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How many MEMS?
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Why resonant MEMS?

Microguitars from Cornell University (1997 and 2003)

Sensing elements (inertial, chemical)

Frequency references

Filter elements

Neural networks

Really high-pitch guitars
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Micromechanical filters

Mechanical filter

Capacitive senseCapacitive drive

Radio signal

Filtered signal

Mechanical high-frequency (high MHz-GHz) filter
Your cell phone is mechanical!

Advantage over quartz surface acoustic wave filters
Integrated into chip
Low power

Success =⇒ “Calling Dick Tracy!”
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Designing transfer functions

Time domain:

Mu′′ + Cu′ + Ku = bφ(t)

y(t) = pT u

Frequency domain:

−ω2Mû + iωCû + Kû = bφ̂(ω)

ŷ(ω) = pT u

Transfer function:

H(ω) = pT (−ω2M + iωC + K)−1b

ŷ(ω) = H(ω)φ̂(ω)
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Damping and filters
20 log10 |H(ω)|

ω

Want “sharp” poles for narrowband filters

=⇒ Want to minimize damping
Electronic filters have too much
Understanding of damping in MEMS is lacking
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Damping andQ

Designers want high quality of resonance (Q)
Dimensionless damping in a one-dof system:

d2u

dt2
+ Q−1du

dt
+ u = F (t)

For a resonant mode with frequency ω ∈ C:

Q :=
|ω|

2 Im(ω)
=

Stored energy
Energy loss per radian
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Sources of damping

Fluid damping
Air is a viscous fluid (Re � 1)
Can operate in a vacuum
Shown not to dominate in many RF designs

Material losses
Low intrinsic losses in silicon, diamond, germanium
Terrible material losses in metals

Thermoelastic damping
Volume changes induce temperature change
Diffusion of heat leads to mechanical loss

Anchor loss
Elastic waves radiate from structure
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Example: Disk resonator

SiGe disk resonators built by E. Quévy
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Substrate model

Goal: Understand energy loss in disk resonator

Dominant loss is elastic radiation from anchor

Resonator size � substrate size
Substrate appears semi-infinite

Possible semi-infinite models
Matched asymptotic modes
Dirichlet-to-Neumann maps
Boundary dampers
Higher-order local ABCs
Perfectly matched layers
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Perfectly matched layers

Apply a complex coordinate transformation

Generates a non-physical absorbing layer

No impedance mismatch between the computational
domain and the absorbing layer

Idea works with general linear wave equations
First applied to Maxwell’s equations (Berengér 95)
Similar idea earlier in quantum mechanics
(exterior complex scaling, Simon 79)
Applies to elasticity in standard FEM framework
(Basu and Chopra, 2003)
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1-D model problem

Domain: x ∈ [0,∞)

Governing eq:
∂2u

∂x2
−

1

c2

∂2u

∂t2
= 0

Fourier transform:

d2û

dx2
+ k2û = 0

Solution:
û = coute

−ikx + cine
ikx
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1-D model problem with PML

Transformed domain
x

σ

Regular domain

dx̃

dx
= λ(x) where λ(s) = 1 − iσ(s)

d2û

dx̃2
+ k2û = 0

û = coute
−ikx̃ + cine

ikx̃
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1-D model problem with PML

Transformed domain
x

σ

Regular domain

dx̃

dx
= λ(x) where λ(s) = 1 − iσ(s)

1

λ

d

dx

(

1

λ

dû

dx

)

+ k2û = 0

û = cout exp

(

−k

∫ x

0
σ(s) ds

)

e−ikx+cin exp

(

k

∫ x

0
σ(s) ds

)

eikx
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1-D model problem with PML

Transformed domain
x

σ

Regular domain

If solution clamped at x = L then

cin

cout
= O(e−kγ) where γ =

∫ L

0
σ(s) ds
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1-D model problem illustrated
Outgoing exp(−ix̃) Incoming exp(ix̃)

Transformed coordinate

Re(x̃)

Im
(x̃
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1-D model problem illustrated
Outgoing exp(−ix̃) Incoming exp(ix̃)

Transformed coordinate

Re(x̃)
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Clamp solution at transformed end to isolate outgoing wave.
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Elastic PMLs

∫

Ω
ε(w) : C : ε(u) dΩ − ω2

∫

Ω
ρw · u dΩ =

∫

Γ
w · tndΓ

ε(u) =

(

∂u

∂x

)s

=

(

∂u

∂x
Λ−1

)s

Start from standard weak form
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Elastic PMLs

∫

Ω
ε̃(w) : C : ε̃(u) JΛ dΩ − ω2

∫

Ω
ρw · u JΛ dΩ =

∫

Γ
w · tn dΓ

ε̃(u) =

(

∂u

∂x̃

)s

=

(

∂u

∂x
Λ−1

)s

Start from standard weak form

Introduce transformed x̃ with ∂x̃
∂x = Λ

Map back to reference system (JΛ = det(Λ))
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Elastic PMLs

∫

Ω
ε̃(w) : C : ε̃(u) JΛ dΩ − ω2

∫

Ω
ρw · u JΛ dΩ =

∫

Γ
w · tn dΓ

ε̃(u) =

(

∂u

∂x̃

)s

=

(

∂u

∂x
Λ−1

)s

Start from standard weak form

Introduce transformed x̃ with ∂x̃
∂x = Λ

Map back to reference system (JΛ = det(Λ))

All terms are symmetric in w and u
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Finite element implementation

x(ξ)

ξ2

ξ1

x1

x2 x̃2

x̃1

Ωe Ω̃e

Ω�

x̃(x)

Combine PML and isoparametric mappings

k
e =

∫

Ω�

B̃
T
DB̃J̃dΩ�

m
e =

(
∫

Ω�

ρNT
NJ̃dΩ�

)

Matrices are complex symmetric
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Continuum 2D model problem

k

L

λ(x) =

{

1 − iβ|x − L|p, x > L

1 x ≤ L.

1

λ

∂

∂x

(

1

λ

∂u

∂x

)

+
∂2u

∂y2
+ k2u = 0
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Continuum 2D model problem

k

L

λ(x) =

{

1 − iβ|x − L|p, x > L

1 x ≤ L.

1

λ

∂

∂x

(

1

λ

∂u

∂x

)

− k2
yu + k2u = 0
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Continuum 2D model problem

k

L

λ(x) =

{

1 − iβ|x − L|p, x > L

1 x ≤ L.

1

λ

∂

∂x

(

1

λ

∂u

∂x

)

+ k2
xu = 0

1D problem, reflection of O(e−kxγ)
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Discrete 2D model problem

k

L

Discrete Fourier transform in y

Solve numerically in x

Project solution onto infinite space traveling modes

Extension of Collino and Monk (1998)
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Nondimensionalization

k

L

λ(x) =

{

1 − iβ|x − L|p, x > L

1 x ≤ L.

Rate of stretching: βhp

Elements per wave: (kxh)−1 and (kyh)−1

Elements through the PML: N
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Discrete reflection behavior

Number of PML elements

lo
g
1
0
(β

h
)

− log10(r) at (kh)−1 = 10
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Quadratic elements, p = 1, (kxh)−1 = 10
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Discrete reflection decomposition

Model discrete reflection as two parts:

Far-end reflection (clamping reflection)
Approximated well by continuum calculation
Grows as (kxh)−1 grows

Interface reflection
Discrete effect: mesh does not resolve decay
Does not depend on N

Grows as (kxh)−1 shrinks
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Discrete reflection behavior

Number of PML elements
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Number of PML elements
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Quadratic elements, p = 1, (kxh)−1 = 10

Model does well at predicting actual reflection

Similar picture for other wavelengths, element types,
stretch functions

D. Bindel, USNCCM8 – p.27/45



Choosing PML parameters

Discrete reflection dominated by
Interface reflection when kx large
Far-end reflection when kx small

Heuristic for PML parameter choice
Choose an acceptable reflection level
Choose β based on interface reflection at kmax

x

Choose length based on far-end reflection at kmin
x
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Eigenvalues and model reduction

Want to know about the transfer function H(ω):

H(ω) = pT (K − ω2M)−1b

Can either

Locate poles of H (eigenvalues of (K,M))

Determine Q = |ω|
2 Im(ω)

Plot H in a frequency range (Bode plot)

Solve both problems with the same tool:
Krylov subspace projections
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Projecting via Arnoldi

Build a Krylov subspace basis by shift-invert Arnoldi

Choose shift σ in frequency range of interest

Form and factor Kshift = K − σ2M

Use Arnoldi to build an orthonormal basis V for

Kn = span{u0, K
−1
shiftu0, . . . , K

−(n−1)
shift u0}

Compute eigenvalues and reduced models from projection

Compute eigenvalues from (V ∗KV, V ∗MV )

Approximate H(ω) by Galerkin projection

H(ω) ≈ (V ∗p)∗(V ∗KV − ω2V ∗MV )−1(V ∗b)
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Accurate eigenvalues

Hermitian systems: Rayleigh-Ritz is optimal
Raleigh quotient is stationary at eigenvectors

ρ(v) =
v∗Kv

v∗Mv

First-order accurate eigenvectors =⇒
second-order accurate eigenvalues

Can we obtain optimal accuracy for PML eigenvalues?
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Accurate eigenvalues

PML matrices are complex symmetric
Modified RQ is stationary at eigenvectors

θ(v) =
vT Kv

vT Mv

=⇒ second-order accurate eigenvalues
Hochstenbach and Arbenz, 2004
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Accurate model reduction

Accurate eigenvalues from v and v̄ together

Accurate model reduction in the same way
Build new projection basis from V :

W = orth[Re(V ), Im(V )]

span(W ) contains both Kn and K̄n

Double convergence vs projection with V

W is a real-valued basis
Projected system remains complex symmetric
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Disk resonator simulations
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Disk resonator mesh
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Mesh convergence

Mesh density
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Model reduction performance
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Model reduction performance

Frequency (MHz)

|H
(ω

)
−

H
r
e
d
u
c
e
d
(ω

)|
/
H

(ω
)|

Arnoldi ROM

Structure-preserving ROM

45 46 47 48 49 50

10−6

10−4

10−2

D. Bindel, USNCCM8 – p.40/45



Response of the disk resonator
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Time-averaged energy flux
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Q variation

Film thickness (µm)
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Explanation of Q variation

Real frequency (MHz)
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Conclusions

MEMS damping is important and non-trivial

Elastic PMLs work well for modeling anchor loss
Formulation fits naturally with mapped elements
Estimate multi-D performance with simple models

Use complex symmetry to compute eigenvalues and
reduced models

Simulations show effects that hand analysis misses

Reference:
Bindel and Govindjee, “Elastic PMLs for resonator anchor
loss simulation,” IJNME (to appear).
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