
Design of Finite Element Software for
Modeling Bone Deformation and Failure

D. Bindel

Department of Computer Science
Cornell University

22 Apr 2010



Goal state

What I hope to get across today:
I Show some design choices that help make flexible FE software

I In high-level solvers and mesh specification
I In preconditioner construction
I In element coding (briefly)

I Show some places where I need help from domain experts



Diagnostic toolchain

I Micro-CT (or other) scan data from patient

I Inference of material properties

I Construction of coarse FE model (voxels)

I Simulation under loading

I Output of stress fields, displacements, etc.



Software strategies

Two basic routes:
I Discretize microstructure to get giant FE model

I Prometheus (Mark Adams) – 57M+ elements
I ParFE (Arbenz and Sala) – 200M unknowns

I Approximate microstructure with constitutive model
I Can do with commercial FEM codes
I Smaller model, less compute time
I Less detail required in input?
I Hard to get the right constitutive model



A little history

BoneFEA started as a consulting gig

I Code for ON Diagnostics (Keaveny and Kopperdahl)

I Developed jointly with P. Papadopoulos

I Meant to replace ABAQUS in overall system

I Initial goal: some basic simulations in under half an hour

I Development work on and off 2006–2008

I More recent revisitings (trying to rebuild)



BoneFEA

I Standard displacement-based finite element code

I Elastic and plastic material models (including anisotropy and
asymmetric yield surfaces)

I High-level: incremental load control loop, Newton-Krylov
solvers with line search for nonlinear systems

I Library of (fairly simple) preconditioners; default is a two-level
geometric multigrid preconditioner

I Input routines read ABAQUS decks (and native format)

I Output routines write requested mesh and element quantities

I Visualization routines write VTk files for use with VisIt



Basic principles

I This sort of programming seems hard (?)
I How many man-hours went into ABAQUS?
I Easy to lose sleep to an indexing error

I Want to reduce the accidental complexity
I Express as much as possible at a high level
I Use C++/Fortran (and libraries) for performance-critical stuff
I Make trying new things out easy



Enabling technology

Three separate language-based tools:

I Lua-based system for loading conditions, high-level solvers

I Lua-based system for preconditioners, lower-level solver logic

I Matexpr for material model computations

In progress: solver scripting via PyTrilinos (Sandia)



Solver quandries

A simple simulation involves lots of choices:

I Load stepping strategy?

I Nonlinear solver strategy?

I Linear solver strategy?

I Preconditioner?

I Subsolvers in multilevel preconditioner?

Want a simple framework for playing with options.



Example analyses



Example analysis loop

mesh:rigid(mesh:numnp()-1, {z=’min’},
function()
return ’uuuuuu’, 0, 0, bound_disp

end)

pc = simple_msm_pc(mesh,20)
mesh:set_cg{M=pc, tol=1e-6, max_iter=1000}
for j=1,n do
bound_disp = 0.2*j
mesh:step()
mesh:newton{max_iter=6, Rtol=1e-4}

end



Analysis innards

I rigid ties a specified part of the mesh to a rigid body (and
applies boundary conditions to that rigid body)

I step swaps history, updates load, computes predictor
I newton does Newton iteration with line search; specify

I Max iterations
I Residual tolerance
I Line search parameters (Armijo constant α)
I What linear solver to use
I Whether to update the preconditioner

I Also have mnewton (modified Newton)



Preconditioning

I Accelerate iterative solver with preconditioner
I Often built from simpler blocks

I Basic iterative solver passes
I Block solves
I Coarse grid solves

I Want a simple way to assemble these blocks



Preconditioner specification (library code)

function simple_msm_pc(mesh, ncgrid, nsmooth, omega)
local pcc = form_coarse_pc2(mesh, ncgrid)
local pc = {}
local K = mesh.K
nsmooth = nsmooth or 1
function pc:solve(x,b) ... end
function pc:update() pcc:update() end
function pc:delete() ... end
return pc

end



Preconditioner specification (library code)

function pc:solve(x,b)
self.r = self.r or QArray:new(x:m(),1)
self.dx = self.dx or QArray:new(x:m(),1)

mesh_bgs(mesh.mesh,mesh.K,x,b,nsmooth)
K:apply(x,self.r)
self.r:sub(b)

pcc:solve(self.dx,self.r)
x:sub(self.dx)
K:apply(x,self.r)
self.r:sub(b)

mesh_bgs(mesh.mesh,mesh.K,self.dx,self.r,nsmooth)
x:sub(self.dx)

end



The problem of preconditioning

Standard preconditioners work best for

I Simple geometries

I Constant or smoothly varying coefficients

I Isotropic materials

I Strongly definite problems

Macroscopically, bone breaks almost all of these!



Preconditioning triumphs and failures

1e-04

1e-03

1e-02

1e-01

1e+00

0 5 10 15 20 25 30

R
el

at
iv

e
re

si
d

u
al

k

Step 1
Step 2
Step 3



Preconditioning triumphs and failures

I We do pretty well with two-level geometric multigrid
I 18 steps, 15 s to solve femur model on my laptop

I ... up until plasticity starts to kick in

I Needed: a better (physics-based) preconditioner

I Usual key: physical insight into macroscopic behavior



Material modeling

BoneFEA provides general plastic element framework; specific
material model provided by an object. Built-in:

I Isotropic elastic

I Orthotropic elastic

I Simple plastic

I Anisotropic elastic / isotropic plastic

I Isotropic elastic / asymmetric plastic yield surface

How do we make it simplify to code more?



Partial solution: Matexpr

I Relatively straightforward in Matlab – but slow

I Use Matexpr to translate Matlab-like code to C

I Supports basic matrix expressions, symbolic differentiation,
function definitions.

I Takes advantage of symmetry, sparsity, redundancy to
optimize generated code

I Does not provide control flow (that’s left to C)



Matexpr in action

Extract the deviatoric part of the elastic constitutive tensor:

void ME::compute_Cd(double* Cd)
{

/* <generator matexpr>
input symmetric DGelastic(9,9);
output Cd(9,9);
m = [1; 1; 1; 0; 0; 0; 0; 0; 0];
Iv = m*m’/3.0;
Id = eye(9) - Iv;
Cd = Id*DGelastic*Id;
*/

}



Conclusion

I Initial BoneFEA work for ON Diagnostics is done.

I Currently re-implementing similar functionality in an open
package (as part of a more general framework).

I Problems and physical insights both welcome!


