Structure-preserving model reduction for MEMS

David Bindel
Department of Computer Science
Cornell University

SIAM CSE Meeting, 1 Mar 2011

Collaborators

- Sunil Bhave
- Emmanuel Quévy
- Zhaojun Bai
- Tsuyoshi Koyama
- Sanjay Govindjee

Resonant MEMS

Microguitars from Cornell University (1997 and 2003)

- kHz-GHz mechanical resonators
- Lots of applications:
- Inertial sensors (in phones, airbag systems, ...)
- Chemical sensors
- Signal processing elements
- Really high-pitch guitars!

Application: The Mechanical Cell Phone

- Your cell phone has many moving parts!
- What if we replace them with integrated MEMS?

Ultimate Success

"Calling Dick Tracy!"

- Old dream: a Dick Trace watch phone!
- New dream: long battery life for smart phones

Example Resonant System

Example Resonant System

The Designer's Dream

Ideally, would like

- Simple models for behavioral simulation
- Interpretable degrees of freedom
- Including all relevant physics
- Parameterized for design optimization
- With reasonably fast and accurate set-up
- Backed by error analysis

We aren't there yet.

The Hero of the Hour

Major theme: use problem structure for better models

- Algebraic
- Structure of ODEs (e.g. second-order structure)
- Structure of matrices (e.g. complex symmetry)
- Analytic
- Perturbations of physics (thermoelastic damping)
- Perturbations of geometry (near axisymmetry)
- Perturbations of boundary conditions (clamping)
- Geometric
- Simplified models: planar motion, axisymmetry, ...
- Substructures

SOAR and ODE structure

Damped second-order system:

$$
\begin{aligned}
M u^{\prime \prime}+C u^{\prime}+K u & =P \phi \\
y & =V^{T} u
\end{aligned}
$$

Projection basis Q_{n} with Second Order ARnoldi (SOAR):

$$
\begin{aligned}
M_{n} u_{n}^{\prime \prime}+C_{n} u_{n}^{\prime}+K_{n} u_{n} & =P_{n} \phi \\
y & =V_{n}^{T} u
\end{aligned}
$$

where $P_{n}=Q_{n}^{T} P, V_{n}=Q_{n}^{T} V, M_{n}=Q_{n}^{T} M Q_{n}, \ldots$

Checkerboard Resonator

Checkerboard Resonator

- Anchored at outside corners
- Excited at northwest corner
- Sensed at southeast corner
- Surfaces move only a few nanometers

Performance of SOAR vs Arnoldi

Aside: Next generation

[^0]
Complex Symmetry

Model with radiation damping (PML) gives complex problem:

$$
\left(K-\omega^{2} M\right) u=f, \text { where } K=K^{T}, M=M^{T}
$$

Forced solution u is a stationary point of

$$
I(u)=\frac{1}{2} u^{T}\left(K-\omega^{2} M\right) u-u^{T} f
$$

Eigenvalues of (K, M) are stationary points of

$$
\rho(u)=\frac{u^{T} K u}{u^{T} M u}
$$

First-order accurate vectors \Longrightarrow second-order accurate eigenvalues.

Disk Resonator Simulations

Disk Resonator Mesh

- Axisymmetric model with bicubic mesh
- About 10 K nodal points in converged calculation

Symmetric ROM Accuracy

Results from ROM (solid and dotted lines) near indistinguishable from full model (crosses)

Symmetric ROM Accuracy

Preserve structure \Longrightarrow
get twice the correct digits

Aside: Model Expansion?

PML adds variables so that the Schur complement

$$
\hat{A}(k) \psi_{1}=\left(K_{11}-k^{2} M_{11}-\hat{C}(k)\right) \psi_{1}=0
$$

has a term $\hat{C}(k)$ to approximate a radiation boundary condition.

Perturbative Structure

Dimensionless continuum equations for thermoelastic damping:

$$
\begin{aligned}
\sigma & =\hat{C} \epsilon-\xi \theta 1 \\
\ddot{u} & =\nabla \cdot \sigma \\
\dot{\theta} & =\eta \nabla^{2} \theta-\operatorname{tr}(\dot{\epsilon})
\end{aligned}
$$

Dimensionless coupling ξ and heat diffusivity η are $10^{-4} \Longrightarrow$ perturbation method (about $\xi=0$).

Large, non-self-adjoint, first-order coupled problem \rightarrow Smaller, self-adjoint, mechanical eigenproblem + symmetric linear solve.

Thermoelastic Damping Example

Performance for Beam Example

Aside: Effect of Nondimensionalization

$100 \mu \mathrm{~m}$ beam example, first-order form.

Before nondimensionalization

- Time: 180 s
- $\mathrm{nnz}(L)=11 \mathrm{M}$

After nondimensionalization

- Time: 10 s
- $\mathrm{nnz}(L)=380 \mathrm{~K}$

Semi-Analytical Model Reduction

We work with hand-build model reduction all the time!

- Circuit elements: Maxwell equation + field assumptions
- Beam theory: Elasticity + kinematic assumptions
- Axisymmetry: 3D problem + kinematic assumption

Idea: Provide global shapes

- User defines shapes through a callback
- Mesh serves defines a quadrature rule
- Reduced equations fit known abstractions

Global Shape Functions

Normally:

$$
u(X)=\sum_{j} N_{j}(X) \hat{u}_{j}
$$

Global shape functions:

$$
\hat{u}=\hat{u}^{\prime}+G\left(\hat{u}^{g}\right)
$$

Then constrain values of some components of $\hat{u}^{\prime}, \hat{u}^{g}$.

"Hello, World!"

Which mode shape comes from the reduced model (3 dof)?

(Left: 28 MHz ; Right: 31 MHz)

Latest widgets

- This is a gyroscope!
- HRG is widely used
- What about MEMS?

Simplest model

Two degree of freedom model:

$$
m\left[\begin{array}{l}
\ddot{u}_{1} \\
\ddot{u}_{2}
\end{array}\right]+\Omega g\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\dot{u}_{1} \\
\dot{u}_{2}
\end{array}\right]+k\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=f .
$$

- Multiple eigenvalues when at rest (symmetry)
- Rotation splits the eigenvalues - get a beat frequency
- Want dynamics of energy transfer between two modes
- Except there are more than two modes!

Structured models for wineglass gyros

We want to understand everything together!

- Axisymmetry is critical
- Need to understand manufacturing defects!
- Robustness through design and post-processing
- Low damping is critical
- Need thermoelastic effects (perturbation)
- Need coupling to substrate (??)
- Need optical-mechanical coupling for drive/sense

The moral of the preceding:

- Bad idea: 3D model in ANSYS + model reduction
- Better idea: Do some reduction by hand first!

Conclusions

Essentially, all models are wrong, but some are useful. - George Box

Questions?
http://www.cs.cornell.edu/~bindel

[^0]:

