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MEMS Basics

Micro-electro-mechanical systems
s Chemical, fluid, thermal, optical (MECFTOMS?)

Applications:

s Sensors (inertial, chemical, pressure)
s Ink jet printers, biolab chips

» RF devices

Use IC fabrication technology
Large surface area / volume ratio
Still mostly classical (vs. nhanosystems)
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SUGAR

Goal: “Be SPICE to the MEMS world”

# Fast enough for early design stages

# Simple enough to attract users

#® Support design, analysis, optimization, synthesis
# Verify models by comparison to measurement
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SUGAR: Analysis of a micromirror

V1 =17.93 um
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(Mirror design by M. Last)
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SUGAR: Design synthesis
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SUGAR: Comparison to measurement
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Microguitars from Cornell University (1997 an

Frequency references
Sensing elements
Filter elements
Neural networks
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Really high-pitch guitars

Why RF resonators?
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Micromechanical filters

V==

Radio signal

Mechanical filter

| I Filtered signal

Capacitive drive Capacitive sense

# Mechanical high-frequency (high MHz-GHZz) filter
# Saves power and cost over electronic filters

#® Advantage over piezo-actuated quartz SAW filters
s Integrated into chip
s Low power
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Governing equations

Time domain:

Mu" 4+ Cu' + Ku Po
y = Vi

Frequency domain:

Hw) = VI (—w*M +iwC +K)™'P
y = H¢
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First proposed design: Checkerboard

Array of loosely coupled resonators
Anchored at outside corners
Excited at northwest corner
Sensed at southeast corner
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Surfaces move only a few nanometers
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Design questions

Where should drive and sense be placed?

How should the individual resonators be connected?
How should the system be anchored?

How many components? What topology?
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Checkerboard response

95 MHz 100 MHz
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Checkerboard response
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How ¢
How ¢
How O

How O

Current guestions

o0 we model damping?

0 we compute frequency response quickly?
0 we track dependence on geometry?

0 we optimize designs?
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Energy loss and ()

# Goal: strong output signal and high @)

# Challenge: Model details of energy loss
» Anchor loss
» Thermoelastic damping
s Akheiser damping
s Air damping
# How are losses affected by fabrication errors (e.g.
anchor misalignment)?
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Model reduction
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#® Project onto an unusual Krylov subspace
#® Preserve second order system structure

# Plan to use substructuring
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Mode tracking: Shear ring resonator

# Ring is driven in a shearing motion

# Can couple ring to other resonators
® How do we track the desired mode?
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Mode tracking: Results
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® Predictor-corrector iteration

# Convergence criteria, step control based on
lq(sx) " q(sp+1)]
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Transfer function optimization

#® Choose geometry to make a good bandpass filter

# What is a “good bandpass filter?”
s |H(w)|Is big on |w;,w,]
s |H(w)| Is tiny outside this interval
# How do we optimize?
s Overton’s gradient sampling method
s Use Byers-Boyd-Balikrishnan algorithm for distance
to instability to minimize |H(w)| on |w;, wy]
o Small Hamiltonian eigenproblem (with ROM)
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Conclusions

# RF MEMS are an interesting source of problems
s Understanding the physics
s Applying numerical tools

http://bsac. ber kel ey. edu/ cadt ool s/ sugar/ sugar/
http://ww. cs. berkel ey. edu/ ~dbi ndel / f eapnex. ht m
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