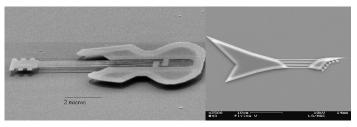
# Structure-preserving model reduction for MEMS

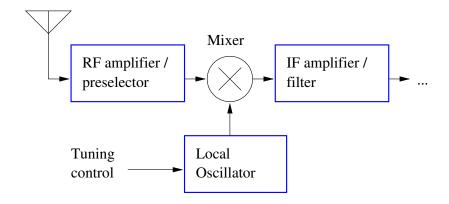
David Bindel


Department of Computer Science Cornell University

SIAM CSE Meeting, 1 Mar 2011

### Collaborators

- Sunil Bhave
- Emmanuel Quévy
- Zhaojun Bai
- Tsuyoshi Koyama
- Sanjay Govindjee


#### Resonant MEMS



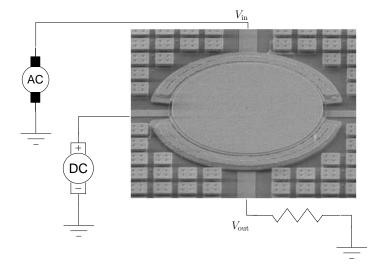
Microguitars from Cornell University (1997 and 2003)

- kHz-GHz mechanical resonators
- Lots of applications:
  - Inertial sensors (in phones, airbag systems, ...)
  - Chemical sensors
  - Signal processing elements
  - Really high-pitch guitars!

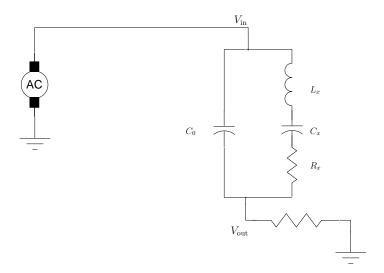
### Application: The Mechanical Cell Phone



- Your cell phone has many moving parts!
- What if we replace them with integrated MEMS?


#### **Ultimate Success**

"Calling Dick Tracy!"




- Old dream: a Dick Trace watch phone!
- New dream: long battery life for smart phones

### **Example Resonant System**



### **Example Resonant System**



### The Designer's Dream

#### Ideally, would like

- Simple models for behavioral simulation
- Interpretable degrees of freedom
- Including all relevant physics
- Parameterized for design optimization
- With reasonably fast and accurate set-up
- Backed by error analysis

We aren't there yet.

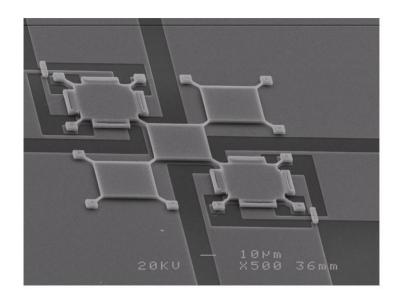
#### The Hero of the Hour

#### Major theme: use problem structure for better models

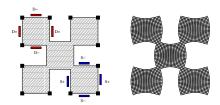
- Algebraic
  - Structure of ODEs (e.g. second-order structure)
  - Structure of matrices (e.g. complex symmetry)
- Analytic
  - Perturbations of physics (thermoelastic damping)
  - Perturbations of geometry (near axisymmetry)
  - Perturbations of boundary conditions (clamping)
- Geometric
  - Simplified models: planar motion, axisymmetry, ...
  - Substructures

### SOAR and ODE structure

Damped second-order system:

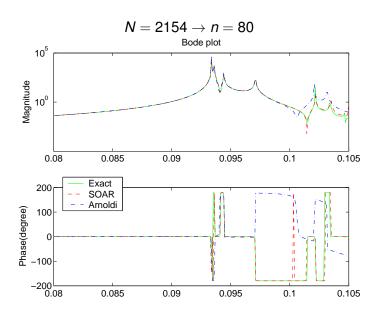

$$Mu'' + Cu' + Ku = P\phi$$
$$y = V^T u.$$

Projection basis  $Q_n$  with Second Order ARnoldi (SOAR):

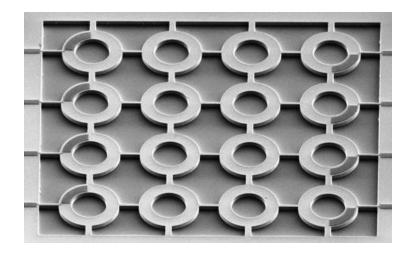

$$M_n u_n'' + C_n u_n' + K_n u_n = P_n \phi$$
$$y = V_n^T u$$

where 
$$P_n = Q_n^T P$$
,  $V_n = Q_n^T V$ ,  $M_n = Q_n^T M Q_n$ , . . .

### **Checkerboard Resonator**




#### Checkerboard Resonator




- Anchored at outside corners
- Excited at northwest corner
- Sensed at southeast corner
- Surfaces move only a few nanometers

### Performance of SOAR vs Arnoldi



# Aside: Next generation

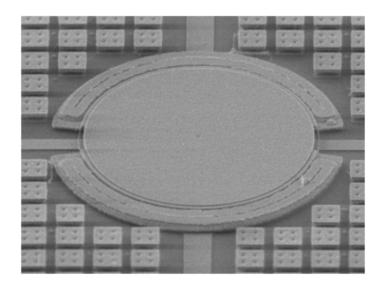


# **Complex Symmetry**

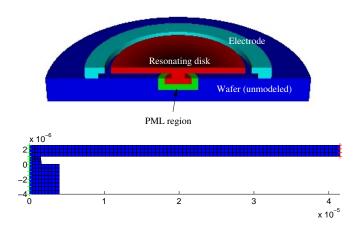
Model with radiation damping (PML) gives complex problem:

$$(K - \omega^2 M)u = f$$
, where  $K = K^T, M = M^T$ 

Forced solution *u* is a stationary point of

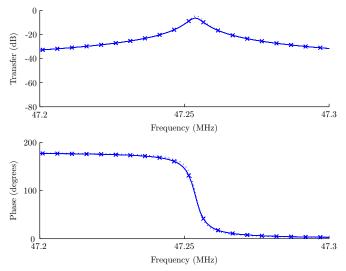

$$I(u) = \frac{1}{2}u^{T}(K - \omega^{2}M)u - u^{T}f.$$

Eigenvalues of (K, M) are stationary points of


$$\rho(u) = \frac{u^T K u}{u^T M u}$$

First-order accurate vectors  $\implies$  second-order accurate eigenvalues.

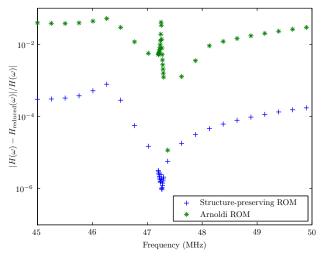
### **Disk Resonator Simulations**




#### Disk Resonator Mesh



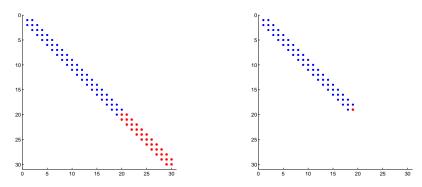
- Axisymmetric model with bicubic mesh
- About 10K nodal points in converged calculation


### Symmetric ROM Accuracy



Results from ROM (solid and dotted lines) near indistinguishable from full model (crosses)




# Symmetric ROM Accuracy



Preserve structure  $\implies$  get twice the correct digits



# Aside: Model Expansion?



PML adds variables so that the Schur complement

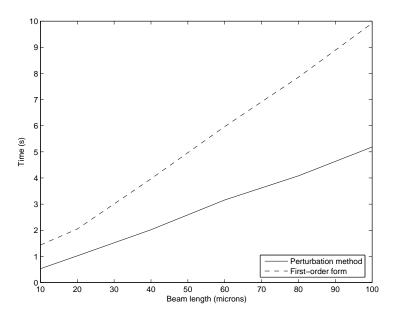
$$\hat{A}(k)\psi_1 = \left(K_{11} - k^2 M_{11} - \hat{C}(k)\right)\psi_1 = 0$$

has a term  $\hat{C}(k)$  to approximate a radiation boundary condition.

#### Perturbative Structure

Dimensionless continuum equations for thermoelastic damping:

$$\begin{aligned}
\sigma &= \hat{C}\epsilon - \xi\theta \mathbf{1} \\
\ddot{u} &= \nabla \cdot \sigma \\
\dot{\theta} &= \eta \nabla^2 \theta - \operatorname{tr}(\dot{\epsilon})
\end{aligned}$$


Dimensionless coupling  $\xi$  and heat diffusivity  $\eta$  are  $10^{-4} \Longrightarrow$  perturbation method (about  $\xi = 0$ ).

Large, non-self-adjoint, first-order coupled problem  $\to$  Smaller, self-adjoint, mechanical eigenproblem + symmetric linear solve.

# Thermoelastic Damping Example



# Performance for Beam Example



### Aside: Effect of Nondimensionalization

100  $\mu m$  beam example, first-order form.

#### Before nondimensionalization

- ▶ Time: 180 s
- ▶ nnz(L) = 11M

#### After nondimensionalization

- ► Time: 10 s
- ▶ nnz(L) = 380K

### Semi-Analytical Model Reduction

#### We work with hand-build model reduction all the time!

- Circuit elements: Maxwell equation + field assumptions
- Beam theory: Elasticity + kinematic assumptions
- Axisymmetry: 3D problem + kinematic assumption

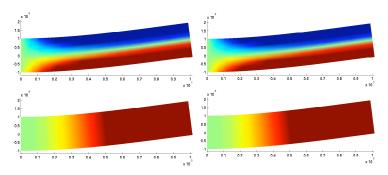
#### Idea: Provide global shapes

- User defines shapes through a callback
- Mesh serves defines a quadrature rule
- Reduced equations fit known abstractions

# Global Shape Functions

Normally:

$$u(X) = \sum_{j} N_{j}(X)\hat{u}_{j}$$


Global shape functions:

$$\hat{u} = \hat{u}^I + G(\hat{u}^g)$$

Then constrain values of some components of  $\hat{u}^{l}$ ,  $\hat{u}^{g}$ .

### "Hello, World!"

Which mode shape comes from the reduced model (3 dof)?



(Left: 28 MHz; Right: 31 MHz)

### Latest widgets



- ► This is a gyroscope!
- ▶ HRG is widely used
- ▶ What about MEMS?

### Simplest model

Two degree of freedom model:

$$m\begin{bmatrix} \ddot{u}_1 \\ \ddot{u}_2 \end{bmatrix} + \Omega g\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \dot{u}_1 \\ \dot{u}_2 \end{bmatrix} + k\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = f.$$

- Multiple eigenvalues when at rest (symmetry)
- Rotation splits the eigenvalues get a beat frequency
- Want dynamics of energy transfer between two modes
- Except there are more than two modes!

### Structured models for wineglass gyros

#### We want to understand everything together!

- Axisymmetry is critical
  - Need to understand manufacturing defects!
  - Robustness through design and post-processing
- Low damping is critical
  - Need thermoelastic effects (perturbation)
  - Need coupling to substrate (??)
- Need optical-mechanical coupling for drive/sense

#### The moral of the preceding:

- ▶ Bad idea: 3D model in ANSYS + model reduction
- Better idea: Do some reduction by hand first!

#### Conclusions

Essentially, all models are wrong, but some are useful.

- George Box

#### Questions?

http://www.cs.cornell.edu/~bindel