"Baseline Techniques in My Group"

And some concrete past examples

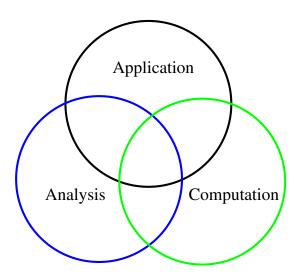
David Bindel

Department of Computer Science Cornell University

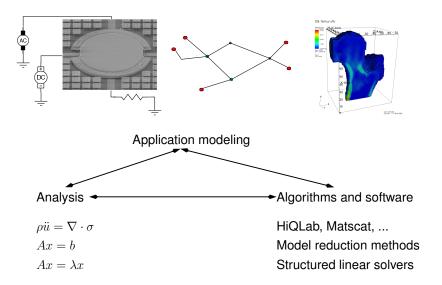
Materials by Design Group, 10 Apr 2013

What do we do?

- Jeff Chadwick (CS): Fast structured direct solvers for PDEs
- Erdal Yilmaz (AEP): MEMS micro-gyro simulation
- Amanda Hood (CAM): Nonlinear eigenvalues, resonances
- Colin Ponce (CS): Network analysis, power grid tomography


Outline

- Possible materials connections
- Resonant MEMS
- Anchor losses and disk resonators
- Thermoelastic losses and beam resonators
- Elastic wave gyros
- Conclusion


Outline

- Possible materials connections
- Resonant MEMS
- Anchor losses and disk resonators
- Thermoelastic losses and beam resonators
- Elastic wave gyros
- 6 Conclusion

The Computational Science & Engineering Picture

The Computational Science & Engineering Picture

6/72

Useful Expertise? (I): Software

- Writing codes fast
 - High-level tools for writing/enabling simulations (matexpr, luasym, SUGAR, HiQLab, AxFEM, ...)
 - Interface tools to "glue together" codes (MATFEAP, FEAPMEX, MWrap, ...)
- Writing fast codes
 - CS 5220: Applications of Parallel Computers (S14)
 - Some of this is the usual fast solver work
 - Also cloud computing for science

Useful Expertise? (II): Numerical Methods

- Major theme: novel eigenvalue problems
 - Some familiar from physics nearly degenerate modes, estimators for eigenvalue density
 - Nonlinear eigenvalue problems and resonances
 - Model reduction is closely related!
- Major theme: structure-preserving methods
 - Symmetry preservation for model reduction and eigencomputations
 - Fast PDE solvers and low-rank blocks
 - Fast eigensolvers (linear and nonlinear)
 - Parameter-dependent solvers

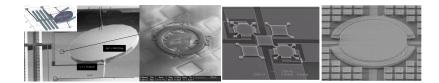
Useful Expertise? (III): Computational Mechanics

- Continuum level and network level
 - Same ingredients: balance law + constitutive eq + kinematic assumption (for discretization)
 - Beam / circuit theory just assumes more about kinematics!
- Mostly static, quasi-static, or time-harmonic
- Several codes (SUGAR, HiQLab, AxFEM, FEAP)

Useful Expertise? (IV): Network Analysis

- Several instances:
 - Circuits / MEMS systems (SUGAR)
 - Computer network tomography
 - Social network analysis (clustering)
 - Line failures in power grids
- All turns into linear algebra...

Possible flow

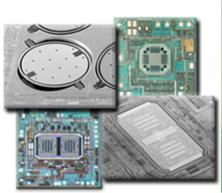

- Inputs:
 - Quasi-continuum models of transport within CNT (BTE?)
 - Constitutive elements: source terms, hopping across junctions
 - Sample geometry and compositions of CNT networks
- Tasks:
 - Fast solvers for detailed simulations on network
 - Model reduction for expensive constitutive elements
 - Sensitivity analysis (check model reduction, assumptions)
 - Model fitting?
 - Reduced model for predicting overall charge transport?
- Output: objective functions for Peter and Jeff?

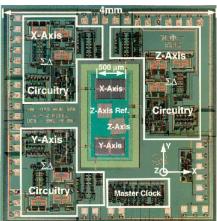
Outline

- Possible materials connections
- Resonant MEMS
- Anchor losses and disk resonators
- Thermoelastic losses and beam resonators
- 6 Elastic wave gyros
- 6 Conclusion

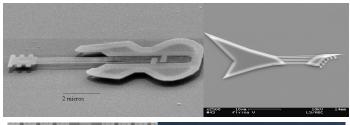
A Favorite Application: MEMS

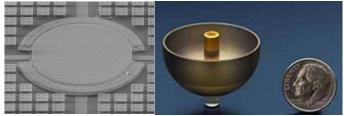
I've worked on this for a while:


- SUGAR (early 2000s) SPICE for MEMS
- HiQLab (2006) high-Q mechanical resonator device modeling
- AxFEM (2012) solid-wave gyro device modeling

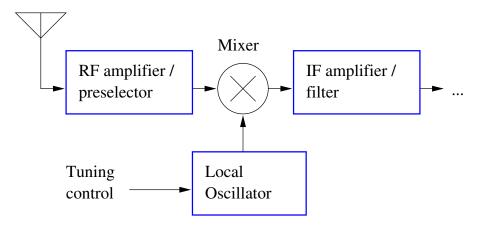

Goal today: two illustrative snapshots.

MEMS Basics


- Micro-Electro-Mechanical Systems
 - Chemical, fluid, thermal, optical (MECFTOMS?)
- Applications:
 - Sensors (inertial, chemical, pressure)
 - Ink jet printers, biolab chips
 - Radio devices: cell phones, inventory tags, pico radio
- Use integrated circuit (IC) fabrication technology
- Tiny, but still classical physics


Where are MEMS used?

My favorite applications



Why you should care, too!

The Mechanical Cell Phone

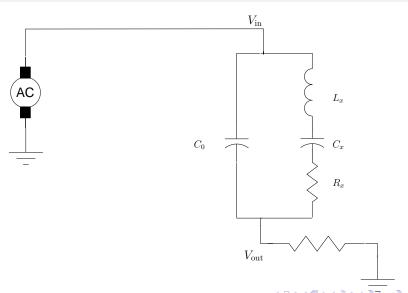
...and lots of mechanical sensors, too!

Ultimate Success

"Calling Dick Tracy!"

19 / 72

Computational Challenges


Devices are fun – but I'm not a device designer. Why am I in this?

Model System

The Circuit Designer View

Electromechanical Model

Balance laws (KCL and BLM):

$$\frac{d}{dt} (C(u)V) + GV = I_{\text{external}}$$

$$Mu_{tt} + Ku - \nabla_u \left(\frac{1}{2}V^*C(u)V\right) = F_{\text{external}}$$

Linearize about static equilibium (V_0, u_0) :

$$C(u_0) \, \delta V_t + G \, \delta V + (\nabla_u C(u_0) \cdot \delta u_t) \, V_0 = \delta I_{\text{external}}$$

$$M \, \delta u_{tt} + \tilde{K} \, \delta u + \nabla_u \left(V_0^* C(u_0) \, \delta V \right) = \delta F_{\text{external}}$$

where

$$\tilde{K} = K - \frac{1}{2} \frac{\partial^2}{\partial u^2} \left(V_0^* C(u_0) V_0 \right)$$

Electromechanical Model

Assume time-harmonic steady state, no external forces:

$$\begin{bmatrix} i\omega C + G & i\omega B \\ -B^T & \tilde{K} - \omega^2 M \end{bmatrix} \begin{bmatrix} \delta \hat{V} \\ \delta \hat{u} \end{bmatrix} = \begin{bmatrix} \delta \hat{I}_{\text{external}} \\ 0 \end{bmatrix}$$

Eliminate the mechanical terms:

$$Y(\omega) \, \delta \hat{V} = \delta \hat{I}_{\text{external}}$$

 $Y(\omega) = i\omega C + G + i\omega H(\omega)$
 $H(\omega) = B^T (\tilde{K} - \omega^2 M)^{-1} B$

Goal: Understand electromechanical piece ($i\omega H(\omega)$).

- As a function of geometry and operating point
- Preferably as a simple circuit

Damping and Q

Designers want high quality of resonance (Q)

Dimensionless damping in a one-dof system

$$\frac{d^2u}{dt^2} + Q^{-1}\frac{du}{dt} + u = F(t)$$

• For a resonant mode with frequency $\omega \in \mathbb{C}$:

$$Q := \frac{|\omega|}{2\operatorname{Im}(\omega)} = \frac{\text{Stored energy}}{\text{Energy loss per radian}}$$

To understand Q, we need damping models!

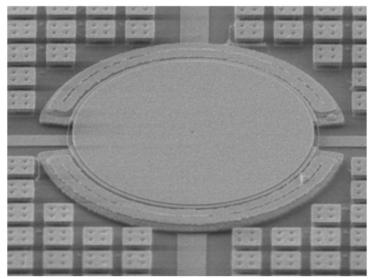
The Designer's Dream

Reality is messy:

- Coupled physics
- ... some poorly understood (damping)
- ... subject to fabrication errors

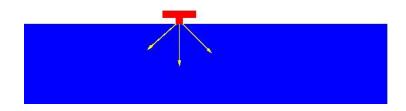
Ideally, would like:

- Simple models for behavioral simulation
- Parameterized for design optimization
- Including all relevant physics
- With reasonably fast and accurate set-up


We aren't there yet.

Outline

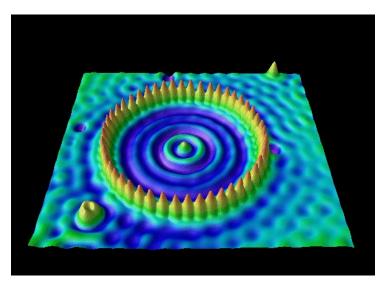
- Possible materials connections
- Resonant MEMS
- Anchor losses and disk resonators
- Thermoelastic losses and beam resonators
- 6 Elastic wave gyros
- 6 Conclusion


Disk Resonator Simulations

28 / 72

(Cornell University) Materials Group

Damping Mechanisms


Possible loss mechanisms:

- Fluid damping
- Material losses
- Thermoelastic damping
- Anchor loss

Model substrate as semi-infinite ⇒ resonances!

Resonances in Physics

Resonances and Literature

Listening to a Monk from Shu Playing the Lute

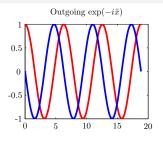
The monk from Shu with his green lute-case walked Westward down Emei Shan, and at the sound Of the first notes he strummed for me I heard A thousand valleys' rustling pines resound. My heart was cleansed, as if in flowing water. In bells of frost I heard the resonance die. Dusk came unnoticed over the emerald hills And autumn clouds layered the darkening sky.

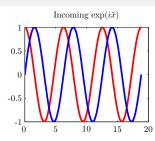
Chinese Poems on the Underground

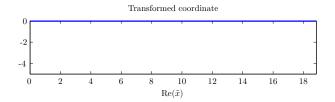
Li Bai (AD 701-761) Translated by Winner Seth. Tone Offices Pacts Order 1990)
Oil grantly by Quiet La.
A cultural exchange between Shanghai Hebro and London Underground

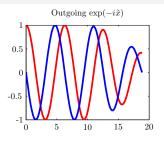
MAYOR OF LONDON

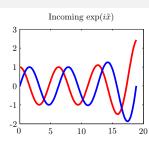
ransport for London

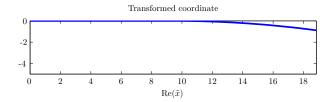


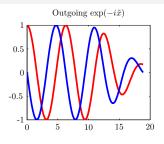

In bells of frost I heard the resonance die.

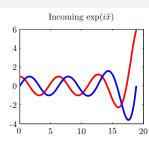

Li Bai (translated by Vikram Seth)

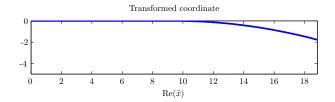

Perfectly Matched Layers

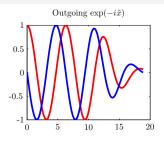

- Complex coordinate transformation
- Generates a "perfectly matched" absorbing layer
- Idea works with general linear wave equations
 - Electromagnetics (Berengér, 1994)
 - Quantum mechanics exterior complex scaling (Simon, 1979)
 - Elasticity in standard finite element framework (Basu and Chopra, 2003)
 - Works great for MEMS, too! (Bindel and Govindjee, 2005)

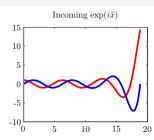


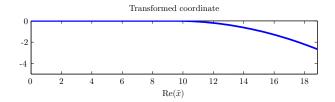


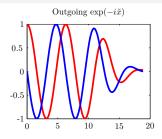


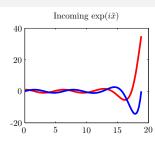


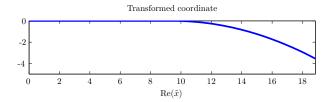


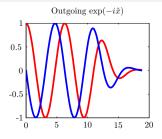


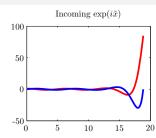


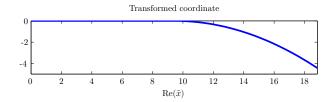


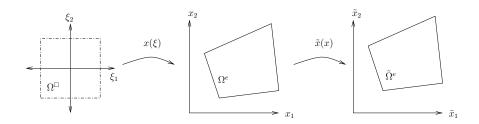


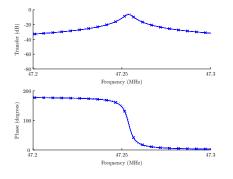



Model Problem Illustrated






Model Problem Illustrated



Finite Element Implementation

Matrices are complex symmetric

Eigenvalues and Model Reduction

Goal: understand $H(\omega)$:

$$H(\omega) = B^T (K - \omega^2 M)^{-1} B$$

Look at

- Poles of H (eigenvalues)
- Bode plots of H

Model reduction: Replace $H(\omega)$ by cheaper $\hat{H}(\omega)$.

(Cornell University)

Approximation from Subspaces

A general recipe for large-scale numerical approximation:

- **1** A subspace V containing good approximations.
- ② A criterion for "optimal" approximations in \mathcal{V} .

Basic building block for eigensolvers and model reduction!

Better subspaces, better criteria, better answers.

Variational Principles

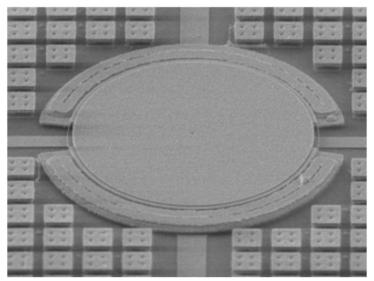
- Variational form for complex symmetric eigenproblems:
 - Hermitian (Rayleigh quotient):

$$\rho(v) = \frac{v^* K v}{v^* M v}$$

Complex symmetric (modified Rayleigh quotient):

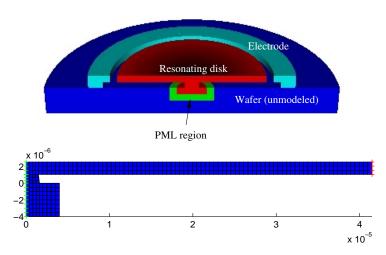
$$\theta(v) = \frac{v^T K v}{v^T M v}$$

- First-order accurate eigenvectors ⇒ Second-order accurate eigenvalues.
- Good for model reduction, too!


Accurate Model Reduction

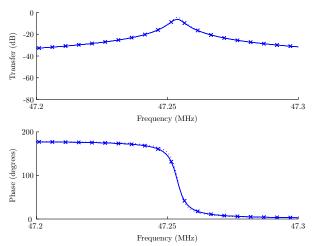
Build new projection basis from V:

$$W = \operatorname{orth}[\operatorname{Re}(V), \operatorname{Im}(V)]$$

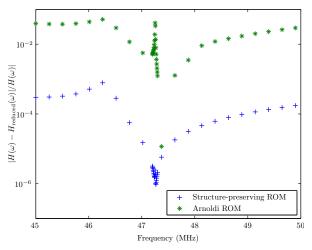

- $\operatorname{span}(W)$ contains both \mathcal{K}_n and $\bar{\mathcal{K}}_n$ \Longrightarrow double digits correct vs. projection with V
- W is a real-valued basis
 - ⇒ projected system is complex symmetric

Disk Resonator Simulations

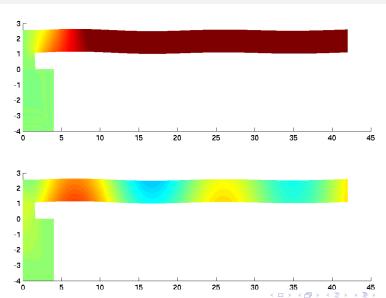
(Cornell University) Materials Group 39 / 72


Disk Resonator Mesh

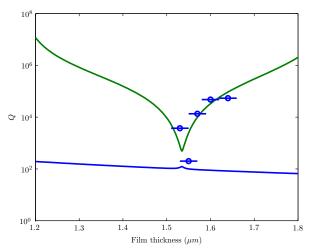
Axisymmetric model, bicubic, $\approx 10^4$ nodal points at convergence


4 中 x 4 图 x 4 图 x 4 图 x

Model Reduction Accuracy


Results from ROM (solid and dotted lines) nearly indistinguishable from full model (crosses)

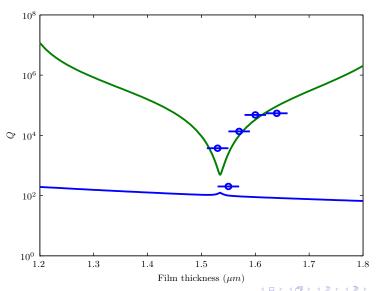
Model Reduction Accuracy



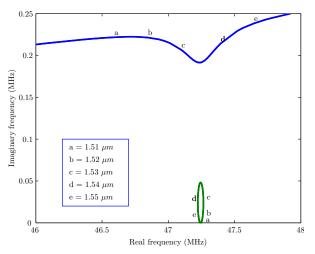
Preserve structure ⇒ get twice the correct digits

Response of the Disk Resonator

Variation in Quality of Resonance



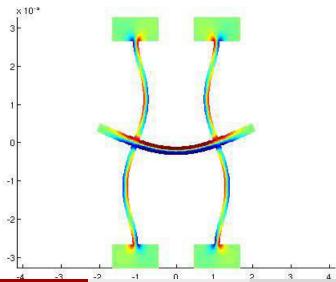
Simulation and lab measurements vs. disk thickness



(Cornell University) Materials Group 44 / 72

Explanation of ${\it Q}$ Variation

Explanation of Q Variation



Interaction of two nearby eigenmodes

Outline

- Possible materials connections
- Resonant MEMS
- Anchor losses and disk resonators
- Thermoelastic losses and beam resonators
- Elastic wave gyros
- 6 Conclusion

Thermoelastic Damping (TED)

Thermoelastic Damping (TED)

u is displacement and $T = T_0 + \theta$ is temperature

$$\sigma = C\epsilon - \beta\theta 1
\rho \ddot{u} = \nabla \cdot \sigma
\rho c_v \dot{\theta} = \nabla \cdot (\kappa \nabla \theta) - \beta T_0 \operatorname{tr}(\dot{\epsilon})$$

- Coupling between temperature and volumetric strain:
 - Compression and expansion ⇒ heating and cooling

 - Not often an important factor at the macro scale
 - Recognized source of damping in microresonators
- Zener: semi-analytical approximation for TED in beams
- We consider the fully coupled system

Nondimensionalized Equations

Continuum equations:

$$\begin{aligned}
\sigma &= \hat{C}\epsilon - \xi\theta 1 \\
\ddot{u} &= \nabla \cdot \sigma \\
\dot{\theta} &= \eta \nabla^2 \theta - \operatorname{tr}(\dot{\epsilon})
\end{aligned}$$

Discrete equations:

$$M_{uu}\ddot{u} + K_{uu}u = \xi K_{u\theta}\theta + f$$

$$C_{\theta\theta}\ddot{\theta} + \eta K_{\theta\theta}\theta = -C_{\theta u}\dot{u}$$

- Micron-scale poly-Si devices: ξ and η are $\sim 10^{-4}$.
- Linearize about $\xi = 0$

Perturbative Mode Calculation

Discretized mode equation:

$$(-\omega^2 M_{uu} + K_{uu})u = \xi K_{u\theta}\theta$$
$$(i\omega C_{\theta\theta} + \eta K_{\theta\theta})\theta = -i\omega C_{\theta u}u$$

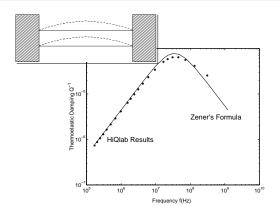
First approximation about $\xi = 0$:

$$(-\omega_0^2 M_{uu} + K_{uu})u_0 = 0$$

$$(i\omega_0 C_{\theta\theta} + \eta K_{\theta\theta})\theta_0 = -i\omega_0 C_{\theta u}u_0$$

First-order correction in ξ :

$$-\delta(\omega^2)M_{uu}u_0 + (-\omega_0^2M_{uu} + K_{uu})\delta u = \xi K_{u\theta}\theta_0$$


Multiply by u_0^T :

$$\delta(\omega^2) = -\xi \left(\frac{u_0^T K_{u\theta} \theta_0}{u_0^T M_{uu} u_0} \right)$$

Zener's Model

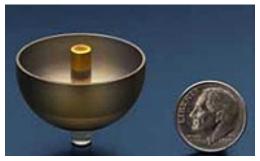
- Clarence Zener investigated TED in late 30s-early 40s.
- Model for beams common in MEMS literature.
- Method of orthogonal thermodynamic potentials" == perturbation method + a variational method.

Comparison to Zener's Model

- Comparison of fully coupled simulation to Zener approximation over a range of frequencies
- Real and imaginary parts after first-order correction agree to about three digits with Arnoldi

Outline

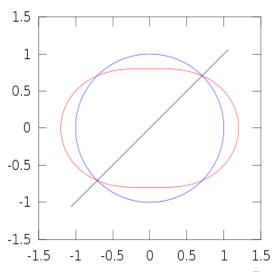
- Possible materials connections
- Resonant MEMS
- Anchor losses and disk resonators
- Thermoelastic losses and beam resonators
- Elastic wave gyros
- 6 Conclusion

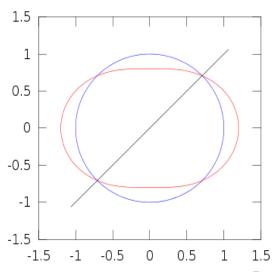

Bryan's Experiment

"On the beats in the vibrations of a revolving cylinder or bell" by G. H. Bryan, 1890

A Small Application

Northrup-Grummond HRG


Current example: Micro-HRG / GOBLiT / OMG

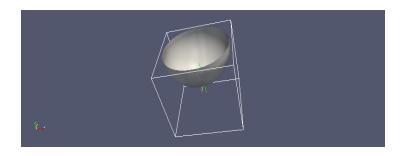


- Goal: Cheap, small (1mm) HRG
- Collaborator roles:
 - Basic design
 - Fabrication
 - Measurement
- Our part:
 - Detailed physics
 - Fast software
 - Sensitivity
 - Design optimization

How It Works

How It Works

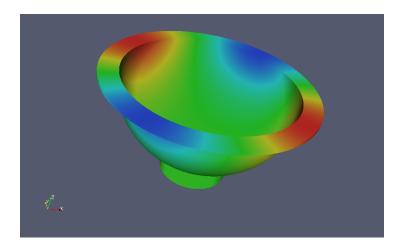
Goal state


We want to compute:

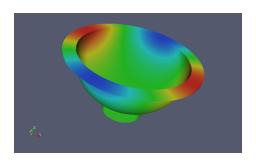
- Geometry
- Fundamental frequencies
- Angular gain (Bryan's factor)
- Damping (thermoelastic, radiation, material)
- Sensitivities of everything
- Effects of symmetry breaking

For speed and accuracy: use structure!

- Axisymmetric geometry ⇒ 3D to 2D via Fourier


Getting the Geometry

- Simple isotropic etch modeling fails 1mm is huge!
- Working on better simulator (reaction-diffusion).
- For now, take idealized geometries on faith...



Full Dynamics

Essential Dynamics

Dynamics in 2D subspace of degenerate modes:

$$\left(-\omega^2 mI + 2i\omega\Omega gJ + kI\right)c = 0$$

Scaled gain g is Bryan's factor

 $\mathrm{BF} = \frac{\text{Angular rate of pattern relative to body}}{\text{Angular rate of vibrating body}}$

If no parameters in the world were very large or very small, science would reduce to an exhaustive list of everything.

— Nick Trefethen

Fourier Picture

Write displacement fields as Fourier series:

$$\mathbf{u} = \sum_{m=0}^{\infty} \left(\begin{bmatrix} u_{mr}(r,z)\cos(m\theta) \\ u_{m\theta}(r,z)\sin(m\theta) \\ u_{mz}(r,z)\cos(m\theta) \end{bmatrix} + \begin{bmatrix} -u'_{mr}(r,z)\sin(m\theta) \\ u'_{m\theta}(r,z)\cos(m\theta) \\ -u'_{mz}(r,z)\sin(m\theta) \end{bmatrix} \right)$$

- Works whenever geometry is axisymmetric
- Treat non-axisymmetric geometries as mapped axisymmetric
 - Now coefficients in PDEs are non-axisymmetric
- ullet Problems with different m decouple if everything axisymmetric

Fourier Picture

Perfect axisymmetry:

$$\begin{bmatrix} K_{11} & & & & & \\ & K_{22} & & & & \\ & & K_{33} & & & \\ & & & \ddots \end{bmatrix} - \omega^2 \begin{bmatrix} M_{11} & & & & \\ & M_{22} & & & \\ & & & M_{33} & \\ & & & & \ddots \end{bmatrix}$$

Fourier Picture

Broken symmetry (via coefficients):

$$\begin{bmatrix} K_{11} & \epsilon & \epsilon & \epsilon \\ \epsilon & K_{22} & \epsilon & \epsilon \\ \epsilon & \epsilon & K_{33} & \epsilon \\ \epsilon & \epsilon & \epsilon & \cdot \cdot \end{bmatrix} - \omega^2 \begin{bmatrix} M_{11} & \epsilon & \epsilon & \epsilon \\ \epsilon & M_{22} & \epsilon & \epsilon \\ \epsilon & \epsilon & M_{33} & \epsilon \\ \epsilon & \epsilon & \epsilon & \cdot \cdot \end{bmatrix}$$

Perturbing Fourier

Modes "near" azimuthal number m = nonlinear eigenvalues

$$\left(\left| K_{mm} - \omega^2 M_{mm} \right| + \left| E_{mm}(\omega) \right| \right) u = 0.$$

Need:

- Control on E_{mm}
 - Depends on frequency spacing
 - Depends on Fourier analysis of perturbation
- Perturbation theory for nonlinearly perturbed eigenproblems
 - For self-adjoint case, results similar to Lehmann intervals

First-order estimate: $(K_{mm} - \omega_0^2 M_{mm}) u_0 = 0$; then

$$\delta(\omega^2) = \frac{u_0^T E_{mm}(\omega_0) u_0}{u_0^T M_{mm} u_0}.$$

Perturbation and Radiation

Incorporating numerical radiation BCs gives:

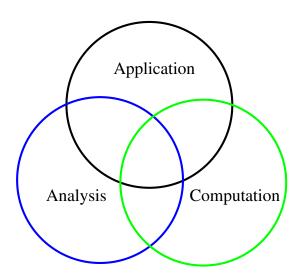
$$\left(K - \omega^2 M \right| + G(\omega) \right) u = 0.$$

Perturbation approach: ignore G to get (ω_0, u_0) . Then

$$\delta(\omega^2) = \frac{u_0^T G(\omega_0) u_0}{u_0^T M_{mm} u_0}.$$

Works when BC has small influence (coefficients aren't small).

Also an approach to understanding sensitivity to BC! ... explains why PML works okay despite being inappropriate?



Outline

- Possible materials connections
- Resonant MEMS
- Anchor losses and disk resonators
- Thermoelastic losses and beam resonators
- Elastic wave gyros
- Conclusion

The Computational Science & Engineering Picture

Conclusions

The difference between art and science is that science is what we understand well enough to explain to a computer. Art is everything else.

Donald Knuth

The purpose of computing is insight, not numbers.
Richard Hamming

- Collaborators:
 - Disk: S. Govindjee, T. Koyama, S. Bhave, E. Quevy
 - HRG: S. Bhave, L. Fegely, E. Yilmaz
- Funding: DARPA MTO, Sloan Foundation

