Model Reduction and Mode Computation for Damped Resonant MEMS

David Bindel

SIAM CSE 07, 19 Feb 2007

Collaborators

- Tsuyoshi Koyama
- Sanjay Govindjee
- Sunil Bhave
- Emmanuel Quévy
- Zhaojun Bai

Resonant MEMS

Microguitars from Cornell University (1997 and 2003)

- MHz-GHz mechanical resonators
- Favorite application: radio on chip
- Close second: really high-pitch guitars

The Mechanical Cell Phone

- Your cell phone has many moving parts!
- What if we replace them with integrated MEMS?

Ultimate Success

"Calling Dick Tracy!"

Example Resonant System

Example Resonant System

The Designer's Dream

Ideally, would like

- Simple models for behavioral simulation
- Parameterized for design optimization
- Including all relevant physics
- With reasonably fast and accurate set-up

We aren't there yet. Today, some progress on the last two.

Damping and Q

Designers want high quality of resonance (Q)

- Dimensionless damping in a one-dof system

$$
\frac{d^{2} u}{d t^{2}}+Q^{-1} \frac{d u}{d t}+u=F(t)
$$

- For a resonant mode with frequency $\omega \in \mathbb{C}$:

$$
Q:=\frac{|\omega|}{2 \operatorname{lm}(\omega)}=\frac{\text { Stored energy }}{\text { Energy loss per radian }}
$$

Damping Mechanisms

Possible loss mechanisms:

- Anchor loss
- Thermoelastic damping
- Other material losses
- Fluid damping

Our goal: Reduced models that include these effects.

Perfectly Matched Layers

Model substrate as semi-infinite with a Perfectly Matched Layer (PML).

- Complex coordinate transformation
- Generates a "perfectly matched" absorbing layer
- Idea works with general linear wave equations

Perfectly Matched Layers by Picture

Transformed coordinate

Perfectly Matched Layers by Picture

Incoming $\exp (i \tilde{x})$

Transformed coordinate

Perfectly Matched Layers by Picture

Outgoing $\exp (-i \tilde{x})$

Incoming $\exp (i \tilde{x})$

Transformed coordinate

Perfectly Matched Layers by Picture

Transformed coordinate

Perfectly Matched Layers by Picture

Transformed coordinate

Perfectly Matched Layers by Picture

Transformed coordinate

Finite Element Implementation

- Combine PML and isoparametric mappings

$$
\begin{aligned}
\mathbf{k}^{e} & =\int_{\Omega^{\square}} \tilde{\mathbf{B}}^{\top} \mathbf{D} \tilde{\mathbf{B}} \tilde{J} d \Omega^{\square} \\
\mathbf{m}^{e} & =\int_{\Omega^{\square}} \rho \mathbf{N}^{\top} \tilde{N} \tilde{J} d \Omega^{\square}
\end{aligned}
$$

- Matrices are complex symmetric

Complex Symmetry

Discretized (forced) problem + fixed PML take the form:

$$
\left(K-\omega^{2} M\right) u=f, \text { where } K=K^{T}, M=M^{T}
$$

Can still characterize u as a stationary point of

$$
I(u)=\frac{1}{2} u^{T}\left(K-\omega^{2} M\right) u-u^{T} f
$$

Eigenvalues of (K, M) are stationary points of

$$
\rho(u)=\frac{u^{T} K u}{u^{T} M u}
$$

First-order accurate vectors \Longrightarrow second-order accurate eigenvalues.

Accurate Model Reduction

- Usual: Orthogonal projection onto Arnoldi basis V.
- Us: Build new projection basis from V:

$$
W=\operatorname{orth}[\operatorname{Re}(V), \operatorname{Im}(V)]
$$

- $\operatorname{span}(W)$ contains both \mathcal{K}_{n} and $\overline{\mathcal{K}}_{n}$
\Longrightarrow double digits correct vs. projection with V
- W is a real-valued basis
\Longrightarrow projected system is complex symmetric

Model Reduction Accuracy

Results from ROM (solid and dotted lines) near indistinguishable from full model (crosses)

Model Reduction Accuracy

Preserve structure \Longrightarrow get twice the correct digits

Thermoelastic Damping (TED)

Thermoelastic Damping (TED)

u is displacement and $T=T_{0}+\theta$ is temperature

$$
\begin{aligned}
\sigma & =\boldsymbol{C} \epsilon-\beta \theta 1 \\
\rho \ddot{u} & =\nabla \cdot \sigma \\
\rho \boldsymbol{c}_{V} \dot{\theta} & =\nabla \cdot(\kappa \nabla \theta)-\beta T_{0} \operatorname{tr}(\dot{\epsilon})
\end{aligned}
$$

- Coupling between temperature and volumetric strain:
- Compression and expansion \Longrightarrow heating and cooling
- Heat diffusion \Longrightarrow mechanical damping
- Not often an important factor at the macro scale
- Recognized source of damping in microresonators
- Zener: semi-analytical approximation for TED in beams
- We consider the fully coupled system

Nondimensionalized Equations

Continuum equations:

$$
\begin{aligned}
\sigma & =\hat{C} \epsilon-\xi \theta 1 \\
\ddot{u} & =\nabla \cdot \sigma \\
\dot{\theta} & =\eta \nabla^{2} \theta-\operatorname{tr}(\dot{\epsilon})
\end{aligned}
$$

Discrete equations:

$$
\begin{aligned}
M_{u u} \ddot{u}+K_{u u} u & =\xi K_{u \theta} \theta+f \\
C_{\theta \theta} \ddot{\theta}+\eta K_{\theta \theta} \theta & =-C_{\theta u} \dot{u}
\end{aligned}
$$

- Micron-scale poly-Si devices: ξ and η are $\sim 10^{-4}$.
- Linearize about $\xi=0$

Perturbative Mode Calculation

Discretized mode equation:

$$
\begin{aligned}
\left(-\omega^{2} M_{u u}+K_{u u}\right) u & =\xi K_{u \theta} \theta \\
\left(i \omega C_{\theta \theta}+\eta K_{\theta \theta}\right) \theta & =-i \omega C_{\theta u} u
\end{aligned}
$$

First approximation about $\xi=0$:

$$
\begin{aligned}
\left(-\omega_{0}^{2} M_{u u}+K_{u u}\right) u_{0} & =0 \\
\left(i \omega_{0} C_{\theta \theta}+\eta K_{\theta \theta}\right) \theta_{0} & =-i \omega_{0} C_{\theta u} u_{0}
\end{aligned}
$$

First-order correction in ξ :

$$
-\delta\left(\omega^{2}\right) M_{u u} u_{0}+\left(-\omega_{0}^{2} M_{u u}+K_{u u}\right) \delta u=\xi K_{u \theta} \theta_{0}
$$

Multiply by u_{0}^{T} :

$$
\delta\left(\omega^{2}\right)=-\xi\left(\frac{u_{0}^{T} K_{u \theta} \theta_{0}}{u_{0}^{T} M_{u u} u_{0}}\right)
$$

Zener's Model

(1) Clarence Zener investigated TED in late 30s-early 40s.
(2) Model for beams common in MEMS literature.
(3) "Method of orthogonal thermodynamic potentials" == perturbation method + a variational method.

Comparison to Zener's Model

- Comparison of fully coupled simulation to Zener approximation over a range of frequencies
- Real and imaginary parts after first-order correction agree to about three digits with Arnoldi

General Picture

If $w^{*} A=0$ and $A v=0$ then

$$
\delta\left(w^{*} A v\right)=w^{*}(\delta A) v
$$

This implies

- If $A=A(\lambda)$ and $w=w(v)$, have

$$
w^{*}(v) A(\rho(v)) v=0
$$

ρ stationary when $(\rho(v), v)$ is a nonlinear eigenpair.

- If $A(\lambda, \xi)$ and w_{0}^{*} and v_{0} are null vectors for $A\left(\lambda_{0}, \xi_{0}\right)$,

$$
w_{0}^{*}\left(A_{\lambda} \delta \lambda+A_{\xi} \delta \xi\right) v_{0}=0
$$

Conclusions

- Resonant MEMS have lots of interesting applications
- Designers want reduced models with relevant physics
- Damping is crucial, but not well handled in general
- Our work: use equation structure in making reduced models with damping (modal or more general)

