Scientific Computing Group

David Bindel

Doug James

Charlie Van Loan

Connections

What we do:

- Matrix computations
- Fast transforms
- Model reduction
- Physical simulations
- Network modeling
- HPC

Who we talk to:

- Graphics and vision
- Machine learning
- Theory
- Computer systems
- Engineering
- Physical sciences

Example: Opinions in Networks

Modeling Opinion Formation

A basic model:

- A fixed intrinsic opinion s_{i}
- A variable expressed opinion x_{i}
- Equilibrium $x_{i}=\operatorname{argmin}_{z_{i}} c_{i}\left(z_{i}\right)$, where

$$
c_{i}\left(z_{i}\right) \equiv\left(s_{i}-z_{i}\right)^{2}+\sum_{j \in N(i)} w_{i j}\left(z_{i}-x_{j}\right)^{2}
$$

- Define a social cost $c(z)=\sum_{i} c_{i}\left(z_{i}\right)$

From Networks to Numerical Linear Algebra

Methodology: Graph problem \mapsto linear algebra problem.
Nash equilibrium: $\quad(L+I) x=s$
Social optimum: $\quad(A+I) y=s$
Cost at equilibrium: $\quad c(x)=s^{T} C s$
Optimal social cost: $\quad c(y)=s^{\top} B s$
Price of anarchy is a ratio of quadratics:

$$
\operatorname{PoA}(s)=\frac{c(x)}{c(y)}=\frac{s^{T} C s}{s^{T} B s}
$$

Find worst case through a a generalized eigenvalue problem:

$$
C s_{*}=\lambda B s_{*}
$$

Tensor Computations

What is a tensor? Think of it as a higher dimensional matrix.

A fourth-order tensor...

$$
A=A\left(1: n_{1}, 1: n_{2}, 1: n_{3}, 1: n_{4}\right)
$$

They are typically very large data objects...

$$
N=n_{1} \cdot n_{2} \cdot n_{3} \cdots n_{d}
$$

Why?

Make it possible for scientists to extract information from high-dimensional datasets that arise from modeling...

$$
\mathcal{A}(i, j, k, \ell)=\begin{aligned}
& \text { a measurement that results by setting } \\
& \text { the value of four independent variables }
\end{aligned}
$$

or discretization...

$$
\mathcal{A}(i, j, k, \ell)=f\left(w_{i}, x_{j}, y_{k}, z_{\ell}\right)
$$

How?

A tensor

$$
\mathcal{A}=\mathcal{A}\left(1: 4,1: 3,1: n_{3}, 1: n_{4}\right)
$$

can be "flattened" into a block matrix:

$$
A=\left[\begin{array}{ccc}
\mathcal{A}(1,1,:,:) & \mathcal{A}(1,2,:,:) & \mathcal{A}(1,3,:,:) \\
\mathcal{A}(2,1,:,:) & \mathcal{A}(2,2,:,:) & \mathcal{A}(2,3,:,:) \\
\mathcal{A}(3,1,:,:) & \mathcal{A}(3,2,:,:) & \mathcal{A}(3,3,:,:) \\
\mathcal{A}(4,1,:,:) & \mathcal{A}(4,2,:,:) & \mathcal{A}(4,3,:,:)
\end{array}\right]
$$

Methodology: Extract information from A using "classical" matrix computations. Then draw conclusions about tensor \mathcal{A}.

Focus: Low Rank Approximation

Given: $\mathcal{A}(1: n, 1: n, 1: n, 1: n, 1: n, 1: n)$.
Find: n-by- n matrices $B_{1}, \ldots, B_{p}, C_{1}, \ldots, C_{p}$, and D_{1}, \ldots, D_{p} so that

$$
\mathcal{A}\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}\right) \approx \sum_{s=1}^{p} B_{s}\left(i_{1}, i_{2}\right) C_{s}\left(i_{3}, i_{4}\right) D_{s}\left(i_{5}, i_{6}\right)
$$

Approximating an $O\left(n^{6}\right)$ data object with $3 p n^{2}$ numbers.
Vehicle: Multilinear optimization
Goal: Make intractable problems tractable through approximation.

