Design of Finite Element Software for
Modeling Bone Deformation and Failure

D. Bindel

Department of Computer Science
Cornell University

22 Apr 2010

Goal state

What | hope to get across today:
» Show some design choices that help make flexible FE software

> In high-level solvers and mesh specification
» In preconditioner construction
> In element coding (briefly)

» Show some places where | need help from domain experts

Diagnostic toolchain

Micro-CT (or other) scan data from patient
Inference of material properties
Construction of coarse FE model (voxels)

Simulation under loading

vV v v v Y

Output of stress fields, displacements, etc.

Software strategies

Two basic routes:
» Discretize microstructure to get giant FE model
» Prometheus (Mark Adams) — 57M+ elements
» ParFE (Arbenz and Sala) — 200M unknowns
» Approximate microstructure with constitutive model

Can do with commercial FEM codes
Smaller model, less compute time

Less detail required in input?

Hard to get the right constitutive model

vy vy vYyy

A little history

BoneFEA started as a consulting gig
» Code for ON Diagnostics (Keaveny and Kopperdahl)

v

Developed jointly with P. Papadopoulos

Meant to replace ABAQUS in overall system

Initial goal: some basic simulations in under half an hour
Development work on and off 2006-2008

More recent revisitings (trying to rebuild)

vV v. v Y

BoneFEA

» Standard displacement-based finite element code

» Elastic and plastic material models (including anisotropy and
asymmetric yield surfaces)

» High-level: incremental load control loop, Newton-Krylov
solvers with line search for nonlinear systems

» Library of (fairly simple) preconditioners; default is a two-level
geometric multigrid preconditioner

> Input routines read ABAQUS decks (and native format)
» Qutput routines write requested mesh and element quantities

» Visualization routines write VTk files for use with Vislt

Basic principles

» This sort of programming seems hard (?)
» How many man-hours went into ABAQUS?
» Easy to lose sleep to an indexing error

» Want to reduce the accidental complexity
» Express as much as possible at a high level

» Use C++/Fortran (and libraries) for performance-critical stuff
» Make trying new things out easy

Enabling technology

Three separate language-based tools:
» Lua-based system for loading conditions, high-level solvers
» Lua-based system for preconditioners, lower-level solver logic
» Matexpr for material model computations

In progress: solver scripting via PyTrilinos (Sandia)

Solver quandries

A simple simulation involves lots of choices:
» Load stepping strategy?
» Nonlinear solver strategy?
» Linear solver strategy?
» Preconditioner?
» Subsolvers in multilevel preconditioner?

Want a simple framework for playing with options.

Example analyses

DB: femur.vtk

Pseudocolor
Var: vmisesQl
53.59

— 4019
—26.80

—13.40

..

5.007:
Max: 53.50
Min: 5007e-06

Mesh
Var: mesh

user: dbindel
Tue Apr 1 11:05:38 2008

Example analysis loop

mesh:rigid(mesh:numnp()-1, {z=’min’},
function()
return ’uuuuuu’, 0, O, bound_disp
end)

pc = simple_msm_pc(mesh,20)
mesh:set_cg{M=pc, tol=le-6, max_iter=1000}
for j=1,n do

bound_disp = 0.2x%]

mesh:step()

mesh:newton{max_iter=6, Rtol=le-4}
end

Analysis innards

> rigid ties a specified part of the mesh to a rigid body (and
applies boundary conditions to that rigid body)

> step swaps history, updates load, computes predictor

» newton does Newton iteration with line search; specify
» Max iterations

Residual tolerance

Line search parameters (Armijo constant «)

What linear solver to use

Whether to update the preconditioner

vy vy vVvYy

» Also have mnewton (modified Newton)

Preconditioning

» Accelerate iterative solver with preconditioner
» Often built from simpler blocks

» Basic iterative solver passes
» Block solves
» Coarse grid solves

» Want a simple way to assemble these blocks

Preconditioner specification (library code)

function simple_msm_pc(mesh, ncgrid, nsmooth, omega)
local pcc = form_coarse_pc2(mesh, ncgrid)
local pc = {}

local K = mesh.K

nsmooth = nsmooth or 1

function pc:solve(x,b) ... end
function pc:update() pcc:update() end
function pc:delete() ... end

return pc
end

Preconditioner specification (library code)

function pc:solve(x,b)
self.r = self.r or QArray:new(x:m(),1)
self.dx = self.dx or QArray:new(x:m(),1)

mesh_bgs (mesh.mesh,mesh.X,x,b,nsmooth)
K:apply(x,self.r)
self.r:sub(b)

pcc:solve(self.dx,self.r)
x:sub(self.dx)
K:apply(x,self.r)
self.r:sub(b)

mesh_bgs (mesh.mesh,mesh.K,self.dx,self.r,nsmooth)
x:sub(self.dx)
end

The problem of preconditioning

Standard preconditioners work best for
» Simple geometries
» Constant or smoothly varying coefficients
» |sotropic materials
» Strongly definite problems

Macroscopically, bone breaks almost all of these!

Preconditioning triumphs and failures

Relative residual

1le+00 | |
B Step 1 ——
Step 2 -weeenee-

Step G TR

le-01

le-02 \‘

1le-03

1le-04
0 5 10 15 20 25

30

Preconditioning triumphs and failures

» We do pretty well with two-level geometric multigrid
» 18 steps, 15 s to solve femur model on my laptop

» ... up until plasticity starts to kick in
» Needed: a better (physics-based) preconditioner

» Usual key: physical insight into macroscopic behavior

Material modeling

BoneFEA provides general plastic element framework; specific
material model provided by an object. Built-in:

» Isotropic elastic

» Orthotropic elastic

» Simple plastic

» Anisotropic elastic / isotropic plastic

» Isotropic elastic / asymmetric plastic yield surface

How do we make it simplify to code more?

Partial solution: Matexpr

v

Relatively straightforward in MATLAB — but slow
Use Matexpr to translate MATLAB-like code to C

v

v

Supports basic matrix expressions, symbolic differentiation,
function definitions.

v

Takes advantage of symmetry, sparsity, redundancy to
optimize generated code

Does not provide control flow (that's left to C)

v

Matexpr in action

Extract the deviatoric part of the elastic constitutive tensor:

void ME::compute_Cd(doublex Cd)
{
/* <generator matexpr>
input symmetric DGelastic(9,9);
output Cd(9,9);
m = [1; 1; 1; 0; 0; 0; 0; 0; 0I;

Iv = m*m’/3.0;

Id = eye(9) - Iv;

Cd = Id*DGelastic*Id;
*/

Conclusion

» Initial BoneFEA work for ON Diagnostics is done.

» Currently re-implementing similar functionality in an open
package (as part of a more general framework).

» Problems and physical insights both welcome!

