Computer Aided Design for Micro-Electro-Mechanical Systems
Eigenvalues, Energy Losses, and Dick Tracy Watches

D. Bindel

Department of Computer Science
Cornell University

11 Feb 2011
Application modeling
- Disk resonator
- Beam resonator
- Micro HRG
- Shear ring resonator, checkerboard, ...

Mathematical analysis
- Physical modeling and finite element technology
- Structured eigenproblems and reduced-order models
- Parameter-dependent eigenproblems

Software engineering
- HiQLab
- SUGAR
- FEAPMEX / MATFEAP
Application modeling
- Disk resonator
- Beam resonator
- Micro HRG
- Shear ring resonator, checkerboard, ...

Mathematical analysis
- Physical modeling and finite element technology
- Structured eigenproblems and reduced-order models
- Parameter-dependent eigenproblems

Software engineering
- HiQLab
- SUGAR
- FEAPMEX / MATFEAP
Outline

1. Resonant MEMS and models
2. Anchor losses and disk resonators
3. Thermoelastic losses and beam resonators
4. Conclusion
What are MEMS?
MEMS Basics

- Micro-Electro-Mechanical Systems
 - Chemical, fluid, thermal, optical (MECFTOMS?)
- Applications:
 - Sensors (inertial, chemical, pressure)
 - Ink jet printers, biolab chips
 - Radio devices: cell phones, inventory tags, pico radio
- Use integrated circuit (IC) fabrication technology
- Tiny, but still classical physics
Microguitars from Cornell University (1997 and 2003)

- MHz-GHz mechanical resonators
- Favorite application: radio on chip
- Close second: really high-pitch guitars
Your cell phone has many moving parts!
What if we replace them with integrated MEMS?
Ultimate Success

“Calling Dick Tracy!”
Disk Resonator
Disk Resonator

\[V_{\text{in}} \]

\[V_{\text{out}} \]

\[L_x \]

\[C_x \]

\[R_x \]

\[C_0 \]

\[AC \]
Electromechanical Model

Kirchoff’s current law and balance of linear momentum:

\[
\frac{d}{dt} (C(u)V) + GV = I_{\text{external}}
\]

\[
Mu_{tt} + Ku - \nabla_u \left(\frac{1}{2} V^* C(u) V \right) = F_{\text{external}}
\]

Linearize about static equilibrium \((V_0, u_0)\):

\[
C(u_0) \delta V_t + G \delta V + (\nabla_u C(u_0) \cdot \delta u_t) V_0 = \delta I_{\text{external}}
\]

\[
M \delta u_{tt} + \tilde{K} \delta u + \nabla_u (V_0^* C(u_0) \delta V) = \delta F_{\text{external}}
\]

where

\[
\tilde{K} = K - \frac{1}{2} \frac{\partial^2}{\partial u^2} (V_0^* C(u_0) V_0)
\]
Electromechanical Model

Assume time-harmonic steady state, no external forces:

\[
\begin{bmatrix}
i \omega C + G & i \omega B \\
-B^T & \tilde{K} - \omega^2 M
\end{bmatrix}
\begin{bmatrix}
\delta \hat{V} \\
\delta \hat{u}
\end{bmatrix}
=
\begin{bmatrix}
\delta \hat{I}_{\text{external}} \\
0
\end{bmatrix}
\]

Eliminate the mechanical terms:

\[
Y(\omega) \delta \hat{V} = \delta \hat{I}_{\text{external}}
\]

\[
Y(\omega) = i \omega C + G + i \omega H(\omega)
\]

\[
H(\omega) = B^T (\tilde{K} - \omega^2 M)^{-1} B
\]

Goal: Understand electromechanical piece \((i \omega H(\omega))\).

- As a function of geometry and operating point
- Preferably as a simple circuit
Designers want high quality of resonance \((Q)\)

- Dimensionless damping in a one-dof system

\[
\frac{d^2 u}{dt^2} + Q^{-1} \frac{du}{dt} + u = F(t)
\]

- For a resonant mode with frequency \(\omega \in \mathbb{C}\):

\[
Q := \frac{|\omega|}{2 \text{Im}(\omega)} = \frac{\text{Stored energy}}{\text{Energy loss per radian}}
\]

To understand \(Q\), we need damping models!
The Designer’s Dream

Ideally, would like
- Simple models for behavioral simulation
- Parameterized for design optimization
- Including all relevant physics
- With reasonably fast and accurate set-up

We aren’t there yet.
Outline

1. Resonant MEMS and models
2. Anchor losses and disk resonators
3. Thermoelastic losses and beam resonators
4. Conclusion
Possible loss mechanisms:

- Fluid damping
- Material losses
- Thermoelastic damping
- Anchor loss

Model substrate as semi-infinite with a Perfectly Matched Layer (PML).
Perfectly Matched Layers

- Complex coordinate transformation
- Generates a “perfectly matched” absorbing layer
- Idea works with general linear wave equations
 - Electromagnetics (Berengér, 1994)
 - Quantum mechanics – *exterior complex scaling* (Simon, 1979)
 - Elasticity in standard finite element framework (Basu and Chopra, 2003)
Model Problem

- Domain: \(x \in [0, \infty) \)
- Governing eq:

\[
\frac{\partial^2 u}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0
\]

- Fourier transform:

\[
\frac{d^2 \hat{u}}{dx^2} + k^2 \hat{u} = 0
\]

- Solution:

\[
\hat{u} = c_{\text{out}} e^{-ikx} + c_{\text{in}} e^{ikx}
\]
Model with Perfectly Matched Layer Layer

\[\frac{d\tilde{x}}{dx} = \lambda(x) \text{ where } \lambda(s) = 1 - i\sigma(s) \]

\[\frac{d^2 \hat{u}}{d\tilde{x}^2} + k^2 \hat{u} = 0 \]

\[\hat{u} = c_{out} e^{-ik\tilde{x}} + c_{in} e^{ik\tilde{x}} \]
Model with Perfectly Matched Layer

\[\frac{d \tilde{x}}{dx} = \lambda(x) \text{ where } \lambda(s) = 1 - i\sigma(s), \]

\[\frac{1}{\lambda} \frac{d}{dx} \left(\frac{1}{\lambda} \frac{d \hat{u}}{dx} \right) + k^2 \hat{u} = 0 \]

\[\hat{u} = c_{\text{out}} e^{-ikx-k\Sigma(x)} + c_{\text{in}} e^{ikx+k\Sigma(x)} \]

\[\Sigma(x) = \int_0^x \sigma(s) \, ds \]
If solution clamped at \(x = L \) then

\[
\frac{c_{\text{in}}}{c_{\text{out}}} = O(e^{-k\gamma}) \quad \text{where} \quad \gamma = \Sigma(L) = \int_0^L \sigma(s) \, ds
\]
Model Problem Illustrated

Outgoing $\exp(-i\tilde{x})$

Incoming $\exp(i\tilde{x})$

Transformed coordinate

Re(\tilde{x})

Outgoing $\exp(\tilde{x})$

Incoming $\exp(i\tilde{x})$

Transformed coordinate

Re(\tilde{x})
Model Problem Illustrated

Outgoing $\exp(-i\tilde{x})$

Incoming $\exp(i\tilde{x})$

Transformed coordinate

$\text{Re}(\tilde{x})$

$\text{Im}(\tilde{x})$
Model Problem Illustrated

Outgoing $\exp(-i\tilde{x})$

Incoming $\exp(i\tilde{x})$

Transformed coordinate

$\text{Re}(\tilde{x})$

$\text{Out}(\tilde{x})$

$\text{In}(\tilde{x})$
Model Problem Illustrated

Outgoing $\exp(-i\tilde{x})$
Incoming $\exp(i\tilde{x})$

Transformed coordinate

$\text{Re}(\tilde{x})$
Model Problem Illustrated

Outgoing $\exp(-i\tilde{x})$
Incoming $\exp(i\tilde{x})$

Transformed coordinate

$\text{Re}(\tilde{x})$

$\text{Im}(\tilde{x})$
Model Problem Illustrated

Outgoing $\exp(-i\tilde{x})$

Incoming $\exp(i\tilde{x})$

Transformed coordinate
Finite Element Implementation

- Combine PML and isoparametric mappings

$$k^e = \int_{\Omega^e} \bar{B}^T D \bar{B} \tilde{J} \, d\Omega$$

$$m^e = \int_{\Omega^e} \rho N^T N \tilde{J} \, d\Omega$$

- Matrices are complex symmetric
Want to know about the transfer function \(H(\omega) \):

\[
H(\omega) = B^T (K - \omega^2 M)^{-1} B
\]

Can either

- Locate poles of \(H \) (eigenvalues of \((K, M)\))
- Plot \(H \) in a frequency range (Bode plot)

Usual tactic: subspace projection

- Build an Arnoldi basis \(V \) for a Krylov subspace \(\mathcal{K}_n \)
- Compute with much smaller \(V^* K V \) and \(V^* M V \)

Can we do better?
Variational Principles

- Variational form for complex symmetric eigenproblems:
 - Hermitian (Rayleigh quotient):
 \[\rho(v) = \frac{v^* K v}{v^* M v} \]
 - Complex symmetric (modified Rayleigh quotient):
 \[\theta(v) = \frac{v^T K v}{v^T M v} \]

- First-order accurate eigenvectors \(\rightarrow \) Second-order accurate eigenvalues.
- Key: relation between left and right eigenvectors.
Accurate Model Reduction

- Build new projection basis from V:
 \[W = \text{orth}[\text{Re}(V), \text{Im}(V)] \]

- $\text{span}(W)$ contains both \mathcal{K}_n and $\bar{\mathcal{K}}_n$
 \[\Rightarrow \text{ double digits correct vs. projection with } V \]

- W is a real-valued basis
 \[\Rightarrow \text{ projected system is complex symmetric} \]
Disk Resonator Simulations
Axisymmetric model with bicubic mesh
About 10K nodal points in converged calculation
Mesh Convergence

Cubic elements converge with reasonable mesh density
Results from ROM (solid and dotted lines) nearly indistinguishable from full model (crosses)
Model Reduction Accuracy

Preserve structure \implies get twice the correct digits

| Frequency (MHz) | $|H(\omega) - H_{\text{reduced}}(\omega)|/H(\omega)|$ |
|----------------|--|
| 45 | 10^{-6} |
| 46 | 10^{-4} |
| 47 | 10^{-2} |
| 48 | |
| 49 | |
| 50 | |

Arnoldi ROM
Structure-preserving ROM

Backup slides

Conclusion

Thermoelastic losses and beam resonators

Anchor losses and disk resonators

Resonant MEMS and models
Response of the Disk Resonator
Variation in Quality of Resonance

Simulation and lab measurements vs. disk thickness
Explanation of Q Variation

Interaction of two nearby eigenmodes

- $a = 1.51 \, \mu m$
- $b = 1.52 \, \mu m$
- $c = 1.53 \, \mu m$
- $d = 1.54 \, \mu m$
- $e = 1.55 \, \mu m$
Outline

1. Resonant MEMS and models
2. Anchor losses and disk resonators
3. Thermoelastic losses and beam resonators
4. Conclusion
Thermoelastic Damping (TED)
Thermoelastic Damping (TED)

u is displacement and $T = T_0 + \theta$ is temperature

\[
\begin{align*}
\sigma &= C\epsilon - \beta \theta \mathbf{1} \\
\rho \ddot{u} &= \nabla \cdot \sigma \\
\rho c_v \dot{\theta} &= \nabla \cdot (\kappa \nabla \theta) - \beta T_0 \text{tr}(\dot{\epsilon})
\end{align*}
\]

- Coupling between temperature and volumetric strain:
 - Compression and expansion \implies heating and cooling
 - Heat diffusion \implies mechanical damping
 - Not often an important factor at the macro scale
 - Recognized source of damping in microresonators

- Zener: semi-analytical approximation for TED in beams

- We consider the fully coupled system
Nondimensionalized Equations

Continuum equations:

\[\sigma = \hat{C}\epsilon - \xi \theta 1\]
\[\ddot{u} = \nabla \cdot \sigma\]
\[\dot{\theta} = \eta \nabla^2 \theta - \text{tr}(\dot{\epsilon})\]

Discrete equations:

\[M_{uu}\ddot{u} + K_{uu}u = \xi K_{u\theta} \theta + f\]
\[C_{\theta\theta}\ddot{\theta} + \eta K_{\theta\theta} \theta = -C_{\theta u} \dot{u}\]

- Micron-scale poly-Si devices: \(\xi\) and \(\eta\) are \(\sim 10^{-4}\).
- Linearize about \(\xi = 0\)
Perturbative Mode Calculation

Discretized mode equation:

\[-\omega^2 M_{uu} + K_{uu})u = \xi K_{u\theta\theta} \]
\[(i\omega C_{\theta\theta} + \eta K_{\theta\theta})\theta = -i\omega C_{\theta u} u\]

First approximation about \(\xi = 0 \):

\[-\omega_0^2 M_{uu} + K_{uu})u_0 = 0 \]
\[(i\omega_0 C_{\theta\theta} + \eta K_{\theta\theta})\theta_0 = -i\omega_0 C_{\theta u} u_0 \]

First-order correction in \(\xi \):

\[-\delta(\omega^2) M_{uu} u_0 + (-\omega_0^2 M_{uu} + K_{uu})\delta u = \xi K_{u\theta\theta} \theta_0 \]

Multiply by \(u_0^T \):

\[\delta(\omega^2) = -\xi \left(\frac{u_0^T K_{u\theta\theta}}{u_0^T M_{uu} u_0} \right)\]
Clarence Zener investigated TED in late 30s-early 40s.

Model for beams common in MEMS literature.

“Method of orthogonal thermodynamic potentials” == perturbation method + a variational method.
Comparison of fully coupled simulation to Zener approximation over a range of frequencies

Real and imaginary parts after first-order correction agree to about three digits with Arnoldi
1. Resonant MEMS and models
2. Anchor losses and disk resonators
3. Thermoelastic losses and beam resonators
4. Conclusion
Conclusions

The difference between art and science is that science is what we understand well enough to explain to a computer. Art is everything else.

Donald Knuth

The purpose of computing is insight, not numbers.

Richard Hamming

http://www.cs.cornell.edu/~bindel
• Anchored at outside corners
• Excited at northwest corner
• Sensed at southeast corner
• Surfaces move only a few nanometers
Checkerboard Model Reduction

- Finite element model: $N = 2154$
 - Expensive to solve for every $H(\omega)$ evaluation!
- Build a reduced-order model to approximate behavior
 - Reduced system of 80 to 100 vectors
 - Evaluate $H(\omega)$ in milliseconds instead of seconds
 - Without damping: standard Arnoldi projection
 - With damping: Second-Order ARnoldi (SOAR)
Checkerboard Simulation

Resonant MEMS and models
Anchor losses and disk resonators
Thermoelastic losses and beam resonators
Conclusion
Backup slides
Checkerboard resonators
Nonlinear eigenvalue perturbation
HiQLab
Hello world!
Reflection Analysis
Checkerboard Measurement

S. Bhave, MEMS 05
Contributions

- Built predictive model used to design checkerboard resonators
- Used model reduction to get thousand-fold speedup – fast enough for interactive use
If \(w^* A = 0 \) and \(A v = 0 \) then

\[
\delta(w^* A v) = w^* (\delta A) v
\]

This implies

- If \(A = A(\lambda) \) and \(w = w(\nu) \), have

\[
w^*(\nu) A(\rho(\nu)) \nu = 0.
\]

\(\rho \) stationary when \((\rho(\nu), \nu) \) is a nonlinear eigenpair.

- If \(A(\lambda, \xi) \) and \(w_0^* \) and \(\nu_0 \) are null vectors for \(A(\lambda_0, \xi_0) \),

\[
w_0^* (A_{\lambda} \delta \lambda + A_{\xi} \delta \xi) \nu_0 = 0.
\]
Enter HiQLab

- Existing codes do not compute quality factors
- ... and awkward to prototype new solvers
- ... and awkward to programmatically define meshes
- So I wrote a new finite element code: HiQLab
Heritage of HiQLab

SUGAR: SPICE for the MEMS world
- System-level simulation using modified nodal analysis
- Flexible device description language
- C core with MATLAB interfaces and numerical routines

FEAPMEX: MATLAB + a finite element code
- MATLAB interfaces for steering, testing solvers, running parameter studies
- Time-tested finite element architecture
- But old F77, brittle in places
“Lesser artists borrow. Great artists steal.”
– Picasso, Dali, Stravinsky?

- **Lua**: www.lua.org
 - Evolved from simulator data languages (DEL and SOL)
 - Pascal-like syntax fits on one page; complete language description is 21 pages
 - Fast, freely available, widely used in game design

- **MATLAB**: www.mathworks.com
 - “The Language of Technical Computing”
 - OCTAVE also works well

- Standard numerical libraries: ARPACK, UMFPACK
- **MATEXPR, MWRAP, and other utilities**
HiQLab Structure

- Standard finite element structures + some new ideas
- Full scripting language for mesh input
- Callbacks for boundary conditions, material properties
- MATLAB interface for quick algorithm prototyping
- Cross-language bindings are automatically generated
HiQLab’s Hello World

mesh = Mesh:new(2)
mat = make_material('silicon2', 'planestrain')
mesh:blocks2d({ 0, 1 }, { -w/2.0, w/2.0 },
 mat)

mesh:set_bc(function(x,y)
 if x == 0 then return 'uu', 0, 0; end
end)
HiQLab’s Hello World

>> mesh = Mesh_load('beammesh.lua');
>> [M, K] = Mesh_assemble_mk(mesh);
>> [V, D] = eigs(K, M, 5, 'sm');
>> opt.axequal = 1; opt.deform = 1;
>> Mesh_scale_u(mesh, V(:,1), 2, 1e-6);
>> plotfield2d(mesh, opt);
Continuum 2D model problem

\[\lambda(x) = \begin{cases}
1 - i\beta |x - L|^p, & x > L \\
1 & x \leq L.
\end{cases} \]

\[\frac{1}{\lambda} \frac{\partial}{\partial x} \left(\frac{1}{\lambda} \frac{\partial u}{\partial x} \right) + \frac{\partial^2 u}{\partial y^2} + k^2 u = 0 \]
Continuum 2D model problem

\[\lambda(x) = \begin{cases} 1 - i\beta |x - L|^p, & x > L \\ 1, & x \leq L. \end{cases} \]

\[\frac{1}{\lambda} \frac{\partial}{\partial x} \left(\frac{1}{\lambda} \frac{\partial u}{\partial x} \right) - k_y^2 u + k^2 u = 0 \]
Continuum 2D model problem

\[\lambda(x) = \begin{cases}
 1 - i \beta |x - L|^p, & x > L \\
 1 & x \leq L
\end{cases} \]

\[\frac{1}{\lambda} \frac{\partial}{\partial x} \left(\frac{1}{\lambda} \frac{\partial u}{\partial x} \right) + k_x^2 u = 0 \]

1D problem, reflection of \(O(e^{-k_x \gamma}) \)
Discrete 2D model problem

- Discrete Fourier transform in y
- Solve numerically in x
- Project solution onto infinite space traveling modes
- Extension of Collino and Monk (1998)
Nondimensionalization

\[
\lambda(x) = \begin{cases}
1 - i\beta|x - L|^p, & x > L \\
1 & x \leq L.
\end{cases}
\]

Rate of stretching: \(\beta h^p \)
Elements per wave: \((k_x h)^{-1}\) and \((k_y h)^{-1}\)
Elements through the PML: \(N\)
\[\lambda(x) = \begin{cases}
1 - i\beta |x - L|^p, & x > L \\
1 & x \leq L.
\end{cases} \]

Rate of stretching: \(\beta h^p \)
Elements per wave: \((k_x h)^{-1} \) and \((k_y h)^{-1} \)
Elements through the PML: \(N \)
Discrete reflection behavior

\[-\log_{10}(r) \text{ at } (k_xh)^{-1} = 10 \]

Quadratic elements, \(p = 1, (k_xh)^{-1} = 10 \)
Discrete reflection decomposition

Model discrete reflection as two parts:
- Far-end reflection (clamping reflection)
 - Approximated well by continuum calculation
 - Grows as \((k_x h)^{-1}\) grows
- Interface reflection
 - Discrete effect: mesh does not resolve decay
 - Does not depend on \(N\)
 - Grows as \((k_x h)^{-1}\) shrinks
Discrete reflection behavior

- $-\log_{10}(r)$ at $(kh)^{-1} = 10$

- $-\log_{10}(r_{\text{interface}} + r_{\text{nominal}})$ at $(kh)^{-1} = 10$

Quadratic elements, $p = 1$, $(k_x h)^{-1} = 10$

- Model does well at predicting actual reflection
- Similar picture for other wavelengths, element types, stretch functions
Choosing PML parameters

- Discrete reflection dominated by
 - Interface reflection when k_x large
 - Far-end reflection when k_x small

- Heuristic for PML parameter choice
 - Choose an acceptable reflection level
 - Choose β based on interface reflection at k_x^{max}
 - Choose length based on far-end reflection at k_x^{min}