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Goal state

What | hope to get across today:
» Show some design choices that help make flexible FE software

> In high-level solvers and mesh specification
» In preconditioner construction
> In element coding (briefly)

» Show some places where | need help from domain experts



Diagnostic toolchain

Micro-CT (or other) scan data from patient
Inference of material properties
Construction of coarse FE model (voxels)

Simulation under loading
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Output of stress fields, displacements, etc.



Software strategies

Two basic routes:
» Discretize microstructure to get giant FE model
» Prometheus (Mark Adams) — 57M+ elements
» ParFE (Arbenz and Sala) — 200M unknowns
» Approximate microstructure with constitutive model

Can do with commercial FEM codes
Smaller model, less compute time

Less detail required in input?

Hard to get the right constitutive model
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A little history

BoneFEA started as a consulting gig
» Code for ON Diagnostics (Keaveny and Kopperdahl)
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Developed jointly with P. Papadopoulos

Meant to replace ABAQUS in overall system

Initial goal: some basic simulations in under half an hour
Development work on and off 2006-2008

More recent revisitings (trying to rebuild)

vV v. v Y



BoneFEA

» Standard displacement-based finite element code

» Elastic and plastic material models (including anisotropy and
asymmetric yield surfaces)

» High-level: incremental load control loop, Newton-Krylov
solvers with line search for nonlinear systems

» Library of (fairly simple) preconditioners; default is a two-level
geometric multigrid preconditioner

> Input routines read ABAQUS decks (and native format)
» Qutput routines write requested mesh and element quantities

» Visualization routines write VTk files for use with Vislt



Basic principles

» This sort of programming seems hard (?)
» How many man-hours went into ABAQUS?
» Easy to lose sleep to an indexing error

» Want to reduce the accidental complexity
» Express as much as possible at a high level

» Use C++/Fortran (and libraries) for performance-critical stuff
» Make trying new things out easy



Enabling technology

Three separate language-based tools:
» Lua-based system for loading conditions, high-level solvers
» Lua-based system for preconditioners, lower-level solver logic
» Matexpr for material model computations

In progress: solver scripting via PyTrilinos (Sandia)



Solver quandries

A simple simulation involves lots of choices:
» Load stepping strategy?
» Nonlinear solver strategy?
» Linear solver strategy?
» Preconditioner?
» Subsolvers in multilevel preconditioner?

Want a simple framework for playing with options.



Example analyses

DB: femur.vtk

Pseudocolor
Var: vmisesQl
53.59

— 4019
—26.80

—13.40

..

5.007:
Max: 53.50
Min: 5007e-06

Mesh
Var: mesh

user: dbindel
Tue Apr 1 11:05:38 2008



Example analysis loop

mesh:rigid(mesh:numnp()-1, {z=’min’},
function()
return ’uuuuuu’, 0, O, bound_disp
end)

pc = simple_msm_pc(mesh,20)
mesh:set_cg{M=pc, tol=le-6, max_iter=1000}
for j=1,n do

bound_disp = 0.2x%]

mesh:step()

mesh:newton{max_iter=6, Rtol=le-4}
end



Analysis innards

> rigid ties a specified part of the mesh to a rigid body (and
applies boundary conditions to that rigid body)

> step swaps history, updates load, computes predictor

» newton does Newton iteration with line search; specify
» Max iterations

Residual tolerance

Line search parameters (Armijo constant «)

What linear solver to use

Whether to update the preconditioner
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» Also have mnewton (modified Newton)



Preconditioning

» Accelerate iterative solver with preconditioner
» Often built from simpler blocks

» Basic iterative solver passes
» Block solves
» Coarse grid solves

» Want a simple way to assemble these blocks



Preconditioner specification (library code)

function simple_msm_pc(mesh, ncgrid, nsmooth, omega)
local pcc = form_coarse_pc2(mesh, ncgrid)
local pc = {}

local K = mesh.K

nsmooth = nsmooth or 1

function pc:solve(x,b) ... end
function pc:update() pcc:update() end
function pc:delete() ... end

return pc
end



Preconditioner specification (library code)

function pc:solve(x,b)
self.r = self.r or QArray:new(x:m(),1)
self.dx = self.dx or QArray:new(x:m(),1)

mesh_bgs (mesh.mesh,mesh.X,x,b,nsmooth)
K:apply(x,self.r)
self.r:sub(b)

pcc:solve(self.dx,self.r)
x:sub(self.dx)
K:apply(x,self.r)
self.r:sub(b)

mesh_bgs (mesh.mesh,mesh.K,self.dx,self.r,nsmooth)
x:sub(self.dx)
end



The problem of preconditioning

Standard preconditioners work best for
» Simple geometries
» Constant or smoothly varying coefficients
» |sotropic materials
» Strongly definite problems

Macroscopically, bone breaks almost all of these!



Preconditioning triumphs and failures

Relative residual
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Preconditioning triumphs and failures

» We do pretty well with two-level geometric multigrid
» 18 steps, 15 s to solve femur model on my laptop

» ... up until plasticity starts to kick in
» Needed: a better (physics-based) preconditioner

» Usual key: physical insight into macroscopic behavior



Material modeling

BoneFEA provides general plastic element framework; specific
material model provided by an object. Built-in:

» Isotropic elastic

» Orthotropic elastic

» Simple plastic

» Anisotropic elastic / isotropic plastic

» Isotropic elastic / asymmetric plastic yield surface

How do we make it simplify to code more?



Partial solution: Matexpr

v

Relatively straightforward in MATLAB — but slow
Use Matexpr to translate MATLAB-like code to C
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Supports basic matrix expressions, symbolic differentiation,
function definitions.
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Takes advantage of symmetry, sparsity, redundancy to
optimize generated code

Does not provide control flow (that's left to C)
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Matexpr in action

Extract the deviatoric part of the elastic constitutive tensor:

void ME::compute_Cd(doublex Cd)
{
/* <generator matexpr>
input symmetric DGelastic(9,9);
output Cd(9,9);
m = [1; 1; 1; 0; 0; 0; 0; 0; 0I;

Iv = m*m’/3.0;

Id = eye(9) - Iv;

Cd = Id*DGelastic*Id;
*/



Conclusion

» Initial BoneFEA work for ON Diagnostics is done.

» Currently re-implementing similar functionality in an open
package (as part of a more general framework).

» Problems and physical insights both welcome!



