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MEMS Basics

Micro-electro-mechanical systems
Chemical, fluid, thermal, optical (MECFTOMS?)

Applications:
Sensors (inertial, chemical, pressure)
Ink jet printers, biolab chips
RF devices

Use IC fabrication technology

Large surface area / volume ratio

Still mostly classical (vs. nanosystems)
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SUGAR

Goal: “Be SPICE to the MEMS world”

Fast enough for early design stages

Simple enough to attract users

Support design, analysis, optimization, synthesis

Verify models by comparison to measurement

System assembly

Models

Solvers

Matlab Web Library

Sensitivity analysis

Static analysis

Steady−state analysis

Transient analysis

Results

Netlist

Interfaces
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SUGAR: Analysis of a micromirror

(Mirror design by M. Last)
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SUGAR: Design synthesis

Simulating RF MEMS – p.6/21



SUGAR: Comparison to measurement
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Why RF resonators?

Microguitars from Cornell University (1997 and 2003)

Frequency references

Sensing elements

Filter elements

Neural networks

Really high-pitch guitars
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Micromechanical filters

Mechanical filter

Capacitive senseCapacitive drive

Radio signal

Filtered signal

Mechanical high-frequency (high MHz-GHz) filter

Saves power and cost over electronic filters

Advantage over piezo-actuated quartz SAW filters
Integrated into chip
Low power
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Governing equations

Time domain:

Mu′′ + Cu′ + Ku = Pφ

y = V T u

Frequency domain:

H(ω) = V T (−ω2M + iωC + K)−1P

ŷ = Hφ̂
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First proposed design: Checkerboard
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Array of loosely coupled resonators

Anchored at outside corners

Excited at northwest corner

Sensed at southeast corner

Surfaces move only a few nanometers
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Design questions
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Where should drive and sense be placed?

How should the individual resonators be connected?

How should the system be anchored?

How many components? What topology?
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Checkerboard response

95 MHz 100 MHz
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Checkerboard response
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Current questions

How do we model damping?

How do we compute frequency response quickly?

How do we track dependence on geometry?

How do we optimize designs?
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Energy loss and Q

Goal: strong output signal and high Q

Challenge: Model details of energy loss
Anchor loss
Thermoelastic damping
Akheiser damping
Air damping

How are losses affected by fabrication errors (e.g.
anchor misalignment)?
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Model reduction

Sun Ultra 10
Sec n

ROM: 28 4834
Full: 1474 50

Project onto an unusual Krylov subspace

Preserve second order system structure

Plan to use substructuring
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Mode tracking: Shear ring resonator
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hw = 5.000000e−05

                    Value = 2.66E+07 Hz.

Ring is driven in a shearing motion

Can couple ring to other resonators

How do we track the desired mode?
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Mode tracking: Results
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Analytic result

Predictor-corrector iteration

Convergence criteria, step control based on
|q(sk)

T q(sk+1)|
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Transfer function optimization

Choose geometry to make a good bandpass filter

What is a “good bandpass filter?”
|H(ω)| is big on [ωl, ωr]

|H(ω)| is tiny outside this interval

How do we optimize?
Overton’s gradient sampling method
Use Byers-Boyd-Balikrishnan algorithm for distance
to instability to minimize |H(ω)| on [ωl, ωr]

Small Hamiltonian eigenproblem (with ROM)
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Conclusions

RF MEMS are an interesting source of problems
Understanding the physics
Applying numerical tools

http://bsac.berkeley.edu/cadtools/sugar/sugar/

http://www.cs.berkeley.edu/∼dbindel/feapmex.html
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