FLiER: Practical Topology Error Correction Using Sparse PMUs

Colin Ponce David Bindel
Computer Science

The Biggest Machine in the World: US Power Grid

- Many threats: lightning, line overheating, de-synchronization, ...
- Reliable diagnostics help operators respond
 ▶ Input: Models + sensor data (SCADA and PMUs)
 ▶ Output: Computed state estimates
- Our work: a new approach to diagnosing line failures quickly

Monitoring Systems

- SCADA
 ▶ Non-synchronized measurements every 2–4 seconds
 ▶ Useful for reporting power flows (vs voltage phasors)
 ▶ Complete observability in transmission grid
 ▶ Voltage and currents are inferred from power flows (state estimation)
- Syncrophasors / Phasor Measurement Units (PMUs)
 ▶ Directly report voltage and current angles and magnitudes
 ▶ Synchronized measurements at 30–60 samples / second
 ▶ Partial observability in most places

Steady-State Power Flow Equations

\[H(v; Y) = s \]

- \(v \) is a vector of voltage magnitudes and angles
- \(s \) is a vector of real/reactive power
- \(Y \) is the system admittance matrix
- \(H \) is linear in \(Y \), nonlinear in \(v \)

PMU Line Failure Diagnosis

- Complete network state estimate initially known
- Line fails shortly after state estimate
 ▶ Assumption 1: Supply / demand remain roughly fixed
 ▶ Assumption 2: Only one line fails (for now)
- PMUs measure part of voltage change \(E\Delta v \)
- Goal: Find failed line from \(E\Delta v \)
- Approach: Compare \(E\Delta v \) to simulated failure “fingerprints”
 ▶ One power flow solve per candidate — expensive!

Trick 1: Fast Linear Approximation

Let \(Y = Y + \Delta Y \) = post-failure admittance. Linearize about old \(v \):

\[(J + A) \delta v = -H(v; \Delta Y) \]

where

\[J = \frac{\partial H(v; Y)}{\partial v}, \quad A = \frac{\partial H(v; \Delta Y)}{\partial v} \]

- \(A \) is sparse: \(A_{ij} \) nonzero only if \((k, l) \) adjacent to failed line
- \(A \) is low rank, total rank is at most 3
 ▶ Apply \((J + A)^{-1} \) quickly given factorization of \(J \)
 (Sherman-Morris-Woodbury)
- Cost per fingerprint: a few linear solves with a factored matrix

Trick 2: Filtering through Subspace Bounds

\[E\Delta v \]

\[E\Delta v \text{ belongs to } \gamma \text{ a 3D space spanned by columns of } EJ^{-1} \]

\[t \equiv ||E\Delta v - E\delta v|| \leq \tau \equiv \min_{w \in \gamma} ||E\Delta v - w||. \]

- Computing \(\tau \) is much cheaper than computing \(t \)
 ▶ \(EJ^{-1} \) involves \# sensors solves with \(J \)
 ▶ \(\tau \) for any line is cheap once \(EJ^{-1} \) formed
 ▶ \(t \) for each line requires a few linear solves.

FLiER: Fingerprint Linear Estimation Routine for Line Failures

- Compute \(EJ^{-1} \)
- Compute \(\tau_k \) for each line \((k, l)\)
- Sort lines by ascending \(\tau_k \)
 ▶ \(f_{\min} = \infty \)
 ▶ For each line \((k, l)\) in order
 ▶ If \(\tau_k > f_{\min} \), return line
 ▶ Compute \(t_k \)
 ▶ If \(t_k < f_{\min} \) then update \(f_{\min} \), set line = \((k, l)\)

Results: Accuracy and Filter Effectiveness

- Left: 77 line failure tests on IEEE 57-bus network
 ▶ Three PMUs used for measurement
 ▶ 68 lines correctly identified (green dots)
 ▶ 9 lines misdiagnosed, but among three lowest scores (triangles)
 ▶ Black dots indicate other computed \(t \) values
- Right: Effectiveness of filter with PMUs on 1, 3, or all nodes

Results: An Identification Failure

IEEE 57-bus network
PMUs at blue nodes

Line (24,26) fails
Line (26,27) diagnosed
Thickness \(\propto t^{-1/2} \)
Not right, but close!

For More

Colin Ponce and David Bindel
FLiER: Practical Topology Error Correction Using Sparse PMUs
Submitted to IEEE Transactions on Power Systems
arXiv:1409.6644 [cs.SY].

http://www.cs.cornell.edu/~bindel/