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Resonant MEMS

Microguitars from Cornell University (1997 and 2003)

MHz-GHz mechanical resonators
Favorite application: radio on chip
Close second: really high-pitch guitars
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The Mechanical Cell Phone
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Your cell phone has many moving parts!
What if we replace them with integrated MEMS?



CSE07

Ultimate Success

“Calling Dick Tracy!”
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Example Resonant System
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Example Resonant System
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The Designer’s Dream

Ideally, would like
Simple models for behavioral simulation
Parameterized for design optimization
Including all relevant physics
With reasonably fast and accurate set-up

We aren’t there yet. Today, some progress on the last two.
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Damping and Q

Designers want high quality of resonance (Q)
Dimensionless damping in a one-dof system

d2u
dt2 + Q−1 du

dt
+ u = F (t)

For a resonant mode with frequency ω ∈ C:

Q :=
|ω|

2 Im(ω)
=

Stored energy
Energy loss per radian
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Damping Mechanisms

Possible loss mechanisms:
Anchor loss
Thermoelastic damping
Other material losses
Fluid damping

Our goal: Reduced models that include these effects.
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Perfectly Matched Layers

Model substrate as semi-infinite with a

Perfectly Matched Layer (PML).

Complex coordinate transformation
Generates a “perfectly matched” absorbing layer
Idea works with general linear wave equations
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Perfectly Matched Layers by Picture
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Perfectly Matched Layers by Picture
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Perfectly Matched Layers by Picture
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Perfectly Matched Layers by Picture
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Perfectly Matched Layers by Picture
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Perfectly Matched Layers by Picture
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Finite Element Implementation

x(ξ)

ξ2

ξ1

x1

x2 x̃2

x̃1

Ωe Ω̃e

Ω�

x̃(x)

Combine PML and isoparametric mappings

ke =

∫
Ω�

B̃T DB̃J̃ dΩ�

me =

∫
Ω�

ρNT NJ̃ dΩ�

Matrices are complex symmetric
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Complex Symmetry

Discretized (forced) problem + fixed PML take the form:

(K − ω2M)u = f , where K = K T , M = MT

Can still characterize u as a stationary point of

I(u) =
1
2

uT (K − ω2M)u − uT f .

Eigenvalues of (K , M) are stationary points of

ρ(u) =
uT Ku
uT Mu

First-order accurate vectors =⇒
second-order accurate eigenvalues.
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Accurate Model Reduction

Usual: Orthogonal projection onto Arnoldi basis V .
Us: Build new projection basis from V :

W = orth[Re(V ), Im(V )]

span(W ) contains both Kn and K̄n
=⇒ double digits correct vs. projection with V
W is a real-valued basis
=⇒ projected system is complex symmetric
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Model Reduction Accuracy
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Model Reduction Accuracy

Frequency (MHz)
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Preserve structure =⇒
get twice the correct digits
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Thermoelastic Damping (TED)
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Thermoelastic Damping (TED)

u is displacement and T = T0 + θ is temperature

σ = Cε− βθ1
ρü = ∇ · σ

ρcv θ̇ = ∇ · (κ∇θ)− βT0 tr(ε̇)

Coupling between temperature and volumetric strain:
Compression and expansion =⇒ heating and cooling
Heat diffusion =⇒ mechanical damping
Not often an important factor at the macro scale
Recognized source of damping in microresonators

Zener: semi-analytical approximation for TED in beams
We consider the fully coupled system
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Nondimensionalized Equations

Continuum equations:

σ = Ĉε− ξθ1
ü = ∇ · σ
θ̇ = η∇2θ − tr(ε̇)

Discrete equations:

Muuü + Kuuu = ξKuθθ + f
Cθθθ̈ + ηKθθθ = −Cθuu̇

Micron-scale poly-Si devices: ξ and η are ∼ 10−4.
Linearize about ξ = 0
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Perturbative Mode Calculation

Discretized mode equation:

(−ω2Muu + Kuu)u = ξKuθθ

(iωCθθ + ηKθθ)θ = −iωCθuu

First approximation about ξ = 0:

(−ω2
0Muu + Kuu)u0 = 0

(iω0Cθθ + ηKθθ)θ0 = −iω0Cθuu0

First-order correction in ξ:

−δ(ω2)Muuu0 + (−ω2
0Muu + Kuu)δu = ξKuθθ0

Multiply by uT
0 :

δ(ω2) = −ξ

(
uT

0 Kuθθ0

uT
0 Muuu0

)
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Zener’s Model

1 Clarence Zener investigated TED in late 30s-early 40s.
2 Model for beams common in MEMS literature.
3 “Method of orthogonal thermodynamic potentials” ==

perturbation method + a variational method.
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Comparison to Zener’s Model
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HiQlab Results 

Comparison of fully coupled simulation to Zener
approximation over a range of frequencies
Real and imaginary parts after first-order correction
agree to about three digits with Arnoldi



CSE07

General Picture

If w∗A = 0 and Av = 0 then

δ(w∗Av) = w∗(δA)v

This implies
If A = A(λ) and w = w(v), have

w∗(v)A(ρ(v))v = 0.

ρ stationary when (ρ(v), v) is a nonlinear eigenpair.
If A(λ, ξ) and w∗

0 and v0 are null vectors for A(λ0, ξ0),

w∗
0 (Aλδλ + Aξδξ)v0 = 0.
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Conclusions

Resonant MEMS have lots of interesting applications
Designers want reduced models with relevant physics
Damping is crucial, but not well handled in general
Our work: use equation structure in making reduced
models with damping (modal or more general)


