Week 11: Wednesday, Oct 31

Rayleigh quotients revisited

Recall the Rayleigh quotient iteration:

\[\lambda_k = \rho_A(v_k) = \frac{v_k^* A v_k}{v_k^* v_k}, \]
\[v_{k+1} r_{k+1} = (A - \lambda_k)^{-1} v_k. \]

We claimed before that as \(v_k \) becomes an increasingly good eigenvector estimate, \(\lambda_k \) becomes an increasingly good eigenvalue estimate (under some assumptions), and the combination of the two effects gives us a locally quadratically convergent algorithm.

A good way to understand Rayleigh quotient iteration is as a sort of Newton iteration for the eigenvalue equations. Write

\[F(v, \lambda) = A v - v \lambda, \]
and differentiate to find

\[\delta F = (A - \lambda) \delta v - (\delta \lambda) v \]

Newton iteration gives

\[0 = F(v_k, \lambda_k) + \delta F(v_k, \lambda_k) \]
\[= (A - \lambda_k)(v_k + \delta v_k) - (\delta \lambda_k) v_k \]
\[= (A - \lambda_k)v_{k+1} - (\delta \lambda_k)v_k, \]

which means that \(v_{k+1} = (\delta \lambda_k)(A - \lambda_k)^{-1} v_k \), where \(\delta \lambda_k \) is some normalizing factor. This gives a nice iteration for the vector; what about for the value?

As we introduced it, the Rayleigh quotient might look arbitrary. Here’s a way to see how naturally it occurs. Note that if \((v, \lambda)\) is an eigenpair, then

\[\| A v - v \lambda \|_2^2 = 0. \]

Now, suppose \(\hat{v} \) is an approximate eigenvector, and I want to find the corresponding best approximate eigenvalue \(\hat{\lambda} \), in the sense that

\[\hat{\lambda} = \arg \min_\mu \| A \hat{v} - \hat{v} \mu \|_2^2. \]
This is now a linear least squares problem in the variable μ, and the normal equations give us

$$
\hat{\lambda} = \hat{v}^* A \hat{v} / \hat{v}^* \hat{v};
$$

that is, the Rayleigh quotient is the choice of $\hat{\lambda}$ that minimizes the residual norm for the eigenvalue problem.

In the same way, we can derive the block Rayleigh quotient associated with a matrix \hat{V} such that $\hat{V}^* \hat{V} = I$ to be the corresponding \hat{L} that minimizes $\|A \hat{V} - \hat{V} \hat{L}\|_F$. The corresponding minimizer is $\hat{L} = \hat{V}^* A \hat{V}$. Just as the Rayleigh quotient provides an approximate eigenvalue, the block Rayleigh quotient provides an approximate “block” eigenvalue; and if the residual is small, eigenvalues of \hat{L} are eigenvalues are close to eigenvalues of A corresponding to the invariant subspace that \hat{V} approximates.

Note that we can also define block Rayleigh-quotient iteration:

$$
p_k(z) = \det(V_k^* A V_k - zI)$$

$$
V_{k+1} R_{k+1} = p_k(A)^{-1} V_k.
$$

Rayleigh quotients, minimax, etc

Suppose v is a unit-length eigenvector of A with corresponding eigenvector λ (i.e. $Av = v\lambda$). The corresponding Rayleigh quotient is the eigenvalue. What if we consider δv very close to A? Let us suppose that v has unit length, and differentiate $\rho_A(v) = (v^* Av) / (v^* v)$ in a direction δv. Using the quotient rule, we have

$$
\delta \rho_A(v) = \frac{(\delta v^* Av + v^* \delta Av)(v^* v) - (v^* Av) (\delta v^* v + v^* \delta v)}{(v^* v)^2}
$$

$$
= (\delta v^* Av + v^* \delta Av) - \lambda (\delta v^* v + v^* \delta v)
$$

$$
= \delta v^* (A - \lambda I) v + v^* (A - \lambda I) \delta v.
$$

Now, note that

$$
\delta \rho_A(v) = \delta v^* (A - \lambda I) v + v^* (A - \lambda I) \delta v = v^* (A - \lambda I) \delta v.
$$

If v^* is a row eigenvector of A corresponding to λ, then v is a stationary point of ρ_A. The vector v^* is a row eigenvector whenever the matrix A is normal.
that is, whenever \(AV = V\Lambda \) for some unitary matrix \(V \). Such stationarity implies that
\[
\rho_A(v + \delta v) = \lambda + O(\|\delta v\|^2).
\]
This is a strong statement; it implies that when we have a first-order accurate estimate of an eigenvector, we have a second-order accurate estimate of the corresponding eigenvalue.

Any real symmetric (or complex Hermitian) matrices is normal; and for a real symmetric matrix, we have that all the eigenvalues are real, and that they are critical points for \(\rho_A \). This variational characterization of the eigenvalues of \(A \) means, in particular, that \(\lambda_{\max} = \max_{v \neq 0} \rho_A(v) \) and \(\lambda_{\min} = \min_{v \neq 0} \rho_A(v) \). We can go one step further with the Courant-Fischer minimax theorem:

Theorem 1. If \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \), then we can characterize the eigenvalues via optimizations over subspaces \(\mathcal{V} \):

\[
\lambda_k = \max_{\dim \mathcal{V} = k} \left(\min_{0 \neq v \in \mathcal{V}} \rho_A(v) \right) = \min_{\dim \mathcal{V} = n - k + 1} \left(\max_{0 \neq v \in \mathcal{V}} \rho_A(v) \right).
\]

Proof. Write \(A = U\Lambda U^* \) where \(U \) is a unitary matrix of eigenvectors. If \(v \) is a unit vector, so is \(x = U^*v \), and we have
\[
\rho_A(v) = x^*\Lambda x = \sum_{j=1}^n \lambda_j |x_j|^2,
\]
i.e. \(\rho_A(v) \) is a weighted average of the eigenvalues of \(A \). If \(\mathcal{V} \) is a \(k \)-dimensional subspace, then we can find a unit vector \(v \in \mathcal{V} \) that satisfies the \(k - 1 \) constraints \((U^*v)_j = 0 \) for \(j = 1 \) through \(k - 1 \) (i.e. \(v \) is orthogonal to the invariant subspace associated with the first \(k - 1 \) eigenvectors). For this \(v \), \(\rho_A(v) \) is a weighted average of \(\lambda_k, \lambda_{k+1}, \ldots, \lambda_n \), so \(\rho_A(v) \leq \lambda_k \). Therefore,
\[
\max_{\dim \mathcal{V} = k} \left(\min_{0 \neq v \in \mathcal{V}} \rho_A(v) \right) \leq \lambda_k.
\]
Now, if \(\mathcal{V} \) is the range space of the first \(k \) columns of \(U \), then for any \(v \in \mathcal{V} \) we have that \(\rho_A(v) \) is a weighted average of the first \(k \) eigenvalues, which attains the minimal value \(\lambda_k \) when we choose \(v = u_k \). \(\square \)
One piece of the minimax theorem is that given any k-dimensional subspace \mathcal{V}, the smallest value of the Rayleigh quotient over that subspace is a lower bound on λ_k and an upper bound on λ_{n-k+1}. Taking this one step further, we have the Cauchy interlace theorem, which relates the eigenvalues of a block Rayleigh quotient to the eigenvalues of the corresponding matrix.

Theorem 2. Suppose A is real symmetric (or Hermitian), and let V be a matrix with m orthonormal columns. Then the eigenvalues of V^*AV interlace the eigenvalues of A; that is, if A has eigenvalues $\alpha_1 \geq \alpha_2 \geq \ldots \geq \alpha_n$ and V^*AV has eigenvalues β_j, then

$$\beta_j \in [\alpha_{n-m+j}, \alpha_j].$$