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A Favorite Application: MEMS

I've worked on this for a while:
@ SUGAR (early 2000s) — SPICE for MEMS
@ HiQLab (2006) — high-Q mechanical resonator device modeling
@ AxFEM (2012) — solid-wave gyro device modeling

Goal today: two illustrative snapshots.
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Outline

o Resonant MEMS
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MEMS Basics

@ Micro-Electro-Mechanical Systems
o Chemical, fluid, thermal, optical (MECFTOMS?)
@ Applications:

e Sensors (inertial, chemical, pressure)
o Ink jet printers, biolab chips
o Radio devices: cell phones, inventory tags, pico radio

@ Use integrated circuit (IC) fabrication technology
@ Tiny, but still classical physics
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Where are MEMS used?
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Resonant MEMS

My favorite applications
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Resonant MEMS

Why you should care, too!
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The Mechanical Cell Phone

Mixer
RF amplifier / IF amplifier /
preselector — filter
Tuning Local
control — ™| Oscillator

@ ...and lots of mechanical sensors, too!

(Cornell University) Fudan

9/56



Resonant MEMS

Ultimate Success

“Calling Dick Tracy!”

I'm On My Way
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Resonant MEMS

Computational Challenges

Devices are fun — but I'm not a device designer.

Why am [ in this?
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Model System

‘/out
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Resonant MEMS

The Circuit Designer View

‘/out
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Resonant MEMS

Electromechanical Model
Balance laws ( KCL and BLM ):
& CWV)+GCV = Iermal
Muy + Ku — V, (;V*C(u)V> = Fexternal
Linearize about static equilibium (Vg, ug):
C(ug) 6V; + GOV + (VuCl(ug) - dug) Vo = lexternal

M Sug + K du + Vo, (ViC(ug) 0V) = 6Fexternal

where
. 10% .,
K=K - 2902 (Vo' C(uo)Vo)
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Resonant MEMS

Electromechanical Model

Assume time-harmonic steady state, no external forces:

wC + G iwB

-BT K —w?M | Lot 0

Eliminate the mechanical terms:
Y(@)6V = blextoma
Y(w) = wC+G +iwH(w)
Hw) = BY(K-uw’M)'B
Goal: Understand electromechanical piece (iwH (w)).

@ As a function of geometry and operating point
@ Preferably as a simple circuit
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Damping and @

Designers want high quality of resonance (Q)
@ Dimensionless damping in a one-dof system

d*u 1du
T o =R
gzt g ru=r

@ For a resonant mode with frequency w € C:

|w] Stored energy

Q:

- 2Im(w) - Energy loss per radian

To understand @, we need damping models!
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Resonant MEMS

The Designer’'s Dream

Reality is messy:
@ Coupled physics
@ ... some poorly understood (damping)
@ ... subject to fabrication errors

Ideally, would like:
@ Simple models for behavioral simulation
@ Parameterized for design optimization
@ Including all relevant physics
@ With reasonably fast and accurate set-up
We aren’t there yet.
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Outline

e Anchor losses and disk resonators
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Anchor losses and disk resonators

Disk Resonator Simulations
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Anchor losses and disk resonators

Damping Mechanisms

Possible loss mechanisms:
@ Fluid damping
@ Material losses
@ Thermoelastic damping
@ Anchor loss

Model substrate as semi-infinite = resonances!
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Anchor losses and disk resonators

Resonances in Physics

(Cornell University)



Anchor losses and disk resonators

Resonances and Literature

'/‘ % I.i‘|[{'['|‘|['|lc_'\I Toa \1|1]||'§.|1'|11||,“hl| I'I;I:l'if'l;_’\|11l.' |.l||l.'
\ ;
}ﬁ )‘ % %ﬁ The monk from Shu with his green lute-case walked
Westward down Emei Shan, and at the sound
‘(;: - Of the first notes he strummed for me 1 heard
ﬁy{ﬂ‘ A thousand valleys' rustling pines resound.
My heart was cleansed, as if' in flowing water.
In bells of frost T heard the resonance die.

Dhusk came unnoticed over the emerald hills

And autumn clouds layered the darkening sky.
L B A P06

W

Chinese Poems on the UNAerground s cimsmmimmms gt s matanimirons_| 2
HAYOR OF LONDON '):: EH o Eoe Transpart for Landan

In bells of frost | heard the resonance die.
— Li Bai (translated by Vikram Seth)
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Perfectly Matched Layers

@ Complex coordinate transformation

@ Generates a “perfectly matched” absorbing layer
@ |dea works with general linear wave equations
o Electromagnetics (Berengér, 1994)
e Quantum mechanics — exterior complex scaling
(Simon, 1979)
e Elasticity in standard finite element framework
(Basu and Chopra, 2003)
o Works great for MEMS, too!
(Bindel and Govindjee, 2005)
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Model Problem lllustrated

Outgoing exp(—iz)

Incoming exp(iZ)

1 1
0.5 0.5
0 0
-0.5 -0.5
-1 -1
0 5 10 15 20 0 5 10 15 20
Transformed coordinate
0 T T T T T T T T T
2F 1
4+ 1
L L L L L L L L L
0 2 4 6 8 10 12 14 16 18
Re(Z)
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nchor losses and disk resonators

Model Problem lllustrated

Outgoing exp(—iz) Incoming exp(iZ)
1 3
0.5 2
1
0
0
-0.5 1
-1 -2
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Transformed coordinate
0 T T T T T T T
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2 ]
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nchor losses and disk resonators

Model Problem lllustrated

Outgoing exp(—iz) Incoming exp(iZ)
1 6
0.5 4
2
0
0
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-1 -4
0 5 10 15 20 0 5 10 15 20
Transformed coordinate
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Model Problem lllustrated

Outgoing exp(—iz) Incoming exp(iZ)
1 15
0.5 10
5
0
0
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Model Problem lllustrated

Outgoing exp(—iz) Incoming exp(iZ)
1 40
0.5
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0
0
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Transformed coordinate
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Model Problem lllustrated

Outgoing exp(—iz) Incoming exp(iZ)
1 100
0.5
50
0
0
-0.5
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Anchor losses and disk resonators

Finite Element Implementation

To Ty
N z(§) I(z)
| S
P Qo i
T )

Matrices are complex symmetric
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Anchor losses and disk resonators

Eigenvalues and Model Reduction

H(w)=BY(K —w*M)'B

Transfer (dB)

Look at
@ Poles of H (eigenvalues)

@ Bode plots of H

100

Phase (degrees)

0

Model reduction: Replace H (w) by cheaper H(w).
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Approximation from Subspaces

A general recipe for large-scale numerical approximation:
@ A subspace V containing good approximations.
@ A criterion for “optimal” approximations in V.

Basic building block for eigensolvers and model reduction!

Better subspaces, better criteria, better answers.
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Anchor losses and disk resonators

Variational Principles

@ Variational form for complex symmetric eigenproblems:
e Hermitian (Rayleigh quotient):

pv) = Mo

o Complex symmetric (modified Rayleigh quotient):
v Kv
O(v) = vT M

@ First-order accurate eigenvectors —
Second-order accurate eigenvalues.

@ Good for model reduction, too!
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Anchor losses and disk resonators

Disk Resonator Simulations
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Anchor losses and disk resonators

Disk Resonator Mesh

pr—

Electrode

Resonating disk

Wafer (unmodeled)

PML region

-4 1 1 1 1
0 1 2 3 4

x 107

Axisymmetric model, bicubic, ~ 10* nodal points at convergence
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Model Reduction Accuracy
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Results from ROM (solid and dotted lines) nearly indistinguishable
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Model Reduction Accuracy

10—6 -
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nchor losses and disk resonators

Response of the Disk Resonator

o] 5 10 15 20 25 30 35 40 45
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Anchor losses and disk resonators

Variation in Quality of Resonance

108

10 |

QS 10t

102 | ]

100 . . . . .
1.2 1.3 1.4 1.5 1.6 1.7 1.8

Film thickness (um)

Simulation and lab measurements vs. disk thickness
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nchor losses and disk resonators

Explanation of () Variation
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nchor losses and disk resonators

Explanation of () Variation

Imaginary frequency (MHz)

0.1f i
a =151 um
b = 1.52 pm
¢ = 1.53 um
0.05F d =154 um 1
e = 1.55 um df | ¢
el]b
0 L L a 1
46 46.5 47 47.5 48

Real frequency (MHz)

Interaction of two nearby eigenmodes
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Outline

e Elastic wave gyros
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Elastic wave gyros

Bryan’s Experiment

R

“On the beats in the vibrations of a revolving cylinder or bell”
by G. H. Bryan, 1890

(Cornell University) Fudan 38/56



A Small Application

Northrup-Grummond HRG
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Current example: Micro-HRG / GOBLIT / OMG

@ Goal: Cheap, small (1mm) HRG
@ Collaborator roles:

e Basic design

e Fabrication

e Measurement
@ Our part:
Detailed physics
Fast software
Sensitivity
Design optimization
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How It Works

1.5 |

VAN
05+ 7/ SN T

1.5 | | | | |
-15 -1 05 0 05 1 15
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How It Works
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Elastic wave gyros

Goal state

We want to compute:
@ Geometry
@ Fundamental frequencies
@ Angular gain (Bryan’s factor)
@ Damping (thermoelastic, radiation, material)
@ Sensitivities of everything
@ Effects of symmetry breaking

For speed and accuracy: use structure!
@ Axisymmetric geometry — 3D to 2D via Fourier
@ Perturbed geometry = interactions for different wave numbers
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Getting the Geometry

@ Simple isotropic etch modeling fails — 1Tmm is huge!
@ Working on better simulator (reaction-diffusion).
@ For now, take idealized geometries on faith...
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Elastic wave gyros

Full Dynamics
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Elastic wave gyros

Essential Dynamics

Dynamics in 2D subspace of degenerate modes:
(—w?mI + 2iwQgJ + kI)c=0
Scaled gain g is Bryan'’s factor

Angular rate of pattern relative to body
BF = . .
Angular rate of vibrating body
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Elastic wave gyros

If no parameters in the world were very large or very small,
science would reduce to an exhaustive list of everything.
— Nick Trefethen
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Elastic wave gyros

Fourier Picture

Write displacement fields as Fourier series:

o0 Uy (1, 2) cos(mb) —ul . (r, z) sin(mb)
u= Z Umg (1, 2) sin(mb) | + | !, ,(r, z) cos(mb)
m=0 \ |Upmz(r, 2) cos(mh) —ul. . (r, z) sin(md)

@ Works whenever geometry is axisymmetric
@ Treat non-axisymmetric geometries as mapped axisymmetric
o Now coefficients in PDEs are non-axisymmetric

@ Problems with different m decouple if everything axisymmetric
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Elastic wave gyros

Fourier Picture

Perfect axisymmetry:

K1y My
Koo
K33 W M33
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Elastic wave gyros

Fourier Picture

Broken symmetry (via coefficients):

Ki € € € My, € € €
e Ko € € o | € Moo € €
€ e Kz €| V¥ € e Mz €
€ € e . € € €
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Elastic wave gyros

Perturbing Fourier

Modes “near” azimuthal number m = nonlinear eigenvalues
( Ko — 0 My + Eyn(w) ) u=0.

Need:
@ Control on E,,,
e Depends on frequency spacing
e Depends on Fourier analysis of perturbation

@ Perturbation theory for nonlinearly perturbed eigenproblems
e For self-adjoint case, results similar to Lehmann intervals

First-order estimate: (Kyum — W Momm) uo = 0; then

ul’ Epm(wo) ug
§(w?) = —

T
uy Mipmuo
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Elastic wave gyros

Perturbation and Radiation

Incorporating numerical radiation BCs gives:
(K—wZM + G(w) )u:().
Perturbation approach: ignore G to get (wp, uo). Then

ud G(wo) uo
§(w?) = —r
uy Mipmuo
Works when BC has small influence (coefficients aren’t small).

Also an approach to understanding sensitivity to BC!
... explains why PML works okay despite being inappropriate?
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Outline

e Conclusion
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Conclusion

The Computational Science & Engineering Picture

Application
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Conclusion

Conclusions

The difference between art and science is that science is
what we understand well enough to explain to a computer. Art
is everything else.

Donald Knuth

The purpose of computing is insight, not numbers.
Richard Hamming

@ Collaborators:

e Disk: S. Govindjee, T. Koyama, S. Bhave, E. Quevy
o HRG: S. Bhave, L. Fegely, E. Yilmaz

@ Funding: DARPA MTO, Sloan Foundation
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