Structure Preserving Model Reduction for Damped Resonant MEMS

David Bindel

USNCCM 07, 23 Jul 2007
Collaborators

- Tsuyoshi Koyama
- Sanjay Govindjee
- Sunil Bhave
- Emmanuel Quévy
- Zhaojun Bai
Resonant MEMS

Microguitars from Cornell University (1997 and 2003)

- MHz-GHz mechanical resonators
- Favorite application: radio on chip
- Close second: really high-pitch guitars
Your cell phone has many moving parts!
What if we replace them with integrated MEMS?
Ultimate Success

“Calling Dick Tracy!”
Example Resonant System

\[V_{in} \rightarrow \text{AC} \rightarrow \text{DC} \rightarrow V_{out} \]
Example Resonant System
Model Reduction: Basic set-up

Linear time-invariant system:

\[Mu'' + Ku = b\phi(t) \]
\[y(t) = p^T u \]

Frequency domain:

\[-\omega^2 M\hat{u} + K\hat{u} = b\hat{\phi}(\omega) \]
\[\hat{y}(\omega) = p^T\hat{u} \]

Transfer function:

\[H(\omega) = p^T(-\omega^2M + K)^{-1}b \]
\[\hat{y}(\omega) = H(\omega)\hat{\phi}(\omega) \]
Model Reduction: Basic set-up

Have a *rational* transfer function relating input and output:

\[H(\omega) = p^T(-\omega^2 M + K)^{-1} b \]

Can approximate \(H \) by Galerkin projection:

\[\hat{H}(\omega) = (Vp)^T(-\omega^2 V^T M V + V^T K V)^{-1}(Vb) \]

Could also try to approximate \(H \) directly (often equivalent).
The Designer’s Dream

Ideally, would like
- Compact models for behavioral simulation
- Parameterized for design optimization
- Including all relevant physics
- With reasonably fast and accurate set-up

We aren’t there yet.
Approximate H by Galerkin projection:

\[
\hat{H}(i\omega) = (Vp)^T(-\omega^2 V^T MV + V^T KV)^{-1}(Vb)
\]

1. Define $K_\sigma := K - \sigma^2 M$; build a Krylov subspace

 \[
 \text{span}(V) = \mathcal{K}_n(K_\sigma^{-1} M, K_\sigma^{-1} b) = \text{span}\{(K_\sigma^{-1} M)^j K_\sigma^{-1} b\}_{j=0}^n
 \]

 Has the *moment-matching property*:

 \[
 H^{(k)}(i\sigma) = \hat{H}^{(k)}(i\sigma), \quad k = 0, \ldots, n
 \]

 Get $2n$ moments for symmetric systems (or for separate left and right subspaces).

2. Project onto one or more modal vectors.
The Hero of the Hour

Major theme: use problem structure for better reduced models

- ODE structure
- Complex symmetric structure
- Perturbative structure
- Geometric structure
SOAR and ODE structure

Damped second-order system:

\[Mu'' + Cu' + Ku = P\phi \]
\[y = V^T u. \]

Projection basis \(Q_n \) with Second Order ARnoldi (SOAR):

\[M_nu''_n + C_nu'_n + Ku_n = P_n\phi \]
\[y = V_n^T u \]

where \(P_n = Q_n^T P, \ V_n = Q_n^T V, \ M_n = Q_n^T M Q_n, \ldots \)
Checkerboard Resonator
Checkerboard Resonator

- Anchored at outside corners
- Excited at northwest corner
- Sensed at southeast corner
- Surfaces move only a few nanometers
Performance of SOAR vs Arnoldi

\[N = 2154 \rightarrow n = 80 \]

Bode plot

- **Magnitude**
- **Phase (degree)**

Exact
SOAR
Arnoldi
Complex Symmetry

Model with radiation damping (PML) gives complex problem:

\[(K - \omega^2 M)u = f, \text{ where } K = K^T, M = M^T\]

Forced solution \(u\) is a stationary point of

\[I(u) = \frac{1}{2} u^T (K - \omega^2 M)u - u^T f.\]

Eigenvalues of \((K, M)\) are stationary points of

\[\rho(u) = \frac{u^T Ku}{u^T Mu}\]

First-order accurate vectors \(\Rightarrow\) second-order accurate eigenvalues.
Disk Resonator Simulations
Disk Resonator Mesh

- Axisymmetric model with bicubic mesh
- About 10K nodal points in converged calculation
Symmetric ROM Accuracy

Results from ROM (solid and dotted lines) near indistinguishable from full model (crosses)
Symmetric ROM Accuracy

Preserve structure \implies get twice the correct digits

| Frequency (MHz) | $|H(\omega) - H_{\text{reduced}}(\omega)||/H(\omega)|$
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>46</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>47</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>48</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
Dimensionless continuum equations for thermoelastic damping:

\[
\begin{align*}
\sigma &= \hat{C}\varepsilon - \xi \theta 1 \\
\ddot{u} &= \nabla \cdot \sigma \\
\dot{\theta} &= \eta \nabla^2 \theta - \text{tr}(\dot{\varepsilon})
\end{align*}
\]

Dimensionless coupling \(\xi\) and heat diffusivity \(\eta\) are \(10^{-4}\) \implies perturbation method (about \(\xi = 0\)).

Large, non-self-adjoint, first-order coupled problem \(\rightarrow\) Smaller, self-adjoint, mechanical eigenproblem + symmetric linear solve.
Thermoelastic Damping Example
Performance for Beam Example

The graph illustrates the comparison between the Perturbation method and the First-order form for different beam lengths. The x-axis represents the beam length in microns, ranging from 10 to 100. The y-axis represents the time in seconds, ranging from 0 to 10.

- The solid line represents the Perturbation method.
- The dashed line represents the First-order form.

The graph shows a linear relationship between beam length and time for both methods.
Aside: Effect of Nondimensionalization

100 \(\mu m \) beam example, first-order form.

Before nondimensionalization
- Time: 180 s
- \(\text{nnz}(L) = 11M \)

After nondimensionalization
- Time: 10 s
- \(\text{nnz}(L) = 380K \)
We work with hand-build model reduction all the time!

- Circuit elements: Maxwell equation + field assumptions
- Beam theory: Elasticity + kinematic assumptions
- Axisymmetry: 3D problem + kinematic assumption

Idea: Provide *global shapes*

- User defines shapes through a callback
- Mesh serves defines a quadrature rule
- Reduced equations fit known abstractions
Global Shape Functions

Normally:

\[u(X) = \sum_j N_j(X) \hat{u}_j \]

Global shape functions:

\[\hat{u} = \hat{u}^l + G(\hat{u}^g) \]

Then constrain values of some components of \(\hat{u}^l, \hat{u}^g \).
“Hello, World!”

Which mode shape comes from the reduced model (3 dof)?

(Left: 28 MHz; Right: 31 MHz)
Respecting problem structure is a Good Thing!

- ODE structure
- Complex symmetric structure
- Perturbative structure
- Geometric structure

Result:
Better accuracy, faster set-up, better understanding.