpretation

Two splines with form

$$
s(x)=\sum_{j=1}^{N} c_{j} \phi\left(\left\|x-x_{j}\right\|\right)+p(x)
$$

Define a semi-definite form ("energy semi-inner product")

$$
(s, \tilde{s})=\sum_{j, k} c_{j} \tilde{c}_{k} \phi\left(\left\|x_{j}-x_{k}\right\|\right)=\sum_{j} c_{j} \tilde{s}\left(x_{j}\right)
$$

Corresponding semi-norm is $|s|=(s, s)^{1 / 2}$.
Native space \equiv closure of set of splines under semi-norm. Interpolating spline minimizes $|s|$ under interpolation constraints.

Incorporating bounds

Set $X=E \cup B$ where

$$
\begin{aligned}
E=\left\{x_{j}\right\}_{j=1}^{|E|}, & s\left(x_{i}\right)=f\left(x_{i}\right) \\
B & =\left\{x_{j}^{\prime}\right\}_{j=1}^{|B|},
\end{aligned} \quad-\infty \leq \ell_{i} \leq s\left(x_{i}\right) \leq u_{i} \leq \infty .
$$

and minimize $|s|$ subject to these constraints. KKT conditions:

$$
\begin{aligned}
s\left(x_{i}\right) & =f\left(x_{i}\right) \\
s\left(x_{i}^{\prime}\right) & =\ell_{i} \Longrightarrow c_{i}^{\prime} \geq 0 \\
s\left(x_{i}^{\prime}\right) & =u_{i} \Longrightarrow c_{i}^{\prime} \leq 0 \\
\ell_{i} \leq s\left(x_{i}^{\prime}\right) & \leq u_{i} \Longrightarrow c_{i}^{\prime}=0 .
\end{aligned}
$$

Include "forces" (nonzero coeffs) to push surface within bounds.

Incorporating bounds

Correction formulation

Suppose

$$
\begin{aligned}
s_{0}(x) & =\text { spline with only interpolation } \\
s(x) & =\text { spline with interpolation }+ \text { bounds } \\
& =s_{0}(x)+G(x)
\end{aligned}
$$

Note that

$$
|s|^{2}=\left|s_{0}\right|^{2}+2\left(s_{0}, G\right)+|G|^{2}=\left|s_{0}\right|^{2}+|G|^{2}
$$

Minimizing $|G|$ means minimizing $\left|s_{0}\right|$

Error analysis

Set

$$
\begin{aligned}
f & \in \text { native space for } \phi \\
s(x) & =\text { spline with only interpolation } \\
\tilde{s}(x) & =\text { spline with interpolation }+ \text { bounds }
\end{aligned}
$$

Standard analysis: bound error semi-norm $|f-s|$ and apply

$$
|f(x)-s(x)| \leq P(x)|f-s| \quad|f(x)-\tilde{s}(x)| \leq P(x)|f-\tilde{s}|
$$

Error:

$$
\begin{aligned}
|f-s|^{2} & =|(f-\tilde{s})+(\tilde{s}-s)|^{2}=|f-\tilde{s}+G|^{2} \\
& =|f-\tilde{s}|^{2}+2(f-\tilde{s}, G)+|G|^{2} .
\end{aligned}
$$

Error analysis

Write inner product term as

$$
(f-\tilde{s}, G)=\sum_{j=1}^{|B|}\left(f\left(x_{i}\right)-\tilde{s}\left(x_{i}\right)\right) c_{i}^{\prime}
$$

and complementarity yields

$$
\begin{aligned}
c_{i}^{\prime}>0 \Longrightarrow \tilde{s}\left(x_{i}\right) & =\ell_{i} \leq f\left(x_{i}\right) \\
c_{i}^{\prime}<0 \Longrightarrow \tilde{s}\left(x_{i}\right) & =u_{i} \geq f\left(x_{i}\right)
\end{aligned}
$$

Either way,

$$
\left(f\left(x_{i}\right)-\tilde{s}\left(x_{i}\right)\right) c_{i}^{\prime} \geq 0
$$

Therefore $(f-\tilde{s}, G) \geq 0$, and so

$$
\begin{aligned}
|f-\tilde{s}|^{2} & =|f-s|^{2}-2(f-\tilde{s}, G)-|G|^{2} \\
& \leq|f-s|^{2}-|G|^{2}
\end{aligned}
$$

Error example

Correction formulation, concretely

Coefficients for G satisfy

$$
\left[\begin{array}{ccc}
\Phi_{B B} & \Phi_{B E} & \Pi_{B} \\
\Phi_{E B} & \Phi_{E E} & \Pi_{E} \\
\Pi_{B}^{T} & \Pi_{E}^{T} & 0
\end{array}\right]\left[\begin{array}{c}
c^{\prime} \\
\Delta c \\
\Delta a
\end{array}\right]=\left[\begin{array}{l}
g \\
0 \\
0
\end{array}\right]
$$

where $g=G_{B}$ satisfies $\hat{\ell} \leq g \leq \hat{u}$ for $\hat{\ell}=\ell-s_{X}$ and $\hat{u}=u-s_{X}$.

Eliminate Δc and Δa to get Schur complement

$$
S=\Phi_{B B}-\left[\begin{array}{ll}
\Phi_{B E} & \Pi_{B}
\end{array}\right]\left[\begin{array}{cc}
\Phi_{E E} & \Pi_{E} \\
\Pi_{E}^{T} & 0
\end{array}\right]^{-1}\left[\begin{array}{c}
\Phi_{E B} \\
\Pi_{B}^{T}
\end{array}\right]
$$

Now c^{\prime} minimizes $\left(c^{\prime}\right)^{T} S c^{\prime}$ subject to $\hat{\ell} \leq g \leq \hat{u}$.

Solver strategy

Active set method to solve

$$
c^{\prime}=\operatorname{argmin}_{d}\left\{d^{T} S d: \hat{\ell} \leq S d \leq \hat{u}\right\}
$$

- Allows warm-start in context of global optimization.
- Maintain $Q S Q^{T}=R^{T} R$.
- Permutation Q moves free variables toward front.
- Update Q and R in $O\left(N^{2}\right)$ time per iteration. (Actually $O(N m)$ where m is distance variable moves.)
Adding points or updating bounds tends to be cheap.

Example: Capped surfaces

Consider

$$
f(x, y)=\sum_{j=1}^{10}[2+2 j-\exp (j x)-\exp (j y)]^{2}
$$

- Large function values can cause interpolant to oscillate
- Idea: replace large function values with a "cap"
- Hard cap: interpolate $\min (f(x, y), M)$
- Soft cap: replace large $f\left(x_{i}, y_{i}\right)$ with $f\left(x_{i}, y_{i}\right) \geq M$

Cubic

Thin-plate

Multiquadric

Gaussian

Conclusions

- Energy interpretation of RBF interpolant
\Longrightarrow Easy to add upper/lower bounds at points
- Python+C code (PyRBFbound) is now public on BitBucket:
https://bitbucket.org/dbindel/pyrbfbound/
- Lots of possible extensions
- Point bounds + RBF-QR and contour-Padé interpolation
- Incorporation with scalable solvers (e.g. FMM) for 2D/3D
- Enforcing continuous lower/upper bounds, integral bounds

