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Resonant MEMS

Microguitars from Cornell University (1997 and 2003)

I kHz-GHz mechanical resonators
I Lots of applications:

I Inertial sensors (in phones, airbag systems, ...)
I Chemical sensors
I Signal processing elements
I Really high-pitch guitars!



Application: The Mechanical Cell Phone
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I Your cell phone has many moving parts!
I What if we replace them with integrated MEMS?



Ultimate Success

“Calling Dick Tracy!”

I Old dream: a Dick Trace watch phone!
I New dream: long battery life for smart phones



Example Resonant System
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The Designer’s Dream

Ideally, would like
I Simple models for behavioral simulation
I Interpretable degrees of freedom
I Including all relevant physics
I Parameterized for design optimization
I With reasonably fast and accurate set-up
I Backed by error analysis

We aren’t there yet.



The Hero of the Hour

Major theme: use problem structure for better models
I Algebraic

I Structure of ODEs (e.g. second-order structure)
I Structure of matrices (e.g. complex symmetry)

I Analytic
I Perturbations of physics (thermoelastic damping)
I Perturbations of geometry (near axisymmetry)
I Perturbations of boundary conditions (clamping)

I Geometric
I Simplified models: planar motion, axisymmetry, ...
I Substructures



SOAR and ODE structure

Damped second-order system:

Mu′′ + Cu′ + Ku = Pφ
y = V T u.

Projection basis Qn with Second Order ARnoldi (SOAR):

Mnu′′n + Cnu′n + Knun = Pnφ

y = V T
n u

where Pn = QT
n P,Vn = QT

n V ,Mn = QT
n MQn, . . .



Checkerboard Resonator



Checkerboard Resonator
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I Anchored at outside corners
I Excited at northwest corner
I Sensed at southeast corner
I Surfaces move only a few nanometers



Performance of SOAR vs Arnoldi

N = 2154→ n = 80
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Aside: Next generation



Complex Symmetry

Model with radiation damping (PML) gives complex problem:

(K − ω2M)u = f , where K = K T ,M = MT

Forced solution u is a stationary point of

I(u) =
1
2

uT (K − ω2M)u − uT f .

Eigenvalues of (K ,M) are stationary points of

ρ(u) =
uT Ku
uT Mu

First-order accurate vectors =⇒
second-order accurate eigenvalues.



Disk Resonator Simulations



Disk Resonator Mesh
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I Axisymmetric model with bicubic mesh
I About 10K nodal points in converged calculation



Symmetric ROM Accuracy
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Symmetric ROM Accuracy
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Preserve structure =⇒
get twice the correct digits



Aside: Model Expansion?
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PML adds variables so that the Schur complement

Â(k)ψ1 =
(

K11 − k2M11 − Ĉ(k)
)
ψ1 = 0

has a term Ĉ(k) to approximate a radiation boundary condition.



Perturbative Structure

Dimensionless continuum equations for thermoelastic damping:

σ = Ĉε− ξθ1
ü = ∇ · σ
θ̇ = η∇2θ − tr(ε̇)

Dimensionless coupling ξ and heat diffusivity η are 10−4 =⇒
perturbation method (about ξ = 0).

Large, non-self-adjoint, first-order coupled problem→
Smaller, self-adjoint, mechanical eigenproblem + symmetric
linear solve.



Thermoelastic Damping Example



Performance for Beam Example
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Aside: Effect of Nondimensionalization

100 µm beam example, first-order form.

Before nondimensionalization
I Time: 180 s
I nnz(L) = 11M

After nondimensionalization
I Time: 10 s
I nnz(L) = 380K



Semi-Analytical Model Reduction

We work with hand-build model reduction all the time!
I Circuit elements: Maxwell equation + field assumptions
I Beam theory: Elasticity + kinematic assumptions
I Axisymmetry: 3D problem + kinematic assumption

Idea: Provide global shapes
I User defines shapes through a callback
I Mesh serves defines a quadrature rule
I Reduced equations fit known abstractions



Global Shape Functions

Normally:
u(X ) =

∑
j

Nj(X )ûj

Global shape functions:

û = ûl + G(ûg)

Then constrain values of some components of ûl , ûg .



“Hello, World!”

Which mode shape comes from the reduced model (3 dof)?

Student Version of MATLAB
Student Version of MATLAB

(Left: 28 MHz; Right: 31 MHz)



Latest widgets

I This is a gyroscope!
I HRG is widely used
I What about MEMS?



Simplest model

Two degree of freedom model:

m
[
ü1
ü2

]
+ Ωg

[
0 −1
1 0

] [
u̇1
u̇2

]
+ k

[
u1
u2

]
= f .

I Multiple eigenvalues when at rest (symmetry)
I Rotation splits the eigenvalues — get a beat frequency
I Want dynamics of energy transfer between two modes
I Except there are more than two modes!



Structured models for wineglass gyros

We want to understand everything together!
I Axisymmetry is critical

I Need to understand manufacturing defects!
I Robustness through design and post-processing

I Low damping is critical
I Need thermoelastic effects (perturbation)
I Need coupling to substrate (??)

I Need optical-mechanical coupling for drive/sense

The moral of the preceding:
I Bad idea: 3D model in ANSYS + model reduction
I Better idea: Do some reduction by hand first!



Conclusions

Essentially, all models are wrong, but some are useful.
– George Box

Questions?
http://www.cs.cornell.edu/~bindel

http://www.cs.cornell.edu/~bindel

