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a b s t r a c t

The Continuation of Invariant Subspaces (CIS) algorithm produces a smoothly-varying
basis for an invariant subspace R(s) of a parameter-dependent matrix A(s). We have
incorporated the CIS algorithm into Cl_matcont, a Matlab package for the study of
dynamical systems and their bifurcations. Using subspace reduction, we extend the
functionality of Cl_matcont to large-scale computations of bifurcations of equilibria. In
this paper,we describe the algorithms and functionality of the resultingMatlab bifurcation
package Cl_matcontL. The novel features include: new CIS-based, continuous, well-scaled
test functions for codimension 1 and 2 bifurcations; detailed description of locators for
large problems; and examples of bifurcation analysis in large sparse problems.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Parameter-dependent Jacobian matrices provide important information about dynamical systems

du
dt

= f (u, α), where u ∈ Rn, α ∈ R, f (u, α) ∈ Rn. (1)

For example, to analyze stability of branches (u(s), α(s)) of steady states

f (x) ≡ f (u, α) = 0, (2)

we look at the linearization fu(u(s), α(s)). For general background on dynamical systems theory we refer to the literature, in
particular [1]. We are interested in continuation and bifurcation analysis of the stationary problem (2) in the case when the
dimension n is large. In this setting, direct methods to detect and locate bifurcations are expensive; but if we can multiply
by fu quickly, we can use projection methods. For example, consider a spatial discretization of an elliptic partial differential
equation. In this case, fu is typically large and sparse, but a small invariant subspaceR(s) corresponding to a few eigenvalues
near the imaginary axis provides information about stability and bifurcations.

Numerical continuation for large nonlinear systems of this form is an active area of research, and the idea of subspace
projection is common in many methods being developed. The continuation algorithms are typically based on Krylov
subspaces, or on recursive projection methods that use a time integrator as a black box to identify the low-dimensional
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invariant subspacewhere interesting dynamics take place; see e.g. [2–5] and references there. The review article [6] provides
an overview of current techniques and typical applications of numerical bifurcation analysis in fluid dynamical problems.

To our knowledge, the C++ package LOCA [7] is the only general-purpose bifurcation analysis package that targets
large-scale equilibrium systems on parallel computers. In 1-parameter continuation in LOCA, bifurcations are detected by
finding an eigenvalue whose real part changes sign. Then augmented systems are used to locate fold, pitchfork, and Hopf
bifurcations, and to continue these bifurcationswith respect to a second parameter. pde2path [8] is a recentMatlab package
for 1-parameter continuation and bifurcation in 2D elliptic systems. A simple bifurcation point is detected using sign (det fu)
as a test function, a bisection method is then used to locate it, and branch switching is also supported. We are not aware of
any bifurcation packages for large systems that compute codimension-2 bifurcations on 1-parameter curves of bifurcations.
The starting point for our work is the command line code Cl_matcont [9]. Cl_matcont and its GUI version matcont [10]
are Matlab packages for the study of small and moderate-size dynamical systems and their bifurcations. They both use
minimally augmented systems [11] for continuation of bifurcations.

The Continuation of Invariant Subspaces (CIS) algorithm produces a smooth orthonormal basis for an invariant subspace
R(s) of a parameter-dependentmatrix A(s) [12–16]. The CIS algorithmuses projectionmethods to deal with large problems,
though other approaches have been used in closely related work [17]. We have incorporated the CIS algorithm into
Cl_matcontL to extend its functionality to large scale bifurcation computations of equilibria via subspace reduction. The
result is a Matlab bifurcation package Cl_matcontL [18,19]. In this paper we describe the algorithms and functionality of
Cl_matcontL and give representative examples. Some initial results in this direction are reported in [20,21]. See also [16,22],
and references there for analysis of the algorithms in Cl_matcontL. See [23] for an application of Cl_matcontL to a
bifurcation analysis of the mitochondrial respiratory chain.

The novel features include: new CIS-based, continuous, well-scaled test functions for codimension 1 and 2 bifurcations,
especially useful for large problems; detailed description of locators for large problems; and examples of bifurcation analysis
of large, sparse equilibrium systems with 20,000–25,000 unknowns, including detecting and locating codimension 1 and 2
bifurcations.

The rest of the paper is organized as follows. Section 2 contains preliminaries. In Section 3, we introduce and analyze
four new CIS-based test functions for detecting fold, Hopf, and branch point bifurcations. This may lead to a more reliable
detection of singularities. We also note that the CIS algorithm ensures that only eigenvalues of a matrix that is much smaller
than A(s), namely, the restriction C(s) := A(s)|R(s), can cross the imaginary axis, so that C(s) provides most of the relevant
information about bifurcations. In addition, the subspace R(s) that is continued is adapted to track behavior relevant to
bifurcations. In Section 4, we use subspace reduction to extend to large-scale equilibrium problems aminimally augmented
system technique for locating fold, Hopf, and branch point bifurcations, and for branch switching. Some material in this
section is a review of previous results (to make this paper self-contained), as indicated in the text. In Section 5, we extend
the results in Sections 3 and 4 to continuation of fold and Hopf bifurcations and to detecting and locating most generic
codimension-2 bifurcations on those two curves. Section 6 contains several representative examples of bifurcation analysis
in large sparse equilibrium problems (2). These examples support the assertion that the new CIS-based algorithms can
accurately, reliably, and within a reasonable time detect, locate, and continue singularities of interest in large systems.

2. Preliminaries

Notation. If A is a matrix, then A∗ denotes the transposed matrix in the real case and the complex conjugate transposed
matrix in the complex case.

Let f (x) ≡ f (u, α) be a smooth function and x0 = (u0, α0) a given point. We then use the notation

f 0u v = fu(x0)v, f 0uuvw = fuu(x0) [v,w] ,

as a short hand for the derivatives of f with respect to u evaluated at x0 and as a multi-linear form applied to vectors v
andw.

2.1. Subspace reduction for large systems

Let A(s) ∈ Rn×n, s ∈ [0, 1], be a Ck parameter-dependent matrix. For somem ≪ n, let

Λ1(s) := {λi(s)}mi=1 , Re λm ≤ · · · ≤ Re λmu+1 ≤ 0 < Re λmu ≤ · · · ≤ Re λ1, (3)

be a small set consisting of the rightmost eigenvalues of A(s). Then an application of the CIS algorithm [15,16] to A(s)
produces an orthonormal basis Q1(s) ∈ Rn×m for the invariant subspace R(s) corresponding to Λ1(s), and we consider
the restriction

C(s) := T11(s) = Q ∗

1 (s)A(s)Q1(s) ∈ Rm×m, (4)

of A(s) onto R(s). Here, T11 comes from the block Schur decomposition

A(s) =

Q1(s) Q2(s)

 
T11(s) T12(s)

0 T22(s)

 
Q1(s) Q2(s)

∗
. (5)
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Moreover, the CIS algorithm ensures that the only eigenvalues of A(s) that can cross the imaginary axis come fromΛ1(s), and
these are exactly the eigenvalues of C(s).We use this result to construct newmethods for detecting and locating bifurcations.
Note, thatΛ1(s) is computed automatically whenever C(s) is computed.

2.2. Solving bordered systems

Consider linear systems of the form

M

x
y


=


f
g


, (6)

whereM has the bordered form

M =


A B
C∗ D


, (7)

with A ∈ Rn×n large and sparse, B, C ∈ Rn×k,D ∈ Rk×k, x, f ∈ Rn, y, g ∈ Rk, and k ≪ n; see [24,25], and [11, Section 3.6].
When both M and A are well-conditioned, (6) can be solved accurately by two different block LU factorizations of M: BED
(block elimination Doolittle), based on the factorization

A B
C∗ D


=


In 0
W ∗ Ik

 
A B
0 ∆∗


; (8)

and BEC (block elimination Crout), based on the factorization
A B
C∗ D


=


A 0
C∗ ∆

 
In V
0 Ik


. (9)

When M is well-conditioned and A is ill-conditioned, (6) can be solved accurately by a combination of BED and BEC, called
BEM (mixed block elimination) in the case k = 1 and BEMW in the case k > 1.

Algorithm 1. BED (Block Elimination Doolittle) algorithm.
Step 1 Solve

A∗C̄ = C .
Step 2 Compute

D̄ ≡ D − C̄∗B.
Step 3 Solve

D̄y = g − C̄∗f . (10)
Step 4 Solve.

Ax = f − By.

Remark 1. We use the SVD decomposition, which has better stability properties than LU factorization, to solve the small
linear system (10).

Remark 2. Weuse the BEM algorithm to solve linear systems for locating and continuing folds since A can be ill-conditioned
in this case. We use the BED algorithm to solve linear systems for locating and continuing Hopf bifurcations. In this case A
is usually well-conditioned, but D̄ can be ill-conditioned if we are not careful with our choice of the minimally augmented
system. We hence consider matrices Mi with different borders, and use Steps 1 and 2 of Algorithm 1 to choose the index i
so that D̄i has the smallest condition number. This computation is summarized in Algorithm 2.

Algorithm 2. Select a bordered matrixMi so that the corresponding D̄i has the smallest condition number.

Input: Mi :=


A B
C∗
i Di


nonsingular, where A ∈ Rn×n and nonsingular B ∈ Rn×k, Ci ∈ Rn×k,Di ∈ Rk×k and 1 ≤ i ≤ K .

Step 1 Solve the linear system:
A∗


C̄1 · · · C̄K


=


C1 · · · CK


. (11)

Step 2 Compute
D̄1 · · · D̄K


=


D1 · · · DK


−


C̄∗

1 · · · C̄∗

K


B. (12)

Step 3 Compute the condition numbers of D̄1, . . . , D̄K .
Output: Mi, i, where D̄i has the smallest condition number.

Remark 3. In Step 1, we solve a linear system with k · K right hand sides, where k · K ≪ n. Specifically, k = 2 and K = 6 in
the case of locating a Hopf bifurcation, and k = 3 and K = 6 in the case of a continuation of a Hopf bifurcation (the size of
the border is increased by one). In both cases, these computations are cheap.
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3. Detecting fold, Hopf, and branch point bifurcations

3.1. Introduction

Bifurcations. Let x(s) = (u(s), α(s)) ∈ Rn
× R be a smooth local parameterization of a solution branch of the system (2). We

write the Jacobianmatrix along this path asA(x(s)) = fu(x(s)).Wewill also use the notationA = A(x), A0
= A(x0), fx = fx(x),

and, for restriction C(x) of A(x) onto R(s) defined by (4), C = C(x), C0
= C(x0).

A solution point x0 = x(s0) is a bifurcation point if Re λi(s0) = 0 for at least one eigenvalue λi(s0) of A(s0). A test function
φ(s) = ψ(x(s)) is a (typically) smooth scalar function that has a regular zero at a bifurcation point. A bifurcation point
between consecutive continuation points x(sk) and x(sk+1) is detectedwhen

ψ (x(sk)) ψ (x(sk+1)) < 0. (13)

Once a bifurcation point has been detected, it can be located by solving the system
f (x) = 0,
g(x) = 0, (14)

for an appropriate function g .
On a solution branch x(s) of the system (2), we consider the two generic codimension-1 bifurcations, fold or limit point

(LP) and Hopf (H) bifurcations, and also branch point (BP) bifurcations.

Definition 1. We call x0 a simple fold if

(S1) 1
2w

∗f 0uuvv ≠ 0, and
(S2) w∗f 0α ≠ 0,

where A0v = A0∗w = 0, v∗v = w∗v = 1.

Definition 2. Wecall x0 a simpleHopf point ifA0 has an imaginary conjugate eigenpairλ = ±iω, ω > 0, and d (Re λ) /ds ≠ 0
at s0.

Test functions for bifurcations in Cl_matcont. To detect and locate branch points, Hopf points, and limit points, Cl_matcont
uses the following test functions (see e.g. [1,11,26,9]):

ψM
BP (x(s)) := det


A fα
u̇∗ α̇


, (15)

ψM
H (x(s)) := det [2A(s)⊙ In] =


1≤i<j≤n


λi(s)+ λj(s)


, (16)

ψM
LP (x(s)) := α̇, (17)

where ẋ ≡ dx/ds and ⊙ is the bialternate product [11], 2A(s)⊙ In ∈ Rb(n)×b(n), b(n) =
n(n−1)

2 . The bifurcations are defined
by:

BP : ψM
BP = 0, H : ψM

H = 0, LP : ψM
LP = 0, ψM

BP ≠ 0. (18)

3.2. Numerical continuation of equilibria

For numerical continuation of equilibria, one solves (2) together with an additional scalar equation. To use a Newton-like
method, one needs the Jacobian matrix of the resulting system, which has a bordered form (7). Here we can multiply by A
quickly, bothM and A are well-conditioned, and k = 1. Hence we use BED to solve (6) in this case.

To compute the tangent vector v0 at the starting point x0 = (u0, α0), we use the equation f 0u u̇ + f 0α α̇ = 0. Specifically,
we first solve the linear system A0v = f 0α for v, and then set v0 =


v −1

∗
, v0 =

v0
∥v0∥

.

3.3. Detecting singularities

Todetect fold points, branchpoints, andHopf points,wedefine four newcontinuous,well-scaled test functions as follows.

Lemma 3. Let Λ(s) := {λi(s)}ni=1 be the set of eigenvalues of A(s), and let Λ1(s) = {λi(s)}mi=1 be a given set (3) of the rightmost
eigenvalues of A(s), where at least Re (λm(s)) < 0. Define also

mu(s) := card{λi(s) : 1 ≤ i ≤ m, Re(λi(s)) > 0} (19)
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and a piecewise smooth function

λmin(s) := min {|(λi(s))| : 1 ≤ i ≤ m} . (20)

Also given is the factorization
A fα
u̇∗ α̇


=


In 0
w∗ 1

 
A b
0 δ∗


. (21)

Further, define

Mu(s) := card{λi(s)+ λj(s) : 1 ≤ i < j ≤ m, Re(λi(s)+ λj(s)) > 0} (22)

and a piecewise smooth function:

µmin(s) := min

|(λi(s)+ λj (s))| : 1 ≤ i < j ≤ m


. (23)

Then the new piecewise smooth CIS test functions defined below satisfy:
1.

ψBP (x(s)) := λmin(s)(−1)mu(s)sign(δ∗(s)) (24)

changes sign if and only if ψM
BP (x(s)) does.

2.

ψLP (x(s)) := λmin(s)(−1)mu(s) (25)

changes sign if and only if ψM
LP (x(s)) does and ψBP (x(s)) is nonzero.

3.

ψ
(1)
H (x(s)) := µmin(s)(−1)Mu(s) (26)

changes sign if and only if ψM
H (x(s)) does. Moreover,

ψ
(2)
H (x(s)) := (−1)m

pairs
u , (27)

where mpairs
u (s) is the number of complex eigenvalues fromΣ1(s) with Re(λi(s)) ≥ 0 and Im(λi(s)) > 0, changes sign if and

only if the number of unstable complex conjugate eigenpairs fromΛ1(s) changes.

Proof. Easy. �

Using the above test functions, we can detect the singularities:

LP : ψBP (x(sk)) ψBP (x(sk+1)) > 0 and ψLP (x(sk)) ψLP (x(sk+1)) < 0, (28)

H : ψ
(1)
H (x(sk)) ψ

(1)
H (x(sk+1)) < 0 and ψ

(2)
H (x(sk)) ψ

(2)
H (x(sk+1)) < 0, (29)

BP : ψBP (x(sk)) ψBP (x(sk+1)) < 0. (30)

Remark 4. The principal advantage of the new CIS-based test function ψLP (25), as compared with the standard one ψM
LP

(15), is that ψLP is based on an eigenvalue, like all other new CIS-based test functions in Cl_matcontL. Hence it is scaled in
the same way as all other new CIS-based test functions, whereas the α-component of the normalized tangent vector to the
curve might be very small.

Remark 5. The test functionψ (1)
H replacesψM

H . Clearly, bothψM
H andψ (1)

H are zero not only when A(s) has a pure imaginary
pair of eigenvalues (±iω), but also if there is a pair of real eigenvalues with sum zero; ψ (2)

H is used to exclude this case.

4. Locators for fold, Hopf and branch points

We useminimally augmented systems (see [11,10,9]) with A(x(s)) replaced by its restriction C(x(s)) onto R(s)whenever
possible.

4.1. Locator for a fold

Let x0 be a fold point. Then A0 has rank n − 1. The minimally augmented system to locate x0 consists of n + 1 scalar
equations for n + 1 components x = (u, α) ∈ Rn

× R,
f (x) = 0,
g(x) = 0, (31)



Author's personal copy

D. Bindel et al. / Journal of Computational and Applied Mathematics 261 (2014) 232–248 237

where g = g(x) is the last component of the solution vector (v, g) ∈ Rm
× R to the (m+ 1)-dimensional bordered system:

C wbor
v∗

bor 0

 
v
g


=


0m×1
1


, (32)

where vbor ∈ Rm is close to a null vector of C0, andwbor ∈ Rm is close to a null vector of C0∗ (which ensures that the matrix
in (32) is nonsingular). For g = 0, system (32) implies Cv = 0, v∗

borv = 1. Thus (31) and (32) hold at x = x0, which is a
regular zero of (31).

The system (31) is solved using Newton’s method, and its Jacobian matrix is:

J =


fx
gx


=


A fα
gu gα


∈ R(n+1)×(n+1), (33)

where gx is computed as

gx = −w∗Cxv, (34)

withw obtained by solving
C∗ vbor
w∗

bor 0

 
w
g


=


0
1


. (35)

To reduce the cost of computing J , we use an approximation

Cxv =

Q ∗

1 (x)A(x)Q1(x)

x v ≈ Q ∗

1 AxQ1v (36)

and a first-order finite difference approximation

Ax(x)v = (fx)uv =

fx

u + δ z

∥z∥ , α


− fx(u, α)

δ
∥v∥ + O(δ), z := Q1v ∈ Rn.

Combining the above two equations, we get

Cx(x)v ≈ Q ∗

1

fx

u + δ z

∥z∥ , α


− fx(u, α)

δ
∥z∥ , z := Q1v ∈ Rn. (37)

Finally we note that at each Newton step for solving (31), linear systems with the matrix (33) should be solved by the
BEM, since the matrix (33) has the form (7) with k = 1 and A can be ill-conditioned.

Remark 6. An approximation (36) to Cx(x)v is accurate only when the subspace R(s) does not vary much at x : (Q1(x))x is
‘small’. This does not seem to cause difficulties in practice. In all our computations, we observed convergence of the Newton
iteration, possibly with step size reduction in some cases.

Algorithm 3. One step of Newton’s method for locating a fold.

Input: Initial point x = (u, α), the matrices fx, C and parameters vbor, wbor.
Step 1 Set B :=


C wbor
v∗
bor 0


.

Step 2 Solve B

v
g


=


0m×1

1


for (v, g) ∈ Rm

× R.

Step 3 Solve B∗


w
g


=


0m×1

1


for (w, g) ∈ Rm

× R.

Step 4 Set vbor,new =
v

∥v∥
, wbor,new =

w
∥w∥

.

Step 5 Compute gx = − (Q1w)
∗

fx(u+δ z
∥z∥ ,α)−fx(u,α)

δ
∥z∥ , z = Q1v.

Step 6 Set J =


fx
gx


, compute


f
g


.

Step 7 Solve J1x = −


f
g


for1x ∈ Rn+1 and set xnew = x +1x.

Step 8 Compute fx = fx(xnew) and then C = C(xnew) using the CIS algorithm.
Output: xnew = (unew, αnew).

Once the fold point x0 = (u0, α0) is computed, the corresponding quadratic normal form coefficient

a :=
1
2
(w, B (v,v)) ≡

1
2
w∗f 0uuvv (38)
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is computed approximately as

a ≈ ah :=
1

2δ2
w∗ [f (u0 + δv, α0)+ f (u0 − δv, α0)] , v ≈

Q1v

∥Q1v∥
, (39)

where w is computed directly from A∗w = 0,v∗w = 1.

4.2. Locator for a Hopf bifurcation

We summarize here results from [27]. Let x0 be a Hopf point, and let κ0 be the square of the imaginary part of the Hopf
bifurcation eigenvalue (λ = iω0). Then A0 has rank n. The minimally augmented system to locate x0 consists of n + 2 scalar
equations for n + 2 components (x, κ) = (u, α, κ) ∈ Rn

× R × R, (i1, j1, i2, j2) ∈ {1, 2}: f (x) = 0,
gi1j1 (x, κ) = 0,
gi2j2 (x, κ) = 0.

(40)

The Jacobian matrix of system (40) is: fu fα 0n×1
(gi1j1)u (gi1j1)α (gi1j1)κ
(gi2j2)u (gi2j2)α (gi2j2)κ


∈ R(n+2)×(n+2), (41)

where gij ≡ gij (x, κ). The two gij in (40) are selected from four gij, the entries of the solution matrix

v1 v2
g11 g12
g21 g22


, v1, v2 ∈

Rm, gij ∈ R, to the (m + 2)-dimensional bordered system:C2
+ kIm w1,bor w2,bor
v∗

1,bor 0 0
v∗

2,bor 0 0

 
v1 v2
g11 g12
g21 g22


=

0m×1 0m×1
1 0
0 1


, (42)

where v1,bor, v2,bor ∈ Rm are close to an orthonormal basis of N


C0
2

+ κ Im

, and w1,bor, w2,bor ∈ Rm are close to an

orthonormal basis of N


C0
2

+ κ Im
∗

(which ensures that the matrix in (42) is nonsingular). For g = 0, system (42)
implies

C2
+ κ Imv

 
v1 v2


= 0m×2,


v1,bor v2,bor

∗ 
v1 v2


= I2.

Thus (40) and (42) hold at (x, κ) = (x0, κ0), which is a regular zero of (40).

Remark 7. Depending on the possible choice of i1, j1, i2, j2, there are K = 6 different Jacobianmatrices (41).We solve linear
systemswith the Jacobianmatrix (41), which has the bordered form (7), using Algorithm 1; andwe use Algorithm 2 to select
the set {i1, j1, i2, j2} so that the matrix D̄ in (10) has the smallest condition number.

Setting up the Jacobian matrix (41). The entries (gi1j1)u and (gi2j2)u are computed as

(gi1j1)u = −w∗

i1(C
2)uvj1 , (gi2j2)u = −w∗

i2(C
2)uvj2 , (43)

withwi obtained by solving(C2
+ κ Im)∗ v1,bor v2,bor
w∗

1,bor 0 0
w∗

2,bor 0 0

 
w1 w2
h11 h12
h21 h22


=


0m×2
I2


, (44)

where (C2)uvi is computed as

(C(x)2)uvi ≈ Q ∗

1

 fu

u + δ

y
∥y∥ , α


− fu(u, α)

δ
∥y∥ + C(x)Q ∗

1

fu

u + δ z

∥z∥ , α


− fu(u, α)

δ
∥z∥

 , (45)

z ≡ Q1vi, y ≡ Q1C(x)vi ∈ Rn.

Furthermore, (gi1j1)α and (gi2j2)α are computed as

(gi1j1)α = −w∗

i1(C
2)αvj1 , (gi2j2)α = −w∗

i2(C
2)αvj2 , (46)
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where (C2)αvi is computed as

(C(x)2)αvi ≈ Q ∗

1


fu(u, α + δ)− fu(u, α)

δ
y + C(x)Q ∗

1
fu(u, α + δ)− fu(u, α)

δ
z

, (47)

z ≡ Q1vi, y ≡ Q1C(x)vi ∈ Rn.

Finally, (gi1j1)κ and (gi2j2)κ are computed as

(gi1j1)κ = −w∗

i1vj1 , (gi2j2)κ = −w∗

i2vj2 . (48)

Algorithm 4. One step of Newton’s method for locating a Hopf bifurcation using the system (40) with the Jacobianmatrices
(41).

Input: Initial point x = (u, α), κ , the matrices fx, C , and the matrices Vbor =

v1,bor v2,bor


, Wbor =


w1,bor w2,bor


.

Step 1 Solve

C2

+ kIm Wbor
V∗
bor 02×2

 
v1 v2
g11 g12
g21 g22


=


0m×2
I2


.

Step 2 Denote by Mi, 1 ≤ i ≤ K = 6, the Jacobian matrices (41). Note, that Mi has the bordered form (7). Use
Algorithm 2 to selectMi and compute the corresponding D̄i

Step 3 Solve Mi


1u
1α
1κ


= −

 f
gi1 j1
gi2 j2


for (1u,1α,1κ) ∈ Rn+2 using Steps 3 and 4 of the BED Algorithm 1. Then set

unew
αnew
κnew


=


u
α
κ


+


1u
1α
1κ


.

Step 4 Compute fx = fx(xnew) and C = C(xnew) using the CIS algorithm.
Output: xnew = (unew, αnew), κnew, fx, C .

Once the Hopf point x0 = (u0, α0) is computed, the corresponding quadratic normal form coefficient (the first Lyapunov
coefficient) l1 is given by

l1 :=
1
2
Re⟨w, C(v,v,v)+ B(v, (2iω0 − In)−1B(v,v))− 2B(v, A−1B(v,v))⟩, (49)

where A0v = iω0v, A0∗w = −iω0w,w∗w = v∗v = 1, and

B(p, q) = f 0uupq, C(p, q, r) = f 0uuupqr, p, q, r ∈ Rn.

Then l1 is approximated as follows:v is computed from C(x0)v = iω0v,v = Q1v, and w is computed as above, and

B(p, p) ≈
1
h2

[f (x0 + hp, α0)+ f (x0 − hp, α0)], (50)

B(p, q) =
1
4
[B(p + q, p + q)− B(p − q, p − q)],

C(p, p, p) ≈
1

8h3
[f (x0 + 3hp, α0)− 3f (x0 + hp, α0)+ 3f (x0 − hp, α0)− f (x0 − 3hp, α0)],

C(p, p, q) =
1
6
(C(p + q, p + q, p + q)− C(p − q, p − q, p − q))−

1
3
C(q, q, q).

4.3. Branching

Let x0 = x(s0) be a a simple singular point (see e.g. [26]), i.e. f 0x = fx(x0) has rank n − 1 and

N

f 0x


= Span


v01, v

0
2


, N


f 0x

∗


= Span

ψ0 .

4.3.1. Locator for a branch point
We use a minimally augmented system [28–30] of n + 2 scalar equations for n + 2 components (x, µ) = (u, α, µ) ∈

Rn
× R × R,

f (x)+ µwbor = 0,
g1(x) = 0,
g2(x) = 0,

(51)
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where µ is an unfolding parameter, wbor ∈ Rn is fixed, and g1 = g1(x), g2 = g2(x) ∈ R are computed as the last row of the
solution matrix


v1 v2
g1 g2


, v1, v2 ∈ Rn+1, to the (n + 2)-dimensional bordered system

fx(x) wbor
V ∗

bor 02×1

 
v1 v2
g1 g2


=


0n×2
I2


, Vbor =


v1,bor v2,bor


, (52)

where v1,bor, v2,bor ∈ Rn+1 are close to an orthonormal basis of N

f 0x


, andwbor is close to the null vector of


f 0x

∗.
The system (51) is solved by Newton’s method [28] with the modifications in [29]. Newton’s method is globalized by

combining it with a bisection algorithm on the solution curve.

Algorithm 5. One step of Newton’s method for locating a branch point.

Input: Initial point x = (u, α), the matrix fx = fx(x), and the parameterswbor and Vbor =

v1,bor v2,bor


.

Step 1 Set B :=


fx wbor

V∗
bor 02×1


.

Step 2 Solve B

v1 v2
g1 g2


=


0n×2
I2


for (v1, g1) , (v2, g2) ∈ Rn+1

× R.

Step 3 Solve B
xµ


= −


f

02×1


for (x,µ) ∈ Rn+1

× R.

Step 4 Solve B∗


ψ
g


=


0(n+1)×1

1


for (ψ, g) ∈ Rn

× R2.

Step 5 Compute η = (η1, η2)
∗,M = (mij)

2
i,j=1, where

ηi = ψ∗fxx [vi,x] (53)

mij = ψ∗fxx

vi, vj


. (54)

Step 6 SolveMξ = g − η for ξ = (ξ1, ξ2)
∗

Step 7 Set xnew = x +x + ξ1v1 + ξ2v2

Step 8 Setwbor,new =
ψ

∥ψ∥

Step 9 Set v1,bor,new =
v1

∥v1∥
,

v2,bor,new = v2 − (v∗

2v1,bor,new)v1,bor,new, v2,bor,new =
v2,bor,newv2,bor,new .

Output: xnew = (unew, αnew)

Choosing initial parameters and approximations. Choose µ = 0 and wbor from f ∗
u wbor = λwbor, ∥wbor∥ = 1, where λ is the

smallest real eigenvalue in absolute value of f ∗
u . Given the tangent vector v = v(x) to the solution curve, choose

v1,bor =
v

∥v∥
,

v2,bor =
w − (w∗v)v

∥w − (w∗v)v∥
,

where fxw = λw, and λ is the real eigenvalue of fx with smallest absolute value. We also use the approximations:

fxx [v, v] ≈
∥v∥2

δ2


f

x + δ

v

∥v∥


− 2f (x)+ f


x − δ

v

∥v∥


, (55)

fxx [v,w] ≈
∥v∥ ∥w∥

δ2


f

x + δ

v

∥v∥
+ δ

w

∥w∥


− f


x + δ

w

∥w∥


− f


x + δ

v

∥v∥


+ f (x)


. (56)

4.3.2. Switching branches at simple branch points
When the discriminant of the algebraic branching equation (ABE) is greater than zero (see e.g. [26]), we have a simple

branch point (BP); that is, two distinct solution branches of (2) pass through x0.
Although branch points are not generic along equilibrium curves, they do appear inmany applications due to symmetries.

For instance, they appear in the Brusselator Example 1, because this example has a reflectional symmetry; the BP points are
symmetry-breaking bifurcations in this case.

Branch points are symmetry-breaking bifurcations. Although they are not generic along equilibrium curves, they appear
in many applications. For instance, they appear in the Brusselator Example 1, because this example has a reflectional
symmetry.
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Once a simple branch point x0 = x(s0) on a solution branch x(s) has been located, one may want to compute the
bifurcating branch. Three methods of switching branches are implemented in Cl_matcontL [18,19].

1. A branch switching method based on the ABE (see e.g. [26] and references there), which requires the computation of
second order derivatives using (55), (56).

2. Computing the first solution point x1 on the bifurcating branch from

f (x1) = 0, (x1 − x0)∗v02 −1s = 0, (57)

where v02 is the second null vector of f 0x , with v02 ⊥ v01 =
dx(s0)
ds ,

v01 =
v02 = 1. This method is implemented in

auto [31] and works well in many applications, although there may be situations where it fails.
3. An improved version of (57) using an ‘angular’ bisection-like procedure in N


f 0x


spanned by v01 and v02 ⊥ v01 , where the

initial angle is the one between v01 and v02 ; see [22].

5. Continuation of fold and Hopf bifurcations

5.1. Fold continuation

We again use the system (31) of n + 1 scalar equations, but now for n + 2 components x = (u, α) ∈ Rn
× R2. Again g is

obtained by solving (32), where gx is computed using (34), (35), and (37).
There are three generic codimension-2 bifurcations on a fold curve: Bogdanov–Takens (or double zero) points (BT), zero-

Hopf points (ZH), and cusp points (CP); see e.g. [1]. These are detected and located by the corresponding modifications of
Cl_matcont test functions.

1. (BT) An additional real eigenvalue of fu meets the imaginary axis: λ1,2 = 0, with geometric multiplicity remaining one.
The Cl_matcont test function to detect Bogdanov–Takens points isψM

BT = w∗v, where fuv = f ∗
u w = 0,w∗w = v∗v = 1.

This is replaced in Cl_matcontL by

ψBT := w∗v, where Cv = C∗w = 0, w∗w = v∗v = 1. (58)

2. (ZH) Two extra nonreal eigenvalues λ2,3 meet the imaginary axis: λ1 = 0, λ2,3 = ±iω0, ω0 > 0. To detect zero-Hopf
points, we use two test functions obtained by a slight modification of the test functions (26) and (27) used to detect Hopf
points. Let

λmin(s) := min {|(λi(s))| : 1 ≤ i ≤ m} (59)

be a numerical approximation of the zero eigenvalue on fu on a fold curve. We further assume that the set Λ1(s) =

{λi(s)}mi=1 is ordered in such a way that the eigenvalue λk(s) with |(λk(s))| = λmin(s) has the index k = m. We next
define

Mu(s) := card{λi(s)+ λj(s) : 1 ≤ i < j ≤ m − 1, Re(λi(s)+ λj(s)) > 0} (60)

and a piecewise smooth function:

µmin(s) := min

|(λi(s)+ λj (s))| : 1 ≤ i < j ≤ m − 1


. (61)

In our case:

ψ
(1)
ZH (x(s)) := µmin(s)(−1)Mu(s), (62)

ψ
(2)
ZH (x(s)) := (−1)m

pairs
u . (63)

Then a zero-Hopf point is detected as:

ZH : ψ
(1)
ZH (x(sk)) ψ

(1)
ZH (x(sk+1)) < 0 and ψ

(2)
ZH (x(sk)) ψ

(2)
ZH (x(sk+1)) < 0. (64)

Note [9], ψ (1)
ZH is regular at a generic zero-Hopf point. However, ψ (1)

ZH will also vanish at Bogdanov–Takens points.
3. (CP) fu has one zero eigenvalue and no other eigenvalues on the imaginary axis, and the quadratic normal form coefficient

(38) is a = 0. The test function for a cusp point coincides with (39):

ψCP (x(s)) := ah. (65)

5.2. Continuation of Hopf bifurcations

We use again the system (40) of n + 2 scalar equations, but for n + 3 components (x, κ) = (u, α, κ) ∈ Rn
× R2

× R, in
this case. The size of the border is increased by one, see Remark 3.
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There are four generic codimension-2 bifurcations on the curve of Hopf bifurcations: Bogdanov–Takens (or double zero)
points (BT), zero-Hopf points (ZH), double-Hopf points (HH), and generalized Hopf points (GH); see e.g. [1]. These are detected
and located by the corresponding modifications of Cl_matcont test functions.
1. (BT) As in Cl_matcont [9], we use

ψBT := κ (66)

as the test function to detect Bogdanov–Takens points, where κ is the last component of (u, α, κ) ∈ Rn
× R2

× R.
2. (ZH) To detect zero-Hopf points, we use the same test function (25) as we use to detect LP points:

ψZH (x(s)) := λmin(s)(−1)mu(s). (67)

Note, by Lemma 3, ψZH is equivalent to the corresponding test function det (A(s)) used in Cl_matcont [9].
3. (HH) To detect double-Hopf points, we use two test functions obtained by a slight modification of the test functions (26)

and (27) used to detect Hopf points. This modification is to ensure that the two eigenvalues, say, λk,k+1 = ±iω0, ω0 > 0
(in exact arithmetic) do not contribute to our test functions. This is important from the numerical point of view,
since ℜ(λk(s)) = ℜ(λk+1(s)) can numerically be nonzero, but small in absolute value, and may change sign during a
continuation of Hopf bifurcations. Let

Λ′

1(s) := {λi(s) ∈ Λ1(s), i ≠ k, k + 1}mi=1 . (68)

Define:

M ′

u(s) := card{λi(s)+ λj(s) : i < j, λi(s), λj(s) ∈ Λ′

1(s), Re λi(s)+ Re λj(s) > 0}, (69)

µ′

min(s) := min

|Re λi (s)+ Re λj(s)| : i < j, λi(s), λj(s) ∈ Λ′

1(s)

. (70)

Then we use

ψ
(1)
HH (x(s)) := µ′

min(s)(−1)M
′
u(s) (71)

as the test function to detect double-Hopf bifurcations. By an argument analogous to that in Lemma 3, it is easy to see
that ψ (1)

HH is equivalent to the test function

ψM
HH (x(s)) := det


2A(s)

N(A2+κ In)T ⊥ ⊙ In−2


=


1≤i<j≤n,i,j≠k,k+1


Re λi(s)+ Re λj(s)


(72)

used in Cl_matcont [9]. Note that

ψ
(2)
HH (x(s)) := (−1)m

pairs
u , (73)

changes sign, where mpairs
u (s) is the number of complex eigenvalues from Λ′

1(s) with Re(λi(s)) ≥ 0 and Im(λi(s)) > 0,
when the number of unstable complex conjugate eigenpairs fromΛ′

1(s) changes.
4. (GH) We use an approximation l1h to the first Lyapunov coefficient l1 (see (49), (50))

ψGH (x(s)) := l1h (74)

as the test function to detect a generalized Hopf bifurcation.

6. Examples

All computations below are performed on a laptop running 32-bit Windows XP and under 32-bitMatlab version 2010a.
The machine has a 2.67 GHz Intel Core i7 CPU with 4 GB of RAM. The computations are performed on a single core of the i7
processor. Timing is measured using theMatlab profiler function which returns the actual CPU time. In all the tables below
‘t ’ stands for time in seconds.

The main goal of these examples is not to discover some new interesting bifurcation behaviors, but to verify that the
new CIS-based algorithms can accurately, reliably, and within a reasonable time detect, locate, and continue singularities
of interest in large systems. We will use very fine grids to verify that the algorithms presented remain accurate and do
not break down for large numbers of unknowns, as well as for timing purposes; it is not implied that these are necessary
for the bifurcation study. In fact, in all the examples below fairly coarse grids are sufficient for that purpose, which is the
reason these examples are selected in the first place. Note, the sizem of the invariant subspace in the examples is between 5
and 12.

No comparison is given between the computational results with new CIS-based test functions/locators and those in
Cl_matcont, as Cl_matcont was not really intended to deal with large equilibrium systems like discretized PDEs. For
example, for a discretized PDE the Jacobian will probably be sparse, and a good sparse LU decomposition could be added to
Cl_matcont, but the determinant would be badly scaled. So this approach cannot be recommended.
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Table 1
1D Brusselator. Continuation of an equilibrium branch and locating a Hopf point. The CPU
times for continuation, the CIS algorithm, and H point location are displayed, along with
the value of the parameter at the H point, for different values of n.

n Steps Total t (s) CIS t (s) Locator t (s) b at H

400 20 1.911 0.938 0.251 17.2056
800 20 2.208 1.149 0.220 17.2056

3200 20 5.972 3.303 0.546 17.2056
12800 30 49.293 19.860 6.734 17.2056
25600 30 71.849 41.066 6.953 17.2056

Table 2
1D Brusselator. Continuation of a Hopf branch and locating a zero-Hopf point. The CPU times for H
branch continuation, the CIS algorithm, and ZH point location are displayed, along with the values
of the parameters at the ZH point, for different values of n.

n Steps Total t (s) CIS t (s) Locator t (s) (b, d1) at ZH

400 35 17.468 10.890 2.156 (17.207, 1.0133)
800 35 23.389 14.721 1.531 (1.7206, 1.0126)

3200 35 71.769 42.104 6.061 (1.7206, 1.0125)
12800 35 272.203 151.408 14.189 (1.7206, 1.0125)
25600 35 694.144 419.630 21.875 (1.7206, 1.0124)

Example 1. The 1D Brusselator

d1
l2

u′′
− (b + 1)u + u2v + a = 0,

d2
l2
v′′

+ bu − u2v = 0, inΩ = (0, 1),

u(0) = u(1) = a, v(0) = v(1) =
b
a

(75)

is a well-knownmodel system [32] for autocatalytic chemical reactions with diffusion. The left hand side of the equilibrium
equations in (75) has the form (2), which is the right hand side of the dynamical system (1). This problem exhibits a rich
bifurcation scenario and has been used in the literature as a standard model for bifurcation analysis [33–38]. We utilize the
second-order central difference discretization

f ′′
≈

1
h2
(fi−1 − 2fi + fi+1), h = (N + 1)−1,

with a uniform grid of N points. Since there are two unknowns per grid point, the resulting discrete problem, which has
dimension n = 2N , can bewritten in the form (2). This discretization of the Brusselator is used in a Cl_matcont example [9].
We consider the system (75) with a constant initial equilibrium solution

u(x) = a,

v(x) =
b
a
.

(76)

The initial values of the parameters are: a = 4, b = 17.1, d1 = 1.0, d2 = 2.0, and l = 12.

(a) The initial equilibrium solution (76) is continued in parameter b, and a Hopf (H) point is located. Table 1 displays the
CPU times for continuation, the CIS algorithm, H point location, and the value of b at the H point for different values of n.

(b) The Hopf branch (2-parameter locus of Hopf points) is continued in (b, d1) starting at (b, d1) = (17.2056, 1.0). A zero-
Hopf (ZH) point is located. Table 2 displays the CPU times for continuation, the CIS algorithm, ZH point location, and
the value of (b, d1) at the ZH point for different values of n. See Fig. 1(A) for the corresponding bifurcation diagram (for
n = 25 600).

Remark 8. Though the eigenvalues at the ZH point are (for n = 1000): 1.547271 × 10−9, 7.188694 × 10−15
− 3.859847i,

7.188694×10−15
+3.859847i, as they should be, amore careful analysis uncovers that this is actually a branch point (BP) on

the curve of Hopf bifurcations. Detection of BPs on the curve of Hopf bifurcations is currently not included in Cl_matcontL.

Example 2. 1D Brusselator (75) with an approximate nonconstant initial equilibrium solution
u(x) = a + 2 sin(πx),

v(x) =
b
a

−
1
2
sin(πx).

(77)
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Fig. 1. A. Bifurcation diagram for a 1DBrusselator: continuation of aHopf branch and locating a zero-Hopf point. B. Bifurcation diagram for a 1DBrusselator:
continuation of an equilibrium branch and locating a fold point. C. Bifurcation diagram for a 1D Brusselator: switching from one branch of equilibria to
another one. D. Bifurcation diagram for a 1D Brusselator: switching from one branch of equilibria to the second one and locating two branch points on the
second branch. E. Bifurcation diagram for a 2D Brusselator: continuation of a Hopf branch and locating a Bogdanov–Takens point. F. Bifurcation diagram
for a 2D Brusselator: continuation of a Hopf branch and locating a generalized Hopf point.

Table 3
1D Brusselator. Continuation of an equilibrium branch and locating a fold point. The CPU
times for continuation, the CIS algorithm, and LP location are displayed, along with the
value of the parameter at the LP, for different values of n.

n Steps Total t (s) CIS t (s) Locator t (s) a at LP

800 20 2.283 1.006 0.529 2.4727
3200 20 6.703 2.217 1.562 2.4727

12800 20 26.18 8.06 7.124 2.4727
25600 20 56.34 15.23 13.31 2.4727

Table 4
1D Brusselator. Continuation of an equilibrium branch and locating two branch points BP1 and BP2. The
CPU times for continuation, the CIS algorithm, and BP1 and BP2 location are displayed, along with the
values of the parameters at (BP1, BP2), for different values of n.

n Steps Total t (s) CIS t (s) Locator t (s) (l1, l2) at (BP1, BP2)

800 55 6.216 2.203 0.703 (0.079844, 0.24996)
3200 65 27.32 9.859 3.279 (0.079844, 0.24996)

12800 65 138.9 35.88 50.48 (0.079844, 0.24996)
25600 75 353.5 97.37 123.7 (0.079845, 0.24988)

The pair of functions (77) is not an equilibrium, but the continuer first locates an equilibrium close to this initial guess. The
initial values of the parameters are: a = 2.3, b = 4.6, d1 = 0.0016, d2 = 0.008.

(a) The initial value of the parameter l is 0.095. The initial equilibrium solution (77) is continued in parameter a, and a fold
point (LP) is located at a = 2.472741. Table 3 displays the CPU times for continuation, the CIS algorithm, LP location, and
the value of a at the LP for different values of n. See Fig. 1(B) for the corresponding bifurcation diagram (for n = 25 600).

(b) The initial value of the parameter l is 0.06228. The initial equilibrium solution (77) is continued in parameter l, and
two BPs (BP1 and BP2) are located. Table 4 displays the CPU times for continuation, the CIS algorithm, the BP1 and BP2
locations, and (l1, l2) at (BP1, BP2) for different values of n. We next switch to another branch of equilibria at BP1 and BP2
and then continue both. Table 5 displays the CPU times for continuation, the CIS algorithm, and for switching from one
branch of equilibria to another branch of equilibria at BP2 (using the bisection-like algorithm [22]) for different values
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Table 5
1DBrusselator. Switching fromone branch of equilibria to another branch of equilibria. The CPU times
for continuation, the CIS algorithm, and switching from one branch of equilibria to another branch of
equilibria are displayed for different values of n.

n Steps Total t (s) CIS t (s) BP switchBisect t (s) Terminal l

800 10 1.668 0.393 0.079 2.475949
3200 10 5.657 1.390 0.297 0.2475942

12800 10 34.799 6.562 0.797 0.2468171
25600 10 74.155 11.593 1.750 0.2475902

Table 6
2D Brusselator. Continuation of an equilibriumbranch and locating aHopf point. The CPU
times for continuation, the CIS algorithm, and H point location are displayed, along with
the parameter value at the H point, for different values of n.

n Steps Total t (s) CIS t (s) Locator t (s) b at H

200 10 1.376 0.533 0.391 21.038
5000 10 16.314 5.344 4.735 21.168

20000 10 94.035 23.096 23.157 21.172

Table 7
2D Brusselator. Continuation of a Hopf branch and locating a Bogdanov–Takens point. The CPU times
for H continuation, the CIS algorithm, and BT point location are displayed, along with the values of the
parameters at the BT, for different values of n.

n Steps Total t (s) CIS t (s) Locator t (s) (a, b) at BT

200 42 13.19 5.624 0.141 (0.087208, 21.005)
5000 42 156.4 65.41 1.297 (0.087510, 21.135)

20000 42 1539 670.1 7.907 (0.087521, 21.140)

of n. See Fig. 1C for the corresponding bifurcation diagram (for n = 25 600) and Fig. 1D for the corresponding bifurcation
diagram (for n = 25 600) when switching from one branch of equilibria to another branch of equilibria at BP2 (using
the algebraic branching equation, ABE).

Example 3. The 2D Brusselator is

d1
l2
1u − (b + 1)u + u2v + a = 0,

d2
l2
1v + bu − u2v = 0, inΩ = (0, 1)× (0, 1),

u|∂Ω = a, v|∂Ω =
b
a
.

(78)

We utilize the second-order central difference discretizationwith uniform grid ofN grid points in each of the two directions.
The resulting discrete problem, which has dimension n = 2N2, can be written in the form (2). We consider the system (78)
with a constant initial equilibrium solution

u(x) = a,

v(x) =
b
a
.

(79)

The initial values of the parameters are: a = 0.2, b = 22.1, d1 = 1, d2 = 0.02, and l = 1.

(a) The initial equilibrium solution (79) is continued in parameter b, and a Hopf point is located. Table 6 displays the CPU
times for continuation, the CIS algorithm, H point location, as well as the value of b at the H point, for different values
of n.

(b) The branch of Hopf bifurcations is continued in (a, b) starting at (a, b) = (0.2, 21.172), and a Bogdanov–Takens (BT)
point is located at step 41. Table 7 displays the CPU times for continuation, the CIS algorithm, BT point location, and
the value of (a, b) at the BT point for different values of n. See Fig. 1(E) for the corresponding bifurcation diagram (for
n = 20 000).

Remark 9. Themost accurate eigenvalues at the BT point we could get are±7.6×10−6 (for n = 200) and±2.0×10−5 (for
n = 20 000) with the residuals 4.8×10−15 and 1.1×10−12, respectively. Generically, there should also be a fold curve going
through the BT point that is tangential to the curve of Hopf bifurcations in the projection on the parameter plane. However,
no fold curve was found in this case.
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Table 8
2D Brusselator. Continuation of a Hopf branch and locating a generalized Hopf point. The CPU times
for H continuation, the CIS algorithm, and GH point location are displayed, along with the values of the
parameters at the GH, for different values of n.

n Steps Total t (s) CIS t (s) Locator t (s) (d2, b) at GH

200 44 17.05 7.735 0.812 (0.0020042, 20.685)
5000 44 168.0 62.97 9.771 (0.0019933, 20.812)

20000 44 1205 414.5 143.2 (0.0019929, 20.817)

Table 9
2D Arch. Continuation of an equilibrium branch and locating a branch point BP. The CPU times for
continuation, the CIS algorithm, and BP location, and the parameter values at the BP for different
values of (m, n,N) are displayed.

(m, n,N) Steps Total t (s) CIS t (s) Locator t (s) α at BP

(3, 48, 1353) 20 26.36 1.720 9.277 2.09987
(6, 96, 5013) 20 271.4 24.87 142.8 2.10363
(12, 192, 19 245) 20 1768 233.2 947.3 2.10681

(c) The branch of Hopf bifurcations is continued in two parameters (d2, b) starting at (d2, b) = (0.02, 21.172), and a
generalized Hopf (GH) point is located at step 42. The value of the first Lyapunov coefficient (74) isψGH = −1.7× 10−6

(for n = 20 000) at the GH point, and it changes sign from positive to negative at the GH point. Table 8 displays the CPU
times for continuation, the CIS algorithm, GH point location, and the value of (d2, b) at the GH point for different values
of n. See Fig. 1(F) for the corresponding bifurcation diagram (for n = 20 000).

Example 4. Deformation of a 2D arch. We consider the snap-through of an elastic arch, shown in Fig. 2. The arch is pinned
at both ends, and the y displacement of the center of the arch is controlled as a continuation parameter.

LetΩ0 ⊂ R2 be the interior of the undeformed arch (Fig. 2, top left), and write the boundary as Γ = ΓD ∪ ΓN , where ΓD
consists of the two points where the arch is pinned, and ΓN is the remainder of the boundary, which is free. At equilibrium,
material points X ∈ Ω0 in the deformed arch move to positions x = X + u. Except at the control point Xcenter in the center
of the arch, this deformation satisfies the equilibrium force-balance equation [39]

2
J=1

∂SIJ
∂XJ

= 0, X ∈ Ω0, I = 1, 2 (80)

where the second Piola–Kirchhoff stress tensor S is a nonlinear function of the Green strain tensor E, where E :=
1
2 (F

T F −

I), F :=
∂u
∂X . Eq. (80) is thus a fully nonlinear second-order elliptic system. The boundary and the control point Xcenter are

subject to the boundary conditions

u = 0 on ΓD, SN = 0 on ΓN , where N is an outward unit normal, (81)
e2 · u = α, e1 · (FSN) = 0. (82)

The first condition at Xcenter says that the vertical displacement is determined; the second condition says that there is zero
force in the horizontal direction.

We discretize (80) with biquadratic isoparametric Lagrangian finite elements. Letm be the number of elements through
the arch thickness, and n be the number of elements along the length of the arch; then there are (2m + 1)(2n + 1) nodes,
each with two associated degrees of freedom. The Dirichlet boundary conditions are used to eliminate four unknowns, and
one of the unknowns (written as a) is used as a control parameter. Specifically, we choose the continuation parameter
a to be the y displacement of the node in middle of the arch. So the resulting discrete problem, which has dimension
N = 2(2m + 1)(2n + 1) − 5, can be written in the form (2). We consider the system (80)–(82) with a constant initial
equilibrium solution

u = 0. (83)

The initial value of the parameter a is 0.

The initial equilibrium solution (83) is continued in parameter a, and a BP is located. Fig. 2 displays the results for
(m, n,N) = (4, 60, 2173) (top left, top right, and bottom left) and for (m, n,N) = (12, 192, 19 245) (bottom right).

Table 9 displays the CPU times for continuation, the CIS algorithm, and BP location, along with a at the BP, for different
values of (m, n,N). We next switch to another branch of equilibria at the BP and then continue it. Table 10 displays the CPU
times for continuation, the CIS algorithm, and switching from one branch of equilibria to another branch of equilibria for
different values of (m, n,N) See Fig. 2, bottom right for the corresponding bifurcation diagram (for (m, n,N) = (12, 192,
19 245)). The results presented here are mostly new. A preliminary result, a BP location for (m, n,N) = (4, 60, 2173), is
presented in [20].
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Fig. 2. Top left: the undeformed arch, top right: the arch at the bifurcation point, bottom left: the arch at the end of continuation along the original branch,
bottom right: the bifurcation diagram.

Table 10
2D Arch. Switching from one branch of equilibria to another branch of equilibria. The CPU times for
continuation, the CIS algorithm, and switching from one branch of equilibria to another branch of equilibria
are displayed for different values of (m, n,N).

(m, n,N) Steps Total t (s) CIS t (s) BPswitchBisect t (s) Terminal α

(3, 48, 1353) 20 8.915 1.720 0.829 2.28117
(6, 96, 5013) 20 197.9 16.10 2.864 2.14750
(12, 192, 19 245) 20 522.9 104.2 20.20 2.11831
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