Damping Mechanisms in Resonant Microsystems

D. Bindel

Courant Institute for Mathematical Sciences
New York University

Materials Working Group, 10 Mar 2008
Outline

1. Resonant MEMS and models
2. Anchor losses and disk resonators
3. Thermoelastic losses and beam resonators
4. Conclusion
1. Resonant MEMS and models
2. Anchor losses and disk resonators
3. Thermoelastic losses and beam resonators
4. Conclusion
What are MEMS?
MEMS Basics

- Micro-Electro-Mechanical Systems
 - Chemical, fluid, thermal, optical (MECFTOMS?)

- Applications:
 - Sensors (inertial, chemical, pressure)
 - Ink jet printers, biolab chips
 - Radio devices: cell phones, inventory tags, pico radio

- Use integrated circuit (IC) fabrication technology

- Tiny, but still classical physics
Resonant RF MEMS

Microguitars from Cornell University (1997 and 2003)

- MHz-GHz mechanical resonators
- Favorite application: radio on chip
- Close second: really high-pitch guitars
Your cell phone has many moving parts!
What if we replace them with integrated MEMS?
“Calling Dick Tracy!”
Disk Resonator
Disk Resonator

\[V_{\text{in}} \]
\[V_{\text{out}} \]

\[L_x \]
\[C_x \]
\[R_x \]
\[C_0 \]
Electromechanical Model

Kirchoff’s current law and balance of linear momentum:

\[
\frac{d}{dt} (C(u)V) + GV = I_{\text{external}} \\
Mu_{tt} + Ku - \nabla u \left(\frac{1}{2} V^* C(u) V \right) = F_{\text{external}}
\]

Linearize about static equilibrium \((V_0, u_0)\):

\[
C(u_0) \delta V_t + G \delta V + (\nabla u C(u_0) \cdot \delta u_t) V_0 = \delta I_{\text{external}} \\
M \delta u_{tt} + \tilde{K} \delta u + \nabla u \left(V_0^* C(u_0) \delta V \right) = \delta F_{\text{external}}
\]

where

\[
\tilde{K} = K - \frac{1}{2} \frac{\partial^2}{\partial u^2} \left(V_0^* C(u_0) V_0 \right)
\]
Electromechanical Model

Assume time-harmonic steady state, no external forces:

$$
\begin{bmatrix}
 i\omega C + G & i\omega B \\
 -B^T & \tilde{K} - \omega^2 M
\end{bmatrix}
\begin{bmatrix}
 \delta \hat{V} \\
 \delta \hat{u}
\end{bmatrix}
=
\begin{bmatrix}
 \delta \hat{l}_{\text{external}} \\
 0
\end{bmatrix}
$$

Eliminate the mechanical terms:

$$
Y(\omega) \delta \hat{V} = \delta \hat{l}_{\text{external}}
$$

$$
Y(\omega) = i\omega C + G + i\omega H(\omega)
$$

$$
H(\omega) = B^T(\tilde{K} - \omega^2 M)^{-1} B
$$

Goal: Understand electromechanical piece \((i\omega H(\omega))\).

- As a function of geometry and operating point
- Preferably as a simple circuit
Damping and Q

Designers want high quality of resonance (Q)

- Dimensionless damping in a one-dof system
 \[
 \frac{d^2 u}{dt^2} + Q^{-1} \frac{du}{dt} + u = F(t)
 \]

- For a resonant mode with frequency $\omega \in \mathbb{C}$:
 \[
 Q := \frac{|\omega|}{2 \text{Im}(\omega)} = \frac{\text{Stored energy}}{\text{Energy loss per radian}}
 \]

To understand Q, we need damping models!
The Designer’s Dream

Ideally, would like

- Simple models for behavioral simulation
- Parameterized for design optimization
- Including all relevant physics
- With reasonably fast and accurate set-up

We aren’t there yet.
Outline

1. Resonant MEMS and models
2. Anchor losses and disk resonators
3. Thermoelastic losses and beam resonators
4. Conclusion
Damping Mechanisms

Possible loss mechanisms:
- Fluid damping
- Material losses
- Thermoelastic damping
- Anchor loss

Model substrate as semi-infinite with a

Perfectly Matched Layer (PML).
Perfectly Matched Layers

- Complex coordinate transformation
- Generates a “perfectly matched” absorbing layer
- Idea works with general linear wave equations
 - Electromagnetics (Berengér, 1994)
 - Quantum mechanics – *exterior complex scaling* (Simon, 1979)
 - Elasticity in standard finite element framework (Basu and Chopra, 2003)
Model Problem

- Domain: $x \in [0, \infty)$
- Governing eq:
 \[\frac{\partial^2 u}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0\]
- Fourier transform:
 \[\frac{d^2 \hat{u}}{dx^2} + k^2 \hat{u} = 0\]
- Solution:
 \[\hat{u} = c_{\text{out}} e^{-ikx} + c_{\text{in}} e^{ikx}\]
Model with Perfectly Matched Layer Layer

\[\frac{d\tilde{x}}{dx} = \lambda(x) \text{ where } \lambda(s) = 1 - i\sigma(s) \]

\[\frac{d^2\hat{u}}{d\tilde{x}^2} + k^2\hat{u} = 0 \]

\[\hat{u} = c_{out}e^{-ik\tilde{x}} + c_{in}e^{ik\tilde{x}} \]
Model with Perfectly Matched Layer

\[
\frac{d \tilde{x}}{dx} = \lambda(x) \text{ where } \lambda(s) = 1 - i\sigma(s),
\]

\[
\frac{1}{\lambda} \frac{d}{dx} \left(\frac{1}{\lambda} \frac{d\hat{u}}{dx} \right) + k^2 \hat{u} = 0
\]

\[
\hat{u} = c_{\text{out}} e^{-ikx - k\Sigma(x)} + c_{\text{in}} e^{ikx + k\Sigma(x)}
\]

\[
\Sigma(x) = \int_0^x \sigma(s) \, ds
\]
If solution clamped at \(x = L \) then
\[
\frac{c_{in}}{c_{out}} = O(e^{-k\gamma}) \quad \text{where} \quad \gamma = \Sigma(L) = \int_{0}^{L} \sigma(s) \, ds
\]
Model Problem Illustrated

Outgoing \(\exp(-i\tilde{x})\)
Incoming \(\exp(i\tilde{x})\)

Transformed coordinate

\(\text{Re}(\tilde{x})\)
Model Problem Illustrated

Outgoing exp(\(-i\tilde{x}\))

Incoming exp(\(i\tilde{x}\))

Transformed coordinate

Re(\(\tilde{x}\))
Model Problem Illustrated

Outgoing exp\((-i\tilde{x})\)
Incoming exp\((i\tilde{x})\)

Transformed coordinate

Re(\tilde{x})

0 2 4 6 8 10 12 14 16 18

-4 -2 0 2 4 6 8 10 12 14 16 18

-10 -5 0 5 10 15 20

0 5 10 15 20
Model Problem Illustrated

Outgoing $\exp(-i\tilde{x})$

Incoming $\exp(i\tilde{x})$

Transformed coordinate

$\Re(\tilde{x})$

$\Im(\tilde{x})$
Model Problem Illustrated

Outgoing $\exp(-i\tilde{x})$

Incoming $\exp(i\tilde{x})$

Transformed coordinate

$\Re(\tilde{x})$

\tilde{x}

$\Re(\tilde{x})$

\tilde{x}
Finite Element Implementation

- Combine PML and isoparametric mappings

\[k^e = \int_{\Omega^e} \tilde{B}^T D \tilde{B} \tilde{J} \, d\Omega \]

\[m^e = \int_{\Omega^e} \rho \tilde{N}^T \tilde{N} \tilde{J} \, d\Omega \]

- Matrices are complex symmetric
Want to know about the transfer function $H(\omega)$:

$$H(\omega) = B^T(K - \omega^2 M)^{-1}B$$

Can either

- Locate poles of H (eigenvalues of (K, M))
- Plot H in a frequency range (Bode plot)

Usual tactic: subspace projection

- Build an Arnoldi basis V for a Krylov subspace \mathcal{K}_n
- Compute with much smaller V^*KV and V^*MV

Can we do better?
Variational Principles

- Variational form for complex symmetric eigenproblems:
 - Hermitian (Rayleigh quotient):
 \[\rho(v) = \frac{v^* K v}{v^* M v} \]
 - Complex symmetric (modified Rayleigh quotient):
 \[\theta(v) = \frac{v^T K v}{v^T M v} \]

- First-order accurate eigenvectors \(\implies \) Second-order accurate eigenvalues.
- Key: relation between left and right eigenvectors.
Accurate Model Reduction

- Build new projection basis from V:
 $$W = \text{orth}[\text{Re}(V), \text{Im}(V)]$$

- span(W) contains both K_n and \bar{K}_n
 \implies double digits correct vs. projection with V

- W is a real-valued basis
 \implies projected system is complex symmetric
Disk Resonator Simulations
Disk Resonator Mesh

- Axisymmetric model with bicubic mesh
- About 10K nodal points in converged calculation
Cubic elements converge with reasonable mesh density.
Results from ROM (solid and dotted lines) nearly indistinguishable from full model (crosses)
Model Reduction Accuracy

Preserve structure \implies get twice the correct digits
Response of the Disk Resonator
Variation in Quality of Resonance

Simulation and lab measurements vs. disk thickness
Explanation of Q Variation

Interaction of two nearby eigenmodes

Table:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Frequency (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1.51</td>
</tr>
<tr>
<td>b</td>
<td>1.52</td>
</tr>
<tr>
<td>c</td>
<td>1.53</td>
</tr>
<tr>
<td>d</td>
<td>1.54</td>
</tr>
<tr>
<td>e</td>
<td>1.55</td>
</tr>
</tbody>
</table>
Outline

1. Resonant MEMS and models
2. Anchor losses and disk resonators
3. Thermoelastic losses and beam resonators
4. Conclusion
Thermoelastic Damping (TED)
Thermoelastic Damping (TED)

\(u \) is displacement and \(T = T_0 + \theta \) is temperature

\[
\begin{align*}
\mathbf{\sigma} &= C \mathbf{\varepsilon} - \beta \mathbf{\varepsilon} \cdot \mathbf{1} \\
\rho \ddot{u} &= \nabla \cdot \mathbf{\sigma} \\
\rho c_v \dot{\theta} &= \nabla \cdot (\kappa \nabla \theta) - \beta T_0 \text{tr}(\dot{\mathbf{\varepsilon}})
\end{align*}
\]

- Coupling between temperature and volumetric strain:
 - Compression and expansion \(\rightarrow \) heating and cooling
 - Heat diffusion \(\rightarrow \) mechanical damping
 - Not often an important factor at the macro scale
 - Recognized source of damping in microresonators

- Zener: semi-analytical approximation for TED in beams

- We consider the fully coupled system
Nondimensionalized Equations

Continuum equations:

\[\sigma = \hat{C}\epsilon - \xi \theta \mathbf{1} \]
\[\ddot{u} = \nabla \cdot \sigma \]
\[\dot{\theta} = \eta \nabla^2 \theta - \text{tr}(\dot{\epsilon}) \]

Discrete equations:

\[M_{uu} \ddot{u} + K_{uu} u = \xi K_{u\theta} \theta + f \]
\[C_{\theta\theta} \ddot{\theta} + \eta K_{\theta\theta} \theta = -C_{\theta u} \dot{u} \]

- Micron-scale poly-Si devices: \(\xi \) and \(\eta \) are \(\sim 10^{-4} \).
- Linearize about \(\xi = 0 \)
Perturbative Mode Calculation

Discretized mode equation:

\[
\begin{align*}
(-\omega^2 M_{uu} + K_{uu}) u &= \xi K_{u\theta} \theta \\
(i\omega C_{\theta\theta} + \eta K_{\theta\theta}) \theta &= -i\omega C_{\theta u} u
\end{align*}
\]

First approximation about \(\xi = 0 \):

\[
\begin{align*}
(-\omega_0^2 M_{uu} + K_{uu}) u_0 &= 0 \\
(i\omega_0 C_{\theta\theta} + \eta K_{\theta\theta}) \theta_0 &= -i\omega_0 C_{\theta u} u_0
\end{align*}
\]

First-order correction in \(\xi \):

\[
-\delta (\omega^2) M_{uu} u_0 + (-\omega_0^2 M_{uu} + K_{uu}) \delta u = \xi K_{u\theta} \theta_0
\]

Multiply by \(u_0^T \):

\[
\delta (\omega^2) = -\xi \left(\frac{u_0^T K_{u\theta} \theta_0}{u_0^T M_{uu} u_0} \right)
\]
If \(w^* A = 0 \) and \(A v = 0 \) then
\[
\delta(w^* A v) = w^*(\delta A)v
\]
This implies
- If \(A = A(\lambda) \) and \(w = w(v) \), have
 \[
 w^*(v)A(\rho(v))v = 0.
 \]
 \(\rho \) stationary when \((\rho(v), v)\) is a nonlinear eigenpair.
- If \(A(\lambda, \xi) \) and \(w_0^* \) and \(v_0 \) are null vectors for \(A(\lambda_0, \xi_0) \),
 \[
 w_0^*(A_\lambda \delta \lambda + A_\xi \delta \xi)v_0 = 0.
 \]
Zener’s Model

1. Clarence Zener investigated TED in late 30s-early 40s.
2. Model for beams common in MEMS literature.
Comparison to Zener’s Model

- Comparison of fully coupled simulation to Zener approximation over a range of frequencies
- Real and imaginary parts after first-order correction agree to about three digits with Arnoldi
Outline

1. Resonant MEMS and models
2. Anchor losses and disk resonators
3. Thermoelastic losses and beam resonators
4. Conclusion
What about:

- Modeling more geometrically complex devices?
- Modeling general dependence on geometry?
- Modeling general dependence on operating point?
- Computing nonlinear dynamics?
- Digesting all this to help designers?
Future Work

- **Code development**
 - Structural elements and elements for different physics
 - Design and implementation of parallelized version

- **Theoretical analysis**
 - More damping mechanisms
 - Sensitivity analysis and variational model reduction

- **Application collaborations**
 - Use of nonlinear effects (quasi-static and dynamic)
 - New designs (e.g. internal dielectric drives)
 - Continued experimental comparisons
Conclusions

- RF MEMS are a great source of problems
 - Interesting applications
 - Interesting physics (and not altogether understood)
 - Interesting computing challenges

http://www.cims.nyu.edu/~dbindel
Enter HiQLab

- Existing codes do not compute quality factors
- ... and awkward to prototype new solvers
- ... and awkward to programmatically define meshes
- So I wrote a new finite element code: HiQLab
Heritage of HiQLab

SUGAR: SPICE for the MEMS world
- System-level simulation using modified nodal analysis
- Flexible device description language
- C core with MATLAB interfaces and numerical routines

FEAPMEX: MATLAB + a finite element code
- MATLAB interfaces for steering, testing solvers, running parameter studies
- Time-tested finite element architecture
- But old F77, brittle in places
“Lesser artists borrow. Great artists steal.”
– Picasso, Dali, Stravinsky?

- **Lua**: www.lua.org
 - Evolved from simulator data languages (DEL and SOL)
 - Pascal-like syntax fits on one page; complete language description is 21 pages
 - Fast, freely available, widely used in game design

- **MATLAB**: www.mathworks.com
 - “The Language of Technical Computing”
 - **OCTAVE** also works well

- Standard numerical libraries: ARPACK, UMFPACK

- **MATEXPR**, **MWRAP**, and other utilities
HiQLab Structure

- Standard finite element structures + some new ideas
- Full scripting language for mesh input
- Callbacks for boundary conditions, material properties
- MATLAB interface for quick algorithm prototyping
- Cross-language bindings are automatically generated
Checkerboard Resonator

- Anchored at outside corners
- Excited at northwest corner
- Sensed at southeast corner
- Surfaces move only a few nanometers
Checkerboard Model Reduction

- Finite element model: $N = 2154$
 - Expensive to solve for every $H(\omega)$ evaluation!
- Build a reduced-order model to approximate behavior
 - Reduced system of 80 to 100 vectors
 - Evaluate $H(\omega)$ in milliseconds instead of seconds
 - Without damping: standard Arnoldi projection
 - With damping: Second-Order ARnoldi (SOAR)
Checkerboard Simulation
Checkerboard Measurement

![Graph showing transmission vs frequency]

S. Bhave, MEMS 05
```lua
mesh = Mesh:new(2)
mat = make_material('silicon2', 'planestrain')
mesh:blocks2d( { 0, 1 }, { -w/2.0, w/2.0 },
               mat )

mesh:set_bc(function(x,y)
    if x == 0 then return 'uu', 0, 0; end
end)
HiQLab’s Hello World

```matlab
>> mesh = Mesh_load('beammesh.lua');
>> [M,K] = Mesh_assemble_mk(mesh);
>> [V,D] = eigs(K,M,5,'sm');
>> opt.axequal = 1; opt.deform = 1;
>> Mesh_scale_u(mesh, V(:,1), 2, 1e-6);
>> plotfield2d(mesh, opt);
```
Continuum 2D model problem

\[
\lambda(x) = \begin{cases} 
1 - i\beta|x - L|^p, & x > L \\
1 & x \leq L 
\end{cases}
\]

\[
\frac{1}{\lambda} \frac{\partial}{\partial x} \left( \frac{1}{\lambda} \frac{\partial u}{\partial x} \right) + \frac{\partial^2 u}{\partial y^2} + k^2 u = 0
\]
Continuum 2D model problem

\[ \lambda(x) = \begin{cases} 
1 - i\beta |x - L|^p, & x > L \\
1 & x \leq L.
\end{cases} \]

\[ \frac{1}{\lambda} \frac{\partial}{\partial x} \left( \frac{1}{\lambda} \frac{\partial u}{\partial x} \right) - k_y^2 u + k^2 u = 0 \]
Continuum 2D model problem

\[ \lambda(x) = \begin{cases} 1 - i\beta & x > L \\ 1 - i\beta|x - L|^p & x \leq L \end{cases} \]

\[ \frac{1}{\lambda} \frac{\partial}{\partial x} \left( \frac{1}{\lambda} \frac{\partial u}{\partial x} \right) + k_x^2 u = 0 \]

1D problem, reflection of \( O(e^{-k_x \gamma}) \)
Discrete 2D model problem

- Discrete Fourier transform in $y$
- Solve numerically in $x$
- Project solution onto infinite space traveling modes
- Extension of Collino and Monk (1998)
Nondimensionalization

\[
\lambda(x) = \begin{cases} 
1 - i|\beta|^{\frac{p}{r}}(x - L)^p, & x > L \\
1 & x \leq L.
\end{cases}
\]

Rate of stretching: \( \beta \hbar^p \)
Elements per wave: \((k_x \hbar)^{-1} \) and \((k_y \hbar)^{-1} \)
Elements through the PML: \(N\)
Nondimensionalization

\[ \lambda(x) = \begin{cases} 
1 - i/\beta |x - L|^p, & x > L \\
1, & x \leq L
\end{cases} \]

Rate of stretching: \( \beta h^p \)
Elements per wave: \( (k_x h)^{-1} \) and \( (k_y h)^{-1} \)
Elements through the PML: \( N \)
Discrete reflection behavior

\[-\log_{10}(r) \text{ at } (k \cdot h)^{-1} = 10\]

Quadratic elements, \( p = 1, (k_x h)^{-1} = 10 \)
Model discrete reflection as two parts:
- Far-end reflection (clamping reflection)
  - Approximated well by continuum calculation
  - Grows as $(k_x h)^{-1}$ grows
- Interface reflection
  - Discrete effect: mesh does not resolve decay
  - Does not depend on $N$
  - Grows as $(k_x h)^{-1}$ shrinks
Discrete reflection behavior

- $\log_{10}(r)$ at $(kh)^{-1} = 10$

- $\log_{10}(r_{\text{interface}} + r_{\text{nominal}})$ at $(kh)^{-1} = 10$

Quadratic elements, $p = 1$, $(k_x h)^{-1} = 10$

- Model does well at predicting actual reflection
- Similar picture for other wavelengths, element types, stretch functions
Choosing PML parameters

- Discrete reflection dominated by
  - Interface reflection when $k_x$ large
  - Far-end reflection when $k_x$ small

- Heuristic for PML parameter choice
  - Choose an acceptable reflection level
  - Choose $\beta$ based on interface reflection at $k_x^{\text{max}}$
  - Choose length based on far-end reflection at $k_x^{\text{min}}$