Elastic PMLs for Resonator Anchor Loss Simulation

David Bindel 1 and Sanjay Govindjee 2

¹ Department of Electrical Engineering and Computer Science

² Department of Civil Engineering

University of California at Berkeley

Contributors

Tsuyoshi Koyama

- Wei He
- Emmanuel Quévy
- Roger Howe

James Demmel

- PhD Student, Civil Engineering
- PhD Student, Civil Engineering
- Postdoc, Electrical Engineering
- Professor, Electrical Engineering
- Professor, Computer Science

Outline

- Electromechanical resonators and RF MEMS
- Damping and quality of resonance
- Anchor losses and Perfectly Matched Layers
- Analysis of the discretized PMLs
- Complex symmetry and structured model reduction
- Analysis of a disk resonator
- Conclusions

Outline

Electromechanical resonators and RF MEMS

- Damping and quality of resonance
- Anchor losses and Perfectly Matched Layers
- Analysis of the discretized PMLs
- Complex symmetry and structured model reduction
- Analysis of a disk resonator
- Conclusions

How many MEMS?

Why resonant MEMS?

Microguitars from Cornell University (1997 and 2003)

- Sensing elements (inertial, chemical)
- Frequency references
- Filter elements
- Neural networks
- Really high-pitch guitars

Micromechanical filters

- Mechanical high-frequency (high MHz-GHz) filter
 - Your cell phone is mechanical!
- Advantage over quartz surface acoustic wave filters
 - Integrated into chip
 - Low power

Success \implies "Calling Dick Tracy!"

Designing transfer functions

Time domain:

$$Mu'' + Cu' + Ku = b\phi(t)$$
$$y(t) = p^T u$$

Frequency domain:

$$-\omega^2 M \hat{u} + i\omega C \hat{u} + K \hat{u} = b \hat{\phi}(\omega)$$
$$\hat{y}(\omega) = p^T u$$

Transfer function:

$$H(\omega) = p^{T}(-\omega^{2}M + i\omega C + K)^{-1}b$$
$$\hat{y}(\omega) = H(\omega)\hat{\phi}(\omega)$$

Damping and filters

- Want "sharp" poles for narrowband filters
- \blacksquare \implies Want to minimize damping
 - Electronic filters have too much
 - Understanding of damping in MEMS is lacking

Damping and Q

- **Designers want high** quality of resonance (Q)
 - Dimensionless damping in a one-dof system:

$$\frac{d^2u}{dt^2} + Q^{-1}\frac{du}{dt} + u = F(t)$$

• For a resonant mode with frequency $\omega \in \mathbb{C}$:

$$Q := \frac{|\omega|}{2 \operatorname{Im}(\omega)} = \frac{\text{Stored energy}}{\text{Energy loss per radian}}$$

Sources of damping

Fluid damping

- Air is a viscous fluid ($\operatorname{Re} \ll 1$)
- Can operate in a vacuum
- Shown not to dominate in many RF designs
- Material losses
 - Low intrinsic losses in silicon, diamond, germanium
 - Terrible material losses in metals
- Thermoelastic damping
 - Volume changes induce temperature change
 - Diffusion of heat leads to mechanical loss
- Anchor loss
 - Elastic waves radiate from structure

Sources of damping

Fluid damping

- Air is a viscous fluid ($\operatorname{Re} \ll 1$)
- Can operate in a vacuum
- Shown not to dominate in many RF designs
- Material losses
 - Low intrinsic losses in silicon, diamond, germanium
 - Terrible material losses in metals
- Thermoelastic damping
 - Volume changes induce temperature change
 - Diffusion of heat leads to mechanical loss
- Anchor loss
 - Elastic waves radiate from structure

Outline

- Electromechanical resonators and RF MEMS
- Damping and quality of resonance
- Anchor losses and Perfectly Matched Layers
 - Anchor losses and infinite domains
 - Idea of the perfectly matched layer
 - Elastic PMLs and finite elements
- Analysis of the discretized PMLs
- Complex symmetry and structured model reduction
- Analysis of a disk resonator
- Conclusions

Example: Disk resonator

SiGe disk resonators built by E. Quévy

Substrate model

Goal: Understand energy loss in disk resonator

- Dominant loss is elastic radiation from anchor
- Resonator size \ll substrate size
 - Substrate appears semi-infinite
- Possible semi-infinite models
 - Matched asymptotic modes
 - Dirichlet-to-Neumann maps
 - Boundary dampers
 - Higher-order local ABCs
 - Perfectly matched layers

Perfectly matched layers

- Apply a complex coordinate transformation
- Generates a non-physical absorbing layer
- No impedance mismatch between the computational domain and the absorbing layer
- Idea works with general linear wave equations
 - First applied to Maxwell's equations (Berengér 95)
 - Similar idea earlier in quantum mechanics (*exterior complex scaling*, Simon 79)
 - Applies to elasticity in standard FEM framework (Basu and Chopra, 2003)

1-D model problem

- **Domain:** $x \in [0, \infty)$
- Governing eq:

$$\frac{\partial^2 u}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0$$

• Fourier transform:

$$\frac{d^2\hat{u}}{dx^2} + k^2\hat{u} = 0$$

$$\hat{u} = c_{\rm out}e^{-ikx} + c_{\rm in}e^{ikx}$$

1-D model problem with PML

$$\frac{d\tilde{x}}{dx} = \lambda(x)$$
 where $\lambda(s) = 1 - i\sigma(s)$

$$\frac{d^2\hat{u}}{d\tilde{x}^2} + k^2\hat{u} = 0$$

$$\hat{u} = c_{\rm out}e^{-ik\tilde{x}} + c_{\rm in}e^{ik\tilde{x}}$$

1-D model problem with PML

1-D model problem with PML

If solution clamped at x = L then

$$\frac{c_{\text{in}}}{c_{\text{out}}} = O(e^{-k\gamma})$$
 where $\gamma = \int_0^L \sigma(s) \, ds$

Clamp solution at transformed end to isolate outgoing wave.

$$\int_{\Omega} \epsilon(w) : \mathsf{C} : \epsilon(u) \, d\Omega - \omega^2 \int_{\Omega} \rho w \cdot u \, d\Omega = \int_{\Gamma} w \cdot t_n d\Gamma$$
$$\epsilon(u) = \left(\frac{\partial u}{\partial x}\right)^s$$

Start from standard weak form

$$\begin{split} \int_{\tilde{\Omega}} \tilde{\epsilon}(w) : \mathsf{C} : \tilde{\epsilon}(u) \, d\tilde{\Omega} - \omega^2 \int_{\tilde{\Omega}} \rho w \cdot u \, d\tilde{\Omega} &= \int_{\Gamma} w \cdot t_n d\Gamma \\ \tilde{\epsilon}(u) &= \left(\frac{\partial u}{\partial \tilde{x}}\right)^s = \left(\frac{\partial u}{\partial x}\Lambda^{-1}\right)^s \end{split}$$

- Start from standard weak form
- Introduce transformed \tilde{x} with $\frac{\partial \tilde{x}}{\partial x} = \Lambda$

$$\int_{\Omega} \tilde{\epsilon}(w) : \mathsf{C} : \tilde{\epsilon}(u) J_{\Lambda} d\Omega - \omega^2 \int_{\Omega} \rho w \cdot u J_{\Lambda} d\Omega = \int_{\Gamma} w \cdot t_n d\Gamma$$
$$\tilde{\epsilon}(u) = \left(\frac{\partial u}{\partial \tilde{x}}\right)^s = \left(\frac{\partial u}{\partial x}\Lambda^{-1}\right)^s$$

- Start from standard weak form
- Introduce transformed \tilde{x} with $\frac{\partial \tilde{x}}{\partial x} = \Lambda$
- Map back to reference system ($J_{\Lambda} = \det(\Lambda)$)

$$\int_{\Omega} \tilde{\epsilon}(w) : \mathsf{C} : \tilde{\epsilon}(u) J_{\Lambda} d\Omega - \omega^2 \int_{\Omega} \rho w \cdot u J_{\Lambda} d\Omega = \int_{\Gamma} w \cdot t_n d\Gamma$$
$$\tilde{\epsilon}(u) = \left(\frac{\partial u}{\partial \tilde{x}}\right)^s = \left(\frac{\partial u}{\partial x}\Lambda^{-1}\right)^s$$

- Start from standard weak form
- Introduce transformed \tilde{x} with $\frac{\partial \tilde{x}}{\partial x} = \Lambda$
- Map back to reference system ($J_{\Lambda} = \det(\Lambda)$)
- \checkmark All terms are symmetric in w and u

Finite element implementation

Combine PML and isoparametric mappings

$$\mathbf{k}^{e} = \int_{\Omega^{\Box}} \tilde{\mathbf{B}}^{T} \mathbf{D} \tilde{\mathbf{B}} \tilde{J} d\Omega^{\Box}$$
$$\mathbf{m}^{e} = \left(\int_{\Omega^{\Box}} \rho \mathbf{N}^{T} \mathbf{N} \tilde{J} d\Omega^{\Box} \right)$$

Matrices are complex symmetric

Outline

- Electromechanical resonators and RF MEMS
- Damping and quality of resonance
- Anchor losses and Perfectly Matched Layers
- Analysis of the discretized PMLs
 - A two-dimensional model problem
 - Analysis of discrete reflection
 - Choice of PML parameters
- Complex symmetry and structured model reduction
- Analysis of a disk resonator
- Conclusions

Continuum 2D model problem

Continuum 2D model problem

Continuum 2D model problem

1D problem, reflection of $O(e^{-k_x\gamma})$

Discrete 2D model problem

- **Discrete Fourier transform in** y
- **Solve numerically in** x
- Project solution onto infinite space traveling modes
- Extension of Collino and Monk (1998)

Nondimensionalization

Rate of stretching: βh^p Elements per wave: $(k_x h)^{-1}$ and $(k_y h)^{-1}$ Elements through the PML:N

Nondimensionalization

Rate of stretching: βh^p Elements per wave: $(k_x h)^{-1}$ and $(k_y h)^{-1}$ Elements through the PML:N

Discrete reflection behavior

Discrete reflection decomposition

Model discrete reflection as two parts:

- Far-end reflection (clamping reflection)
 - Approximated well by continuum calculation
 - Grows as $(k_x h)^{-1}$ grows
- Interface reflection
 - Discrete effect: mesh does not resolve decay
 - \checkmark Does not depend on N
 - Grows as $(k_x h)^{-1}$ shrinks

Discrete reflection behavior

- Model does well at predicting actual reflection
- Similar picture for other wavelengths, element types, stretch functions

Choosing PML parameters

- Discrete reflection dominated by
 - Interface reflection when k_x large
 - Far-end reflection when k_x small
- Heuristic for PML parameter choice
 - Choose an acceptable reflection level
 - Choose β based on interface reflection at k_x^{\max}
 - Choose length based on far-end reflection at k_x^{\min}

Outline

- Electromechanical resonators and RF MEMS
- Damping and quality of resonance
- Anchor losses and Perfectly Matched Layers
- Analysis of the discretized PMLs
- Complex symmetry and structured model reduction
 - Krylov subspace projections
 - Structure-preserving eigencomputations
 - Structure-preserving model reduction
- Analysis of a disk resonator
- Conclusions

Eigenvalues and model reduction

Want to know about the transfer function $H(\omega)$:

$$H(\omega) = p^T (K - \omega^2 M)^{-1} b$$

Can either

• Locate poles of H (eigenvalues of (K, M))

• Determine
$$Q = \frac{|\omega|}{2 \operatorname{Im}(\omega)}$$

Plot H in a frequency range (Bode plot)

Solve both problems with the same tool: Krylov subspace projections

Projecting via Arnoldi

Build a Krylov subspace basis by shift-invert Arnoldi

- Choose shift σ in frequency range of interest
- Form and factor $K_{\text{shift}} = K \sigma^2 M$
- Use Arnoldi to build an orthonormal basis V for

$$\mathcal{K}_n = \operatorname{span}\{u_0, K_{\operatorname{shift}}^{-1}u_0, \dots, K_{\operatorname{shift}}^{-(n-1)}u_0\}$$

Compute eigenvalues and reduced models from projection

- Compute eigenvalues from (V^*KV, V^*MV)
- **•** Approximate $H(\omega)$ by Galerkin projection

$$H(\omega) \approx (V^*p)^* (V^*KV - \omega^2 V^*MV)^{-1} (V^*b)$$

Accurate eigenvalues

- Hermitian systems: Rayleigh-Ritz is optimal
 - Raleigh quotient is stationary at eigenvectors

$$\rho(v) = \frac{v^* K v}{v^* M v}$$

- First-order accurate eigenvectors \implies second-order accurate eigenvalues
- Can we obtain optimal accuracy for PML eigenvalues?

Accurate eigenvalues

- PML matrices are complex symmetric
 - Modified RQ is stationary at eigenvectors

$$\theta(v) = \frac{v^T K v}{v^T M v}$$

- $\bullet \implies$ second-order accurate eigenvalues
- Hochstenbach and Arbenz, 2004

Accurate model reduction

- Accurate eigenvalues from v and \bar{v} together
- Accurate model reduction in the same way
 - Build new projection basis from V:

 $W = \operatorname{orth}[\operatorname{Re}(V), \operatorname{Im}(V)]$

- $\operatorname{span}(W)$ contains both \mathcal{K}_n and $\overline{\mathcal{K}}_n$
 - \bullet Double convergence vs projection with V
- W is a real-valued basis
 - Projected system remains complex symmetric

Outline

- Electromechanical resonators and RF MEMS
- Damping and quality of resonance
- Anchor losses and Perfectly Matched Layers
- Analysis of the discretized PMLs
- Complex symmetry and structured model reduction
- Analysis of a disk resonator
 - Accuracy of the numerics
 - Description of the loss mechanism
 - Sensitivity to fabrication variations
- Conclusions

Disk resonator simulations

Disk resonator mesh

- Axisymmetric model with bicubic mesh
- About 10K nodal points in converged calculation

Mesh convergence

Model reduction performance

Model reduction performance

Response of the disk resonator

Time-averaged energy flux

Explanation of *Q* **variation**

Conclusions

- MEMS damping is important and non-trivial
- Elastic PMLs work well for modeling anchor loss
 - Formulation fits naturally with mapped elements
 - Estimate multi-D performance with simple models
- Use complex symmetry to compute eigenvalues and reduced models
- Simulations show effects that hand analysis misses

Reference: Bindel and Govindjee, "Elastic PMLs for resonator anchor loss simulation," *IJNME* (to appear).