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Resonant MEMS

Microguitars from Cornell University (1997 and 2003)

@ MHz-GHz mechanical resonators
@ Favorite application: radio on chip
@ Close second: really high-pitch guitars



The Mechanical Cell Phone

Mixer
RF amplifier / IF amplifier /
preselector — filter ..
Tuning Local
control ™| Oscillator

@ Your cell phone has many moving parts!
@ What if we replace them with integrated MEMS?



Ultimate Success

“Calling Dick Tracy!”

I'm On My Way




Example Resonant System




Example Resonant System




The Designer’s Dream

Ideally, would like
@ Simple models for behavioral simulation
@ Parameterized for design optimization
@ Including all relevant physics
@ With reasonably fast and accurate set-up
We aren’t there yet. Today, some progress on the last two.




Damping and Q

Designers want high quality of resonance (Q)
@ Dimensionless damping in a one-dof system
d?u , du

W—FQ‘ E—FU:F(I')

@ For a resonant mode with frequency w € C:

|w] Stored energy

Q:= 2Im(w) - Energy loss per radian




Damping Mechanisms

Possible loss mechanisms:
@ Anchor loss
@ Thermoelastic damping
@ Other material losses
@ Fluid damping

Our goal: Reduced models that include these effects.



Perfectly Matched Layers

Model substrate as semi-infinite with a
Perfectly Matched Layer (PML).

@ Complex coordinate transformation
@ Generates a “perfectly matched” absorbing layer
@ |dea works with general linear wave equations



Perfectly Matched Layers by Picture
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Perfectly Matched Layers by Picture
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Perfectly Matched Layers by Picture
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Perfectly Matched Layers by Picture
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Perfectly Matched Layers by Picture
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Finite Element Implementation

Xo X2
x(€) X(x)
— T — T
&
X1 Xi

1

@ Combine PML and isoparametric mappings
k® = B'DBJ dQ"”
QU

mé = / pNTNJ dQ™
Q0

@ Matrices are complex symmetric



Complex Symmetry

Discretized (forced) problem + fixed PML take the form:
(K —w?M)u =f, where K = K" M =M"
Can still characterize u as a stationary point of

1
I(u) = EUT(K —WM)u —u't.

Eigenvalues of (K, M) are stationary points of

(u) = uTKu
P = UM

First-order accurate vectors —
second-order accurate eigenvalues.



Accurate Model Reduction

@ Usual: Orthogonal projection onto Arnoldi basis V.
@ Us: Build new projection basis from V:

W = orth[Re(V), Im(V)]

@ span(W) contains both K, and K,

= double digits correct vs. projection with V
@ W is areal-valued basis

= projected system is complex symmetric



Model Reduction Accuracy
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Model Reduction Accuracy
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Preserve structure —
get twice the correct digits



Thermoelastic Damping (TED)




Thermoelastic Damping (TED)

uis displacementand T = Ty + 6 is temperature

o = Ce— (01
pu = V-o
pcd = V-(kVO)— [BTotr(é)

@ Coupling between temperature and volumetric strain:

e Compression and expansion —> heating and cooling
e Heat diffusion = mechanical damping

e Not often an important factor at the macro scale

e Recognized source of damping in microresonators

@ Zener: semi-analytical approximation for TED in beams
@ We consider the fully coupled system



Nondimensionalized Equations

Continuum equations:
o = Ce— o1

u V.o
0 = nVv20 —tr(¢)

Discrete equations:
Myt + Kyt = Kyl + f
Cool + nKge = —Cpyl

@ Micron-scale poly-Si devices: ¢ and n are ~ 104,
@ Linearize about £ =0



Perturbative Mode Calculation

Discretized mode equation:
(—w?Muy + Ku)u = EKygb
(IwCgg +nKyg)0 = —iwCyyu
First approximation about ¢ = 0:
(_WSMUU + Kuu)UO =0
(iwoCog +nKag)lo = —iwgCoulo

First-order correction in &:

—5(w?)Myytp + (—wiMuu + Kuu)du = EKyabo

Multiply by u]:

UTK 060
5(w?) = —¢ [ —owo
UO Muuuo



Zener’'s Model

@ Clarence Zener investigated TED in late 30s-early 40s.
© Model for beams common in MEMS literature.

© “Method of orthogonal thermodynamic potentials” ==
perturbation method + a variational method.



Comparison to Zener’s Model

B
o,

Zener's Formula

,a
o,

HiQlab Results

Thermoelastic Damping Q‘J

@ Comparison of fully coupled simulation to Zener
approximation over a range of frequencies

@ Real and imaginary parts after first-order correction
agree to about three digits with Arnoldi



General Picture

If w*A =0 and Av = 0 then
S(w*Av) = w*(5A)v

This implies
e If A= A(\) and w = w(v), have

w* (V)A(p(v))v = 0.

p stationary when (p(v), v) is a nonlinear eigenpair.
@ If A()\, &) and wy and vy are null vectors for A(Ag, &o),

WS(AA(S)\ + Ag&f)Vo =0.



Conclusions

@ Resonant MEMS have lots of interesting applications
@ Designers want reduced models with relevant physics
@ Damping is crucial, but not well handled in general

@ Our work: use equation structure in making reduced
models with damping (modal or more general)



