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Abstract� This paper presents the development of HiQLab,
a simulation tool to compute the effect of damping in high
frequency resonators. Existing simulation tools allow designers
to compute resonant frequencies but few tools provide estimates
of damping, which is crucial in evaluating the performance of
such devices. In the current code, two damping mechanisms:
thermoelastic damping and anchor loss have been implemented.
Thermoelastic damping results from irreversible heat flow due
to mechanically-driven temperature gradients, while anchor loss
occurs when high-frequency mechanical waves radiate away
from the resonator and into the substrate. Our finite-element
simulation tool discretizes PDE models of both phenomena, and
evaluates the Quality Factor (Q), a measure of damping in the
system, with specialized eigencomputations and model reduction
techniques. The core functions of the tool are written in C++
for performance. Interfaces are in Lua and MATLAB, which
give users access to powerful visualization and pre- and post-
processing capabilities.

I. INTRODUCTION

Electromechanical high-frequency resonators have impor-
tant applications as physical and chemical sensors as well as
signal processing. When changes in the external environment
cause changes in the geometry or material properties of
these sensors, changes in the resonance occur which can
be electronically sensed. While existing commercial tools
allow designers to compute resonant frequencies, few tools
provide estimates of all aspects of damping (see e.g. ANSYS,
ABAQUS, SUGAR), which is crucial in evaluating the per-
formance of such devices.

II. SOFTWARE CAPABILITIES AND ARCHITECTURE

HiQLab [1] is an open source finite element simulation
tool developed for simulating high frequency (HF) resonators,
and is capable of 1D, 2D, 3D, and axisymmetric steady-state
or static analysis. The element library includes elements for
elasticity, scalar wave problems, and coupled electromechan-
ical and thermomechanical problems. Efficient algorithms to
compute eigenfrequencies of the system and Arnoldi-based
model reduction methods are implemented for fast transfer
function evaluation. By utilizing MATLAB [7]’s functions,
resonant motion and energy fluxes can also be visualized.

The software consists of core modules and elements written
in C++ combined with third-party numerical software written
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Fig. 1. HiQLab flow diagram

in Fortran or C. Two interfaces have been constructed, one
through the scripting language Lua [6] and the other through
the commercial software package MATLAB. Using the MAT-
LAB interface, one has full access to MATLAB’s rich array of
visualization tools and numerical routines. The Lua interface
has fewer features, but also has less memory overhead, and
does not require a MATLAB license. We chose Lua as our
mesh description and user interface language because of its
simplicity and speed, the same attributes which make it a pop-
ular language in game design. A diagram of a sample session
of HiQLab is shown in Figure 1. An input file written in Lua
describing the mesh is read into the main program through
either of the interfaces. This file is used to generate a mesh
object which stores the problem geometry, global force and
displacement vectors, and boundary conditions. This object is
equipped with standard assembly loops to build global tangent
stiffnesses and residuals from the element contributions. The
matrices that are generated can be processed with standard
numerical libraries [2]–[4] or passed on to MATLAB. Finally
the results are displayed in either interface.

III. DAMPING MECHANISM MODELING AND COUPLED
ELEMENT MODELING

A. Damping and the Quality Factor (Q)

The Quality Factor (Q) is a measure of how much damping
exists in the resonating device. This index is defined in terms
of energy loss by the following equation:

Q−1 = Energy Loss per radian
Maximum Stored Energy =

∑

i∈{Damping Mechanisms}

Q−1

i . (1)
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The additive decomposition of Q into its separate mechanisms
shown above is valid when damping is small.

In the case of HF resonators, damping mechanisms such
as air damping, anchor loss and thermoelastic damping (TED)
have been experimentally observed to be the dominant sources
of damping [5]. Currently, HiQLab is capable of simulating
anchor loss and TED.

We compute Q by one of two methods. The first method
is through evaluation of the transfer function, where Q is
computed by dividing the peak frequency by the band width
at -3dB. The transfer function can be computed efficiently
in HiQLab by reduced-order modeling techniques [10], which
simultaneously reduces the degrees of freedom required result-
ing in an increase in speed, and retains accuracy. The second
method is through evaluating the complex-valued eigenfre-
quency ω of the system corresponding to the mode of interest.
This frequency is related to Q by

Q =
Re(ω)

2Im(ω)
. (2)

In evaluating the damping, HiQLab can take advantage of
underlying structure for efficient eigenfrequency computation.

B. Anchor loss

Anchor loss is the mechanism in which elastic energy is lost
through radiation from the anchors. In the case of a MEMS
resonator, the resonating device is much smaller than the
silicon substrate on which it is situated, and waves radiating
from the anchor are attenuated by the time they reach the
far surfaces of the silicon wafer. For FEA, a finite domain
must be selected for analysis and proper boundary conditions
must be specified for accurate simulations; see Figure 2. For
the MEMS resonator, the boundary condition must be able to
simulate a semi-infinite domain. In HiQLab, this is modeled
using Perfectly Matched Layers (PML) [9]–[11], which absorb
waves from any angle of incidence on the boundaries with
no impedance mismatch. Complex coordinate stretching is
introduced in the region where PML is applied. Finite element
discretization of the model results in complex symmetric mass
and stiffness matrices. This complex symmetric structure is
taken advantage of in HiQLab to produce an Arnoldi-based
reduced-order model which can evaluate the transfer function
with high-order accuracy.
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Fig. 2. Perfectly Matched Layers for Anchor Loss Simulations

C. Thermoelastic Damping

Thermoelastic damping (TED) is the mechanism in which
vibrating energy in the resonator is lost through the coupling
of the mechanical domain with the thermal domain [12]. Time
varying stresses induce time varying strains, which create
local temperature fluctuations. These variations in temperature
inside the resonator cause heat flow, an irreversible process,
resulting in energy loss. This source of damping can be
accurately modeled by solving the coupled thermomechanical
equations, which consist of the balance of linear momentum
equation coupled with the energy balance equation. Since
deformations in MEMS resonators are typically small, linear
elasticity and small temperature fluctuations are assumed.
Under these assumptions, spatial discretization by the finite
element method results in the following second-order system
of equations,

[

Muu 0
0 0

] (

ü

θ̈

)

+

[

0 0
Cθu Cθθ

] (

u̇

θ̇

)

+

[

Kuu Kuθ

0 Kθθ

](

u

θ

)

=

(

Fu

Fθ

)

(3)

where u is the displacement vector and θ is the thermal
fluctuation vector from a reference temperature. Submatrices
Muu, Kuu and Cθθ, Kθθ are the standard mass and stiffness
matrices which arise from the purely mechanical or thermal
problem and submatrices Kuθ, Cθu represent the coupling
between the mechanical and thermal domains.

In HiQLab, the perturbative structure of the underlying
coupled thermoelastic problem is exploited in evaluating the
eigenfrequencies of the system. A special model reduction
technique which preserves the structure of the system of
equations is also implemented for fast and accurate transfer
function evaluation.

D. Electromechanically coupled systems

The simulation of resonators actuated piezoelectrically or
electrostatically requires solving the coupled electromechan-
ical equations, consisting of the standard balance of lin-
ear momentum equation and Maxwell’s equations. Since the
time scale corresponding to electrical potentials are orders
of magnitude smaller than those of the mechanical domain,
electrostatics are assumed. The discretized system of equations
has the form,

[

Muu 0
0 0

] (

ü

φ̈

)

+

[

Kuu Kuφ

Kφu Kφφ

](

u

φ

)

=

(

Fu

Fφ

)

(4)

where u, φ are the displacement and electrical potential vec-
tors, and submatrices Muu, Kuu and Kφφ are the standard
mass and stiffness matrices which arise from the purely
mechanical or electrostatics problem. The coupling between
the mechanical and electrical domains, which occurs from
piezoelectricity or electrostatic coupling, are represented by
the submatrices Kuφ, Kφu.

The electromechanical analysis can be combined with PML
and the thermal equations to introduce anchor loss and TED
as sources of damping which affect Q.
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IV. NUMERICAL EXAMPLES

HiQLab has previously been shown to accurately simulate
anchor loss in bulk radial resonators [9]. In this section
we demonstrate the ability of HiQLab in simulating TED,
resonator optimization, and the modeling of internal dielectric
drives.

A. Free-Free Beam
Modeling of TED is shown by simulating the Free-Free

Beam (FF-Beam) fabricated and measured by Hsu et al [14].
The device is 2D planar and designed to resonate in an
in-plane flexural mode. The vibrational mode that we are
interested in evaluating the Q of is shown in Figure 3, where
the color represents the thermal fluctuations from a reference
temperature. The Q for this device is computed from an
eigenfrequency computation of a 2D plane-stress analysis
where TED is considered. The measured Q is 10743 and
and the simulated value is 13423. Taking into consideration
the fact that exact geometrical and material parameters of
the experimental device are uncertain, the simulated Q yields
satisfactory predictions.

B. Ring resonator
The ability to evaluate the effect of TED on Q from the

transfer function is exhibited in this example. The structure
we select is a 2D planar ring structure shown in Figure
4. The structure is excited with a uniform radial force on
the perimeter which models an electrostatic drive. Figure 4
also shows the deformation and temperature fluctuations from
a reference temperature when excited at 705.50[MHz]. The
resulting displacement at the perimeter is measured to evaluate
the transfer function between the force and displacement,
centered at this frequency. The transfer function is evaluated
by both the full model (solid line) with 39K degrees of
freedom (DOF) and the structure preserving reduced-order
model (ROM, circles) with 21 DOF as shown in Figure 5 (top).
It is clear that the transfer function from the ROM matches
the full model with high-order of accuracy; see Figure 5 (bot).
The plot consists of 100 data points of which it took the full
model approximately 2 hours to compute as opposed to the
ROM which took about a minute.

C. Checkerboard optimization
We illustrate the ability to use HiQLab with optimization

algorithms by a checkerboard resonator example [13]. This
design has been shown experimentally to serve as a bandpass
filter. Using HiQLab to evaluate the frequency response under
2D analysis including PML anchor loss, we optimized with
respect to geometrical parameters such as the width of each
checker and the size and shape of the individual linking beams
to match a target bandpass transfer function. The optimiza-
tion was conducted with MATLAB’s optimization toolbox
and the Genetic Algorithm Optimization Toolbox(GAOT) [8].
Figure 6 shows one optimally designed checkerboard resonator
operating in an in-plane mode. On the right hand side we
show the simulated mechanical band pass characteristics of
the optimized device by its Bode plot.
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Fig. 3. Geometry and mode shape of Michigan Free-Free Beam
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Fig. 4. Geometry, deformed shape, and thermal fluctuations of the Ring
resonator at 705.50[MHz]
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Fig. 5. Mechanical transfer function of the Ring resonator (Full and ROM)
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D. Dielectric filled gap resonators
Air-gap electrostatic transduction is a popular method of

actuation for high frequency resonators. Currently, research
is underway, to further increase the efficiency and to reduce
insertion loss by filling these air-gaps with high dielectric con-
stant materials [15], [16]. Though this may be advantageous in
terms of transduction, such an addition mechanically couples
the sense and drive electrodes to the resonator, perturbing the
original behavior substantially. Here we present an analysis
of the Bulk Lateral Resonator (BLR) [17]. A 2D plane stress
analysis is conducted on this 2D planar structure which is de-
signed to resonate in its in-plane 3rd overtone at approximately
140.0[MHz]. The dielectric drives are taken to be 200[nm] in
thickness. Figure 7 shows the mode shape of the resonator,
where the color depicts the in-plane y direction displacement.
Figure 8 is a plot of the transfer functions of the device when
the relative permitivity of the dielectric within the filled gap is
varied (ε0 is the permitivity of free air). It can be clearly seen
that by increasing the permitivity, the insertion loss decreases,
and Q increases.

V. SUMMARY AND FUTURE WORK

HiQLab, a FEA-based tool to simulate high frequency
resonators and evaluate the effect of damping due to anchor
loss and TED, has been presented. The effectiveness and
capabilities of the software have been exhibited by comparison
with experimental results as well as predicting behavior of
devices that may be fabricated in the near future.

Future work will focus on expanding the capability of the
software: to simulate a wider range of resonators, incorporate
other sources of damping mechanisms such as air damping,
and to be able to evaluate problems of larger computational
expense. Currently the software runs on sequential architecture
which limits the size of the problems that can be analyzed.

HiQLab is open source, which can be freely down-
loaded [1].
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Fig. 6. Mode shape and Bode plot of an optimal design
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Fig. 7. Geometry and mode shape of BLR at 140.050[MHz]
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Fig. 8. Transfer Function of the BLR with varying permitivity
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