Applications of Matrix Structure

D. Bindel

Department of Computer Science
Cornell University

15 Sep 2009
Ingredients:

- Application modeling
- Mathematical analysis
- Software engineering

Usually requires more than one person!
Outline

1. Linear algebra for network monitoring
2. Low rank structure and fast solvers
3. A mess of microsystems
4. Concluding note
Definitions

- Overlay network of \(n \) cooperating hosts

- \(x_j \) is the “length” of link \(j \) for \(j = 1 \) to \(N \)

 E.g.

 \[
x_j = - \log(P(\text{successful packet transmit on link } j)) \]

- \(b_i \) is “length” of path \(i \), \(i = 1 \) to \(M = n(n-1) \) (or \(n(n-1)/2 \))

 E.g.

 \[
b_i = - \log(P(\text{successful packet transmit on path } i)) \]

- Have \(Gx = b \) where

 \[
 G_{ij} = \begin{cases}
 1, & \text{path } i \text{ contains link } j \\
 0, & \text{otherwise.}
 \end{cases}
 \]
Using low rank

Idea: Use structure of \(Gx = b \) to learn about \(x, b \)

- In general, \(\text{rank}(G) < N \ll M \) (for \(n \) sufficiently large).
- Can measure \(\text{rank}(G) \) paths and infer properties of others.
- In general, can \textit{bound} properties of links.
 (Zhao, Chen, B. — SIGCOMM 2006, ToN (to appear))
- Today: Exposing low rank structure via matrix decomposition.
 (joint with Jiexun Xu)
Example network

\(G = \begin{bmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} \)
A chain is a sequence of links that occur together on any path where they occur (e.g. 3-4). Appear as identical columns in G. Can think of replacing a chain by a single virtual link — or in terms of a matrix decomposition.
Chain elimination

\[G = G_1 T_1 = \begin{bmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix} \]
A *fan* is a link that always appears with exactly one of a set of other links. For example, 3’ is a fan since it always occurs with either 5 or 6. Fans generalize chains.
Fan elimination

\[G_1 = G_2 T_2 = \begin{bmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix} \]
A junction occurs whenever all paths set S_1 to set S_2 cross at a common point. Implies $|S_1| + |S_2| - 1$ of the $|S_1||S_2|$ paths from S_1 to S_2 are independent. Here, a junction between $\{A, B\}$ and $\{C, D\}$ means

$$(B \to D) = (B \to C) + (A \to D) - (A \to C).$$
Junction elimination

\[(B \rightarrow D) = (B \rightarrow C) + (A \rightarrow D) - (A \rightarrow C).\]

\[G_2 = S_3 G_3 = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & -1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix} \]
Virtualization and matrix decomposition

Our network rewriting can be seen as a decomposition of \(G \):

\[
G = S \hat{G} T,
\]

where \(\hat{G} \) is smaller than \(G \), but \(\text{rank}(G) = \text{rank}(\hat{G}) \).

Idea: solve problems with \(\hat{G} \), map back to results with \(G \).
Questions

1. Can we get some theory explaining the scaling of $\text{rank}(G)$ with n?
2. How do we choose \hat{G} (or even smaller basis) to balance load?
3. How do we find good junctions for fast elimination?
4. Are there other common features that can be used for elimination?
5. Can we monitor dependencies to detect routing changes?
Outline

1. Linear algebra for network monitoring
2. Low rank structure and fast solvers
3. A mess of microsystems
4. Concluding note
Gravitational potential at mass j from other masses is

$$\phi_j(x) = \sum_{i \neq j} \frac{Gm_i}{|x_i - x_j|}.$$
Gravitational potential is a linear function of masses

$$\begin{bmatrix} \phi_A \\ \phi_B \end{bmatrix} = \begin{bmatrix} P_{AA} & P_{AB} \\ P_{BA} & P_{BB} \end{bmatrix} \begin{bmatrix} m_A \\ m_B \end{bmatrix}.$$

In cluster A, don’t *really* need everything about B. Just summarize. That is, represent P_{AB} (and P_{BA}) compactly.
Low-rank interactions

Summarize masses in B with a few variables:

\[z_B = V_B^T m_B, \quad m_B \in \mathbb{R}^{n_B}, z_B \in \mathbb{R}^p. \]

Then contribution to potential in cluster A is \(U_A z_B \). Have

\[\phi_A \approx P_{AA} m_A + U_A V_B^T m_B. \]

Do the same with potential in cluster B; get system

\[
\begin{bmatrix}
\phi_A \\
\phi_B
\end{bmatrix} =
\begin{bmatrix}
P_{AA} & U_A V_B^T \\
U_B V_A^T & P_{BB}
\end{bmatrix}
\begin{bmatrix}
m_A \\
m_B
\end{bmatrix}.
\]

Idea is the basis of fast n-body methods (e.g. fast multipole method).
Local details of mass “blur out” far away.
Same blurring at a distance throughout physics!
Results in low-rank submatrices summarizing far interactions + \textit{sparse} matrices (few nonzeros) for near interactions
Lots of work on solving linear systems with low-rank structure... but software lags.
Idea: Use existing software for solving sparse linear systems.
Sparsification

Want to solve $Ax = b$ where $A = S + UV^T$ is sparse plus low rank.

If we knew x, we could quickly compute b:

$$z = V^T x$$
$$b = Sx + Uz.$$

Use the same idea to write $Ax = b$ as a bordered system\(^1\):

$$\begin{bmatrix} S & U \\ V^T & -I \end{bmatrix} \begin{bmatrix} x \\ v \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}.$$

Solve this using standard sparse solver package (e.g. UMFPACK).

\(^1\)This is Sherman-Morrison in disguise
Suppose we have ϕ, want to compute m in

$$
\begin{bmatrix}
\phi_A \\
\phi_B
\end{bmatrix} =
\begin{bmatrix}
P_{AA} & U_AV_B^T \\
U_BV_A^T & P_{BB}
\end{bmatrix}
\begin{bmatrix}
m_A \\
m_B
\end{bmatrix}.
$$

Add auxiliary variables to get

$$
\begin{bmatrix}
\phi_A \\
\phi_B \\
0 \\
0
\end{bmatrix} =
\begin{bmatrix}
P_{AA} & 0 & 0 & U_A \\
0 & P_{BB} & U_B & 0 \\
V_A^T & 0 & -I & 0 \\
0 & V_B^T & 0 & -I
\end{bmatrix}
\begin{bmatrix}
m_A \\
m_B \\
z_A \\
z_B
\end{bmatrix}.
$$
Preliminary work

- Parallel sparsification routine (with Tim Mitchell)
 - User identifies low-rank blocks
 - Code factors the blocks and forms a sparse matrix as above
- Works pretty well on an example problem (charge on a capacitor)
- My goal state: Sparsification of separators for fast PDE solver
I want a direct solver for this!
1. Linear algebra for network monitoring
2. Low rank structure and fast solvers
3. A mess of microsystems
4. Concluding note
What are MEMS?

MEMS = Micro-Electro-Mechanical Systems

Applications:
- Sensors (inertial, chemical, pressure)
- Ink jet printers, biolab chips
- Radio devices (cell phones, inventory tags, pico radio)

Ongoing work with Sunil Bhave (ECE) and others on RF MEMS

Fun source of matrices — and pictures!
Checkerboard resonator and loose coupling

Bhave, Gau, Maboudian, Howe – MEMS 2005; B., Bai, Demmel – PARA 2004
Shear ring resonator and symmetry
Disk resonator and anchor loss

B., Quevy, Koyama, Govindjee, Demmel, Howe – MEMS 2005;
B., Govindjee – IJNME 2005
Free beam resonator and thermoelastic damping

Koyama, B., He, Quevy, Demmel, Govindjee, Howe – SENSORS 2005
New questions:

- AFM probe tip testing
- Opto-mechanical interactions
- Anchor loss in more complex devices
- Solid dielectric transducers
- Interaction with dielectric liquids
Outline

1. Linear algebra for network monitoring
2. Low rank structure and fast solvers
3. A mess of Microsystems
4. Concluding note
The Computational Science Picture

Ingredients:
- Application modeling (computer systems, MEMS, ...)
- Mathematical analysis (linear algebra, PDEs, ...)
- Software engineering (finite elements, parallel solvers, ...)

Usually requires more than one person!

⇒ I’m usually looking for fun collaborations.

http://www.cs.cornell.edu/~bindel